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Approximate C∗-ternary ring homomorphisms
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Abstract. In this paper, we establish the generalized Hyers–Ulam–Rassias stability
of C∗-ternary ring homomorphisms associated to the Trif functional equation
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1 Introduction and preliminaries

A ternary ring of operators (TRO) is a closed subspace of the space B(H ,K)

of bounded linear operators between Hilbert spaces H and K which is closed
under the ternary product [xyz] := xy∗z. This concept was introduced by
Hestenes [8]. The class of TRO’s includes Hilbert C∗-modules via the ternary
product [xyz] := 〈x, y〉z. It is remarkable that every TRO is isometrically
isomorphic to a corner pA(1 − p) of a C∗-algebra A, where p is a projection.
A closely related structure to TRO’s is the so-called JC∗-triple that is a norm
closed subspace of B(H ) being closed under the triple product [xyz] = (xy∗z +
zy∗x)/2; cf. [7]. It is also true that a commutative TRO, i.e. a TRO with the
property xy∗z = zy∗x , is an associative JC∗-triple.

Following [25] a C*-ternary ring is defined to be a Banach space A with a
ternary product (x, y, z) 7→ [xyz] from A into A which is linear in the outer
variables, conjugate linear in the middle variable, and associative in the sense
that [xy[zts]] = [x[t zy]s] = [[xyz]ts], and satisfies ‖[xyz]‖ ≤ ‖x‖‖y‖‖z‖ and
‖[xxx]‖ = ‖x‖3. For instance, any TRO is a C*-ternary ring under the ternary
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product [xyz] = xy∗z. A linear mapping ϕ between C∗-ternary rings is called a
homomorphism if ϕ([xyz]) = [ϕ(x)ϕ(y)ϕ(z)] for all x, y, z ∈ A.

The stability problem of functional equations originated from a question of
Ulam [24], posed in 1940, concerning the stability of group homomorphisms. In
the next year, Hyers [9] gave a partial affirmative answer to the question of Ulam
in the context of Banach spaces. In 1950, Aoki [2] and in 1978, Th. M. Ras-
sias [20] extended the theorem of Hyers by considering the unbounded Cauchy
difference

‖ f (x + y) − f (x) − f (y)‖ ≤ ε(‖x‖p + ‖y‖p),

where ε > 0 and p ∈ [0, 1) are constants. The result of Th.M. Rassias has
provided a lot of influence in the development of what we now call the Hyers–
Ulam–Rassias stability of functional equations. In 1994, a generalization of
Rassias’ result, the so-called generalized Hyers–Ulam–Rassias stability, was
obtained by Găvruta [6] by following the same approach as in [20]. During
the last decades several stability problems of functional equations have been
investigated in the spirit of Hyers–Ulam–Rassias-Găvruta. See [5, 10, 12, 21, 14]
and references therein for more detailed information on stability of functional
equations.

As far as the author knows, [4] is the first paper dealing with stability of (ring)
homomorphisms. Another related result is that of Johnson [11] in which he
introduced the notion of almost algebra ∗-homomorphism between two Banach
∗-algebras. In fact, so many interesting results on the stability of homomorphisms
have been obtained by many mathematicians; see [22] for a comprehensive ac-
count on the subject. In [3] the stability of homomorphisms between J ∗-algebras
associated to the Cauchy equation f (x + y) = f (x) + f (y) was investigated.
Some results on stability ternary homomorphisms may be found at [1, 16].

Trif [23] proved the generalized stability for the so-called Trif functional equa-
tion
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deriving from an inequality of Popoviciu [19] for convex functions (here, Ck
r

denotes r !
k!(r−k)! ). Hou and Park [17] applied the result of Trif to study ∗-homo-

morphisms between unital C∗-algebras. Further, Park investigated the stabil-
ity of Poisson JC∗-algebra homomorphisms associated with Trif’s equation
(see [18]).

In this paper, using some strategies from [3, 13, 17, 18, 23], we establish
the generalized Hyers–Ulam–Rassias stability of C∗-ternary homomorphisms
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associated to the Trif functional equation. If a C∗-ternary ring (A, [ ]) has an
identity, i.e. an element e such that x = [xee] = [eex] for all x ∈ A, then
it is easy to verify that x � y := [xey] and x∗ := [exe] make A into a unital
C∗-algebra (due to the fact that ‖x � x∗ � x‖ = ‖x‖3). Conversely, if (A, �)

is a (unital) C∗-algebra, then [xyz] := x � y∗ � z makes A into a C∗-ternary
ring (with the unit e such that x � y = [xey]) (see [15]). Thus our approach
may be applied to investigate of stability of homomorphisms between unital
C∗-algebras.

Throughout this paper, A and B denote C∗-ternary rings. In addition, let
q = l(d−1)

d−l and r = − l
d−l for positive integers l, d with 2 ≤ l ≤ d − 1. By

an approximate C∗-ternary ring homomorphism associated to the Trif equation
we mean a mapping f : A → B for which there exists a certain control function
ϕ : Ad+3 → [0, ∞) such that if

Dμ f (x1, . . . , xd , u, v, w)

=

∥
∥
∥
∥d ∙ Cl−2
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then

Dμ f (x1, ∙ ∙ ∙ , xd, u, v, w) ≤ ϕ (x1, ∙ ∙ ∙ , xd, u, v, w) , (1)

for all scalars μ in a subset E of C and all x1, ∙ ∙ ∙ , xd, u, v, w ∈ A.
It is not hard to see that a function T : X → Y between linear spaces satisfies

Trif’s equation if and only if there is an additive mapping S : X → Y such that
T (x) = S(x) + T (0) for all x ∈ X . In fact, S(x) := (1/2)(T (x) − T (−x));
see [23].

2 Main Results

In this section, we are going to establish the generalized Hyers–Ulam–Rassias
stability of homomorphisms in C∗-ternary rings associated with the Trif func-
tional equation. We start our work with investigating the case in which an
approximate C∗-ternary ring homomorphism associated to the Trif equation is
an exact homomorphism.

Proposition 2.1. Let T : A → B be an approximate C∗-ternary ring homo-
morphism associated to the Trif equation with E = C and a control function ϕ
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satisfying

lim
n→∞

q−nϕ
(
qnx1, ∙ ∙ ∙ , qnxd, qnu, qnv, qnw

)
= 0,

for all x1, ∙ ∙ ∙ , xd, u, v, w ∈ A. Suppose that T (qx) = qT (x) for all x ∈ A.
Then T is a C∗-ternary homomorphism.

Proof. T (0) = 0, because T (0) = qT (0) and q > 1. We have

D1T (x1, ∙ ∙ ∙ , xd, 0, 0, 0) = q−n D1T (qnx1, ∙ ∙ ∙ , qnxd, 0, 0, 0)

≤ q−nϕ(qnx1, ∙ ∙ ∙ , qnxd, 0, 0, 0).

Taking the limit as n → ∞ we conclude that T satisfies Trif’s equation. Hence
T is additive. It follows from

DμT (qnx, ∙ ∙ ∙ , qnx, 0, 0, 0) = qn
∥
∥d ∙ Cl−2

d−2(T (μx) − μT (x))
∥
∥

≤ ϕ(qnx, ∙ ∙ ∙ , qnx, 0, 0, 0),

that T is homogeneous.
Set x1 = ∙ ∙ ∙ = xd = 0 and replace u, v, w by qnu, qnv, qnw, respectively,

in (1). Since T is homogeneous, we have
∥
∥T ([uvw]) − [T (u)T (v)T (w)]

∥
∥ = q−3n

∥
∥T ([qnuqnvqnw])

− [T (qnu)T (qnv)T (qnw)]
∥
∥

≤ q−nϕ(0, ∙ ∙ ∙ , 0, qnu, qnv, qnw),

for all u, v, w ∈ A. The right hand side tends to zero as n → ∞. Hence
T ([uvw]) = [T (u)T (v)T (w)] for all u, v, w ∈ A. �

Theorem 2.2. Let f : A → B be an approximate C∗-ternary ring homo-
morphism associated to the Trif equation with E = T and a control function
ϕ : Ad+3 → [0, ∞) satisfying

ϕ̃(x1, ∙ ∙ ∙ , xd , u, v, w) :=
∞∑

j=0

q− jϕ(q j x1, ∙ ∙ ∙ , q j xd , q j u, q jv, q jw) < ∞, (2)

for all x1, . . . , xd, u, v, w ∈ A. If f (0) = 0, then there exists a unique C∗-
ternary ring homomorphism T : A → B such that

‖ f (x) − T (x)‖ ≤
1

l ∙ Cl−1
d−1

ϕ̃ (qx, r x, . . . , r x, 0, 0, 0),

for all x ∈ A.
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Proof. Set u = v = w = 0, μ = 1 and replace x1, . . . , xd by qx, r x, . . . , r x
in (1). Then

‖Cl−1
d−2 f (qx) − l ∙ Cl−1

d−1 f (x)‖ ≤ ϕ (qx, r x, ∙ ∙ ∙ , r x, 0, 0, 0) (x ∈ A).

One can use induction to show that
∥
∥q−n f (qnx) − q−m f (qm x)

∥
∥

≤
1

l ∙ Cl−1
d−1

n−1∑

j=m

q− jϕ
(
q j (qx), q j (r x), . . . , q j (r x), 0, 0, 0

)
,

(3)

for all nonnegative integers m < n and all x ∈ A. Hence the sequence{
q−n f (qnx)

}
n∈N is Cauchy for all x ∈ A. Therefore we can define the map-

ping T : A → B by

T (x) := lim
n→∞

1

qn
f (qnx) (x ∈ A). (4)

Since

D1T (x1, ∙ ∙ ∙ , xd, 0, 0, 0) = lim
n→∞

q−n D1 f (qnx1, ∙ ∙ ∙ , qnxd, 0, 0, 0)

≤ lim
n→∞

q−nϕ(qnx1, ∙ ∙ ∙ , qnxd, 0, 0, 0)

= 0,

we conclude that T satisfies the Trif equation and so it is additive (note that
(4) implies that T (0) = 0). It follows from (4) and (3) with m = 0 that

‖ f (x) − T (x)‖ ≤
1

l ∙ Cl−1
d−1

ϕ̃ (qx, r x, ∙ ∙ ∙ , r x, 0, 0, 0),

for all x ∈ A.
We use the strategy of [23] to show the uniqueness of T . Let T ′ be another

additive mapping fulfilling

‖ f (x) − T ′(x)‖ ≤
1

l ∙ Cl−1
d−1

ϕ̃ (qx, r x, ∙ ∙ ∙ , r x, 0, 0, 0),

for all x ∈ A. We have

‖T (x) − T ′(x)‖ = q−n‖T (qnx) − T ′(qnx)‖

≤ q−n‖T (qnx) − f (qnx)‖ + q−n‖ f (qnx) − T ′(qnx)‖

≤
2q−n

l ∙ Cl−1
d−1

ϕ̃
(
qn(qx), qn(r x), ∙ ∙ ∙ , qn(r x), 0, 0, 0

)

≤
2

l ∙ Cl−1
d−1

∞∑

j=n

q− jϕ
(
q j (qx), q j (r x), ∙ ∙ ∙ , q j (r x), 0, 0, 0

)
,
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for all x ∈ A. Since the right hand side tends to zero as n → ∞, we deduce
that T (x) = T ′(x) for all x ∈ A.

Let μ ∈ T1. Setting x1 = ∙ ∙ ∙ = xd = x and u = v = w = 0 in (1) we get

‖d ∙ Cl−2
d−2

(
f (μx) − μ f (x)

)
‖ ≤ ϕ(x, ∙ ∙ ∙ , x, 0, 0, 0),

for all x ∈ A. So that

q−n‖d ∙ Cl−2
d−2

(
f (μqnx) − μ f (qnx)

)
‖ ≤ q−nϕ(qnx, ∙ ∙ ∙ , qnx, 0, 0, 0),

for all x ∈ A. Since the right hand side tends to zero as n → ∞, we have

lim
n→∞

q−n‖ f (μqnx) − μ f (qnx)‖ = 0,

for all μ ∈ T1 and all x ∈ A. Hence

T (μx) = lim
n→∞

f (qnμx)

qn
= lim

n→∞

μ f (qnx)

qn
= μT (x),

for all μ ∈ T1 and all x ∈ A.
Obviously, T (0x) = 0 = 0T (x). Next, let λ ∈ C (λ 6= 0), and let M be

a natural number greater than |λ|. By an easily geometric argument, one can
conclude that there exist two numbers μ1, μ2 ∈ T such that 2 λ

M = μ1 + μ2.
By the additivity of T we get T

(
1
2 x

)
= 1

2 T (x) for all x ∈ A. Therefore

T (λx) = T
(

M

2
∙ 2 ∙

λ

M
x
)

= MT
(

1

2
∙ 2 ∙

λ

M
x
)

=
M

2
T

(
2 ∙

λ

M
x
)

=
M

2
T (μ1x + μ2x) =

M

2
(T (μ1x) + T (μ2x))

=
M

2
(μ1 + μ2)T (x) =

M

2
∙ 2 ∙

λ

M
= λT (x),

for all x ∈ A, so that T is a C-linear mapping.
Set μ = 1 and x1 = ∙ ∙ ∙ = xd = 0, and replace u, v, w by qnu, qnv, qnw,

respectively, in (1) to get

1

q3n

∥
∥
∥
∥
∥

d ∙ Cl−2
d−2 f

(
q3n

d ∙ Cl−2
d−2

[uvw]

)

−
[

f (qnu) f (qnv) f (qnw)
]
∥
∥
∥
∥
∥

≤ q−3nϕ(0, ∙ ∙ ∙ , 0, qnu, qnv, qnw),
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for all u, v, w ∈ A. Then by applying the continuity of the ternary product
(x, y, z) 7→ [xyz] we deduce

T ([uvw]) = d ∙ Cl−2
d−2T

(
1

d ∙ Cl−2
d−2

[uvw]

)

= lim
n→∞

d ∙ Cl−2
d−2

q3n
f

(
q3n

d ∙ Cl−2
d−2

[uvw]

)

= lim
n→∞

[
f (qnu)

qn

f (qnv)

qn

f (qnw)

qn

]

= [T (u)T (v)T (w)],

for all u, v, w ∈ A. Thus T is a C∗-ternary homomorphism. �

Example 2.3. Let S : A → A be a (bounded) C∗-ternary homomorphism,
and let f : A → A be defined by

f (x) =
{

S(x) ‖x‖ < 1
0 ‖x‖ ≥ 1

and ϕ(x1, . . . , xd, u, v, w) := δ,

where δ := d ∙ Cl−2
d−2 + d ∙ Cl−1

d−2 + l ∙ Cl
d + 1. Then

ϕ̃(x1, . . . , xd, u, v, w) =
∞∑

n=0

q−n ∙ δ =
δq

q − 1
,

and
Dμ f (x1, . . . , xd, u, v, w) ≤ ϕ(x1, . . . , xd, u, v, w),

for all μ ∈ T1 and all x1, . . . , xd, u, v, w ∈ A. Note also that f is not linear.
It follows from Theorem 2 that there is a unique C∗-ternary ring homomor-
phism T : A → A such that

‖ f (x) − T (x)‖ ≤
1

l ∙ Cl−1
d−1

ϕ̃(qx, r x, . . . , r x, 0, 0, 0) (x ∈ A).

Further, T (0) = limn→∞
f (0)

qn = 0 and for x 6= 0 we have

T (x) = lim
n→∞

f (qnx)

qn
= lim

n→∞

0

qn
= 0,

since for sufficiently large n, ‖qnx‖ ≥ 1. Thus T is identically zero.
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Corollary 2.4. Let f : A → B be a mapping with f (0) = 0 and there exist
constants ε ≥ 0 and p ∈ [0, 1) such that

Dμ f (x1, ∙ ∙ ∙ , xd, u, v, w) ≤ ε




d∑

j=1

‖x j‖
p + ‖u‖p + ‖v‖p + ‖w‖p



 ,

for all μ ∈ T1 and all x1, ∙ ∙ ∙ , xd, u, v, w ∈ A. Then there exists a unique
C∗-ternary ring homomorphism T : A → B such that

‖ f (x) − T (x)‖ ≤
q1−p(q p + (d − 1)r p)ε

l ∙ Cl−1
d−1(q

1−p − 1)
‖x‖p,

for all x ∈ A.

Proof. Define

ϕ(x1, ∙ ∙ ∙ , xd, u, v, w) = ε




d∑

j=1

‖x j‖
p + ‖u‖p + ‖v‖p + ‖w‖p



 ,

and apply Theorem 2.2. �

The following corollary can be applied in the case that our ternary algebra is
linearly generated by its ‘idempotents’, i.e. elements u with u3 = u.

Proposition 2.5. LetA be linearly spanned by a set S ⊆ A and let f : A → B
be a mapping satisfying f (q2n[s1s2z]) = [ f (qns1) f (qns2) f (z)] for all suffi-
ciently large positive integers n, and all s1, s2 ∈ S, z ∈ A. Suppose that there
exists a control function ϕ : Ad → [0, ∞) satisfying

ϕ̃(x1, . . . , xd) :=
∞∑

j=0

q− jϕ(q j x1, . . . , q j xd) < ∞ (x1, . . . , xd ∈ A).

If f (0) = 0 and

∥
∥
∥
∥d ∙ Cl−2

d−2 f
(

μx1 + ∙ ∙ ∙ + μxd

d

)
+ Cl−1

d−2

d∑

j=1

μ f (x j )

− l ∙
∑

1≤ j1<∙∙∙< jl≤d

μ f
(

x j1 + ∙ ∙ ∙ + x jl

l

) ∥
∥
∥
∥ ≤ ϕ(x1, ∙ ∙ ∙ , xd),
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for all μ ∈ T1 and all x1, ∙ ∙ ∙ , xd ∈ A, then there exists a unique C∗-ternary
ring homomorphism T : A → B such that

‖ f (x) − T (x)‖ ≤
1

l ∙ Cl−1
d−1

ϕ̃(qx, r x, . . . , r x),

for all x ∈ A.

Proof. Applying the same argument as in the proof of Theorem 2.2, there exists
a unique linear mapping T : A → B given by

T (x) := lim
n→∞

1

qn
f (qnx) (x ∈ A)

such that

‖ f (x) − T (x)‖ ≤
1

l ∙ Cl−1
d−1

ϕ̃(qx, r x, . . . , r x),

for all x ∈ A. We have

T ([s1s2z]) = lim
n→∞

1

q2n
f
([

(qns1)(q
ns2)z

])

= lim
n→∞

[
f (qns1)

qn

f (qns2)

qn
f (z)

]

= [T (s1)T (s2) f (z)] .

By the linearity of T we have T ([xyz]) = [T (x)T (y) f (z)] for all x, y, z ∈ A.
Therefore qnT ([xyz]) = T ([xy(qnz)]) = [T (x)T (y) f (qnz)], and so

T [xyz]) = lim
n→∞

1

qn

[
T (x)T (y) f (qnz)

]

=
[

T (x)T (y) lim
n→∞

f (qnz)

qn

]

= [T (x)T (y)T (z)] ,

for all x, y, z ∈ A. �
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Theorem 2.6. Suppose that f : A → B is an approximate C∗-ternary ring
homomorphism associated to the Trif equation with E = {1, i} and a control
function ϕ : Ad+3 → [0, ∞) fulfilling (2). If f (0) = 0 and for each fixed
x ∈ A the mapping t 7→ f (t x) is continuous on R, then there exists a unique
C∗-ternary homomorphism T : A → B such that

‖ f (x) − T (x)‖ ≤ ϕ̃(qx, r x, . . . , r x, 0, 0, 0),

for all x ∈ A.

Proof. Put u = v = w = 0 and μ = 1 in (1). Using the same argument as in
the proof of Theorem 2 we deduce that there exists a unique additive mapping
T : A → B given by

T (x) = lim
n→∞

f (qnx)

qn
(x ∈ A).

By the same reasoning as in the proof of the main theorem of [20], the mapping
T is R-linear.

Putting x1 = ∙ ∙ ∙ = xd = x , μ = i and u = v = w = 0 in (1) we get

‖d ∙ Cl−2
d−2( f (ix) − i f (x))‖ ≤ ϕ(x, . . . , x, 0, 0, 0) (x ∈ A).

Hence

q−n‖ f (qnix) − i f (qnx)‖ ≤ q−nϕ(qnx, . . . , qnx, 0, 0, 0) (x ∈ A).

The right hand side tends to zero as n → ∞, hence

T (ix) = lim
n→∞

f (qnix)

qn
= lim

n→∞

i f (qnx)

qn
= iT (x) (x ∈ A).

For every λ ∈ C we can write λ = α1 + iα2 in which α1, α2 ∈ R. Therefore

T (λx) = T (α1x + iα2x) = α1T (x) + α2T (ix)

= α1T (X) + iα2T (x) = (α1 + iα2)T (x)

= λT (x),

for all x ∈ A. Thus T is C-linear. �
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