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Effects of partial slip on the steady Von Kármán
flow and heat transfer of a non-Newtonian fluid

Bikash Sahoo and H.G. Sharma

Abstract. The steady Von Kármán flow and heat transfer of a non-Newtonian fluid is
extended to the case where the disk surface admits partial slip. The constitutive equation
of the non-Newtonian fluid is modeled by that for a Reiner-Rivlin fluid. The momentum
equations give rise to highly nonlinear boundary value problem. Numerical solutions
for the governing nonlinear equations are obtained over the entire range of the physical
parameters. The effects of slip and non-Newtonian fluid characteristics on the velocity
and temperature fields have been discussed in detail and shown graphically.
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1 Introduction

Von Kármán [24] considered the steady flow of a viscous incompressible fluid
due to a rotating disk. He solved the equations of motion by an approximate
integral method devised by him and Pohlhausen [14]. There are a few minor
inaccuracies in Kármán’s analysis which were corrected by Cochran [7]. The
later was able to give an exact numerical solution, a remarkable feat at that time.
Stuart [23] studied the effects of uniform suction on the flow due to a rotating disk.
The most accurate solution so far seems to have been reported by Ackroyed [1].
The classical problem of the flow due to a rotating disk has been generalized in
several manners to include diverse physical effects. The heat transfer aspects
have been considered by Millsaps and Pohlhausen [11] for variety of Prandtl
numbers in the steady state. Sparrow and Gregg [20] studied the steady state
heat transfer from a rotating disk maintained at a constant temperature to fluids
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at any Prandtl number. Later, Attia [3] has studied the heat transfer of a viscous
fluid near a rotating disk considering different thermal conditions.

In all of the above studies the fluid is assumed to be Newtonian. Many materials
such as polymer solutions or melts, drilling mud, clastomers, certain oils and
greases and many other emulsions are classified as non-Newtonian fluids. For
these kind of fluids, the commonly accepted assumption of a linear relationship
between the stress and the rate of strain does not hold. Most of the fluids used
in industries are non-Newtonian fluids. The non-Newtonian fluids have been
modeled by constitutive equations which vary greatly in complexity. The non-
Newtonian fluid considered in the present paper is that for which the stress tensor
τ i

j is related to the rate of strain tensor ei
j as

τ i
j = −pδi

j + 2μei
j + 2μcei

kek
j , e j

j = 0 (1)

where p is denoting the pressure, μ is the coefficient of viscosity and μc is
the coefficient of cross viscosity. This model was introduced by Reiner [16] to
describe the behavior of wet sand but was at one time considered as a possible
model for non-Newtonian fluid behavior [17, 22]. However, the model does
not account for the possibility of both normal stress differences [9] or shear-
thinning or shear-thickening. One can refer the recent works [6, 21] in which
the authors have thoroughly discussed about the Reiner-Rivlin fluid. The Von
Kármán flow of different kind of non-Newtonian fluids have been studied by
various authors [8, 12] including diverse physical effects. A detailed discussion
up to 1991 regarding the flow of non-Newtonian fluids due to rotating disks can
be found in the review paper by Rajagopal [15]. Recently Attia [4, 5] has studied
the steady and unsteady Von Kármán flow and heat transfer of Reiner-Rivlin fluid
with suction or injection at the surface of the disk.

In all the above mentioned studies, no attention has been given to the effect of
partial slip on the flow due to a rotating disk. The no-slip boundary condition (the
assumption that a liquid adheres to a solid boundary) is one of the central tenets
of the Navier-Stokes theory. However there are situations wherein this condition
does not hold. The inadequacy of the no-slip condition is evident for most non-
Newtonian fluids. For example, polymer melts often exhibit macroscopic wall
slip and that in general governed by a nonlinear and monotone relation between
the slip velocity and the traction. This may be an important factor in shear
skin, spurt and hysteresis effects. Also the fluids that exhibit boundary slip have
important technological applications such as in the polishing of artificial heart
valves and internal cavities. Navier [13] first proposed the equivalent partial
slip condition for rough surfaces, relating the tangential velocity u to the local
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tangential shear stress τ

u = Nτ

where N is a slip coefficient to be determined by experiments. The roughness
may not be statistically isotropic. For example, it was found that for parallel,
grooved surfaces the slip is larger in the direction along the grooves than the
direction transverse to the grooves [25]. The very recent work of Miklavčič and
Wang [10] takes into consideration of the influence of partial slip on the flow of
a viscous fluid due to a rotating disk. They have discussed the existence proof
and obtained the solution numerically.

It seems that no attempt is available in the literature which describes the influ-
ence of partial slip on the flow and heat transfer of a non-Newtonian fluid due
to a rotating disk. Keeping this in mind, we study the influence of partial slip
on the flow and heat transfer of a non-Newtonian Reiner-Rivlin fluid due to a
rotating disk. The resulting system of highly nonlinear differential equations for
the velocity and temperature field are solved by a second order finite difference
method.

2 Formulation of the problem

We consider a non-Newtonian Reiner-Rivlin fluid whose rheological behavior is
governed by stress-strain rate law (1), occupying the space z > 0 over an infinite
rotating disk coinciding with the plane z = 0. The disk is assumed to be rotating
about z-axis with an uniform angular velocity �. It is natural to describe the flow
in the cylindrical polar coordinates (r, θ, z). In view of the rotational symmetry,
∂
∂θ

≡ 0. Taking V = (u, v, w) for the steady flow,the equations of continuity
and motion are,

∂u

∂r
+

u

r
+

∂w

∂z
= 0 (2)

and

ρ

(
u
∂u

∂r
+ w

∂u

∂z
−

v2

r

)
=

∂τ r
r

∂r
+

∂τ z
r

∂z
+

τ r
r − τ

φ

φ

r
, (3)

ρ

(
u
∂v

∂r
+ w

∂v

∂z
+

uv

r

)
=

∂τ r
φ

∂r
+

∂τ z
φ

∂z
+

2τ r
φ

r
, (4)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
=

∂τ r
z

∂r
+

∂τ z
z

∂z
+

τ r
z

r
(5)
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The no-slip boundary conditions for the velocity field are given as

z = 0, u = 0, v = r�, w = 0, (6a)

z → ∞, u → 0, v → 0, p → p∞. (6b)

By using the Von Kármán transformations [24]

u = r�F(ζ ), v = r�G(ζ ), w =
√

�νH(ζ ),

z =

√
ν

�
ζ, p − p∞ = −ρν�P

(7)

equations (2)-(5) take the form

d H

dζ
+ 2F = 0, (8)

d2 F

dζ 2
− H

d F

dζ
− F2 + G2 −

1

2
K

((
d F

dζ

)2

− 3
(

dG

dζ

)2

− 2F
d2 F

dζ 2

)

= 0 (9)

d2G

dζ 2
− H

dG

dζ
− 2FG + K

(
d F

dζ

dG

dζ
+ F

d2G

dζ 2

)
= 0, (10)

d2 H

dζ 2
− H

d H

dζ
−

7

2
K

d H

dζ

d2 H

dζ 2
+

d P

dζ
= 0. (11)

where ζ is the non-dimensional distance measured along the axis of rotation, F ,
G, H and P are non-dimensional functions of ζ , ρ is the density and ν is the
kinematic viscosity(ν = μ

ρ
) of the fluid. The boundary conditions (6) become,

ζ = 0 : F = 0, G = 1, H = 0, (12a)

ζ → ∞ : F → 0, G → 0 (12b)

where K = μc�

μ
is the parameter that describes the non-Newtonian characteristic

of the fluid. The above system (8)- (10) with the prescribed boundary condi-
tions (12)are sufficient to solve for the three components of the flow velocity.
Equation (11) can be used to solve for the pressure distribution at any point.

A generalization of Navier’s partial slip condition gives, in the radial direction,

u|z=0 = N1τ
z
r |z=0 (13)

and in the azimuthal direction

v|z=0 = N2τ
z
φ|z=0 (14)
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where N1, N2 are respectively the slip coefficients. Let

λ = N1

√
�

ν
μ, η = N2

√
�

ν
μ (15)

With the help of transformation (7) and equations (13)- (15), the boundary con-
ditions (12) reduce to

F(0) = λ[F ′(0) − K F(0)F ′(0)],

G(0) − 1 = η[G ′(0) − 2K F(0)G ′(0)], H(0) = 0. (16a)

F(∞) → 0, G(∞) → 0 (16b)

The governing equations are still equations (8)- (10). The boundary conditions at
infinity are equation (12b) but those on the disk are replaced by equations (16a).

Figure 1: Schematic representation of the flow domain.

2.1 Heat transfer analysis

Due to the temperature difference between the surface of the disk and the ambient
fluid, heat transfer takes place. The energy equation, by neglecting the dissipation
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terms, takes the form,

ρcp

(
u
∂T

∂r
+ w

∂T

∂z

)
− k

∂2T

∂z2
= 0. (17)

where cp is the specific heat at constant pressure and k is the thermal conductivity
of the fluid.

Introducing the non-dimensional variable θ = T −T∞
Tw−T∞

and using the Von Kár-
mán transformations (7), equation (17) becomes,

d2θ

dζ 2
− Pr H

dθ

dζ
= 0. (18)

where Tw is the temperature at the surface of the disk, T∞ is the temperature of
the ambient fluid at large distance from the disk and Pr = cpμ

k is the Prandtl
number. The boundary conditions in terms of the non-dimensional parameter θ

are expressed as

ζ = 0 : θ = 1; ζ → ∞ : θ → 0. (19)

The heat transfer from the disk surface to the fluid is computed by the application
of the Fourier’s law, q = −k( ∂T

∂z )w. Introducing the transformed variables, the
expression for q becomes

q = −k(Tw − T∞)

√
�

ν

dθ(0)

dζ
. (20)

By rephrasing the heat transfer results in terms of the Nusselt number defined as

Nu =
q
√

ν
�

k(Tw−T∞)
, we get

Nu = −
dθ(0)

dζ
. (21)

The action of the viscosity in the fluid adjacent to the disk tends to set up
tangential shear stress τϕ , which opposes the rotation of the disk. There is also
a surface shear stress τ r in the radial direction. In terms of the variables of the
analysis, the expressions of τϕ and τ r are respectively given as

τϕ

ρr
√

ν�3
= τϕ =

dG(0)

dζ
− 2K F(0)

dG(0)

dζ
;

τ r

ρr
√

ν�3
= τr =

d F(0)

dζ
− K F(0)

d F(0)

dζ
.

(22)
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3 Numerical solution of the problem

The system of non-linear differential equations (8)- (10)and (18) is solved under
the boundary conditions (16) and (19), respectively. One can see that the initial
boundary conditions for F and G in (16a) are unknown contrary to the case
of no-slip boundary conditions (12a). Hence, the solution of the system can
not proceed numerically using any standard integration routine. Here we have
adopted a second order numerical technique which combines the features of
the finite difference method and the shooting method. The method is accurate
because it uses central differences. A finite value, ζ∞, large enough, has been
substituted for ∞, the numerical infinity to ensure that the solutions are not
affected by imposing the asymptotic conditions at a finite distance. The value of
ζ∞ has been kept invariant during the run of the program.

Now suppose we introduce a mesh defined by

ζi = ih (i = 0, 1, . . . n), (23)

h being the mesh size, and discretize equations (8)- (10) and (18) using the central
difference approximations for the derivatives, then the following equations are
obtained.

Fi+1 − 2Fi + Fi−1

h2 − Hi

(
Fi+1 − Fi−1

2h

)
− F2

i + G2
i

−
1

2
K

[ (
Fi+1 − Fi−1

2h

)2

− 3
(

Gi+1 − Gi−1

2h

)2

− 2Fi

(
Fi+1 − 2Fi + Fi−1

h2

)]
= 0

(24)

Gi+1 − 2Gi + Gi−1

h2
− Hi

(
Gi+1 − Gi−1

2h

)
− 2Fi Gi

+ K
[(

Fi+1 − Fi−1

2h

)(
Gi+1 − Gi−1

2h

)

+ Fi

(
Gi+1 − 2Gi + Gi−1

h2

)]
= 0

(25)

θi+1 − 2θi + θi−1

h2
− Pr Hi

(
θi+1 − θi−1

2h

)
= 0 (26)

Hi+1 = Hi − h(Fi + Fi+1) (27)
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Note that equations (9), (10) and (18), which are written at j th mesh point, the
first and second derivatives are approximated by the central differences centered
at j th mesh point, while in equation (8), which is written at ( j + 1

2 )th mesh
point, the first derivative is approximated by the difference quotient at j th and
( j+1)th mesh points, and the right hand sides are approximated by the respective
averages at the same two mesh points. This scheme ensures that the accuracy of
O(h2) is preserved in the discretization.

Equations (24), (25) and (26) are three term recurrence relations in F , G and
θ respectively. Hence, in order to start the recursion, besides the values of F0,
G0 and θ0, the values of F1, G1 and θ1 are also required. These values can be
obtained by Taylor series expansion near ζ = 0 for F , G and θ .

If
F ′(0) = s1, G ′(0) = s2 and θ ′(0) = s3 (28)

we have

F1 = F(0) + hF ′(0) +
h2

2
F ′′(0) + O(h3)

G1 = G(0) + hG ′(0) +
h2

2
G ′′(0) + O(h3)

θ1 = θ(0) + hθ ′(0) +
h2

2
θ ′′(0) + O(h3)

(29)

The values of F(0), G(0) and θ(0) are given as boundary conditions in (16)
and (19). The values F ′′(0), G ′′(0) and θ ′′(0) can be obtained directly from (9),
(10) and (18) and using the values in (28). After obtaining the values of F1, G1

and θ1, the integration can now be performed as follows. H1 can be obtained
from (27). Using the values of H1 in (24), (25) and (26), the values of F2, G2

and θ2 are obtained. At the next cycle, H2 is computed from (27) and is used
in equations (24), (25) and (26) to obtain F3, G3 and θ3 respectively. The order
indicated above is followed for the subsequent cycles. The integration is carried
out until the values of F , G, H and θ are obtained at all the mesh points.

Note that we need to satisfy the three asymptotic boundary conditions (16)
and (19). In fact s1, s2 and s3 must be found by shooting method so as to fulfil
the free boundary condition at ζ∞ in (16) and (19). We have adopted Newton’s
method as our zero finding algorithm. The fact that the algorithm has an accuracy
of only O(h2) need not concern us unduly as we can easily hike the accuracy
to O(h4) by invoking Richardson’s extrapolation. With reasonably close trial
values to start the iterations, the convergence to the actual values within an
accuracy of O(10−6) could be attained in 9-11 iterations.
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4 Results and discussion

The method described above was translated into a FORTRAN 90 program and
was run on a Pentium IV personal computer. The value of ζ∞, the numerical
infinity has been kept invariant through out the run of the program. To see if the
program runs correctly, the results of H∞, Nu , τr and τϕ for no-slip condition i.e
for λ = η = 0 are compared with (Table 1) those reported by Attia [4] at selected
values of K (and for no suction/injection). The comparison is found to be in good
agreement. In order to have insight of the flow and heat transfer characteristics,
results are plotted graphically in Figs.(2)-(9) for uniform roughness (λ = η) and
different choice of the non-Newtonian parameter K .

Figs. 2 and 3 depict the variations of the radial component of velocity F(ζ )

as a function of ζ for different values of the slip parameter λ(= η) and the
non-Newtonian parameter K respectively. It is clear that as the slip parameter
increases in magnitude, permitting more fluid to slip past the disk, the maximum
radial velocity decreases and its location moves towards the disk. Moreover, it
is observed that the effect of slip decreases F(ζ ) near the disk and increases far
away from it. This results in a cross over of the radial velocity profile. The effect
of K is opposite to that of λ on the flow.

In Figs. 4 and 5 we plot the dimensionless azimuthal component of velocity
G(ζ ) as a function of ζ with λ(= η) and K respectively. Its value in general
decreases as slip is increased and increases with an increase in the value of K .
It is found that the slip has a prominent effect on G(ζ ) near the disk. Figs. 6
and 7 show the axial velocity profile −H(ζ ). Slip decreases the axial component
throughout the interval and has a prominent effect far away from the disk. The
axial component of the velocity increases with an increase in K .

We plot the dimensionless temperature profile θ(ζ ), as shown in Figs. 8
and 9 for various values of λ(= η) and K . Clearly the slip increases the value
of θ(ζ ), whereas the non-Newtonian parameter K shows an opposite effect on
the temperature profile.

K = 0 K = 2
Previous result [4] Current study Previous result [4] Current study

H∞ 0.8752 0.875211 0.5056 0.505601
Nu 1.1402 1.140213 0.8398 0.839762
τr 0.5104 0.510421 0.1617 0.161703
τϕ 0.6154 0.615376 0.4879 0.487883

Table 1: Variation of some standard parameters with K for λ = η = 0.
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Figure 2: Variation of F with λ(= η) at K = 4.
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Figure 3: Variation of F with K at λ = η = 2.

5 Conclusions

This work presents the effects of the partial slip on the steady flow and heat
transfer of a non-Newtonian Reiner-Rivlin fluid due to a rotating disk. The con-
stitutive equation of the fluid gives rise to momentum equations which, when
transformed using the similarity variables, reduce to highly nonlinear system of
BVP. The new set of slip flow boundary conditions (16) aimed to accommodate
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Figure 4: Variation of G with λ(= η) at K = 4.
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Figure 5: Variation of G with K at λ = η = 2.

for the partial slip effect. A second order numerical scheme, which is a com-
bination of the shooting technique and the finite difference method, has been
adopted to solve the resulting system of equations.

The effects of slip and non-Newtonian fluid parameter K on the velocity and
temperature distributions have been discussed in detail. The flows have boundary
layer character. As the non-Newtonian fluid parameter K , increases in magni-
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Figure 6: Variation of H with λ(= η) at K = 4.
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Figure 7: Variation of H with K at λ = η = 2.

tude the flow gets accelerated, whereas increasing K decreases the heat transfer
rate throughout the domain of integration, as a result of favoring the incoming
flow at near-ambient temperature towards the disk.

The slip increases with the slip factor λ. It is readily seen that λ has a substantial
effect on the solution. As the slip parameter increases in magnitude, permitting
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Figure 8: Variation of θ with λ(= η) at K = 4.
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Figure 9: Variation of θ with K at λ = η = 2.

more fluid to slip past the disk surface, the flow slows down for distances close
to the disk, or in other words, the boundary layer thickness [2, 18, 19] turns out
to be increasing function of λ. The gradual reduction of the peak of the F(ζ )

profiles in Fig. 2 with increasing values of λ is reflected in the distributions of
the axial velocity component −H(ζ ) in Fig. 6. This is a consequence of the
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direct coupling between the radial and the axial velocity components through
the continuity constraint (8). The reduction of the axial velocity with increasing
λ automatically gives rise to a reduced axial inflow, which in turn becomes the
cause for the increase in the heat transfer for all values of ζ . Thus, it is observed
that the effects of slip is opposite to that of the non-Newtonian fluid parameter
K on the flow and heat transfer due to a rotating disk.
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