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New examples of Cantor sets in S1 that
are not C1-minimal

Aldo Portela

Abstract. Although every Cantor subset of the circle (S1) is the minimal set of some
homeomorphism of S1, not every such set is minimal for a C1 diffeomorphism of S1.
In this work, we construct new examples of Cantor sets in S1 that are not minimal for
any C1-diffeomorphim of S1.
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1 Introduction and main results

To study the dynamics of a homeomorphism f : S1 → S1 it is important to study
the invariant sets for f . We say that a set K is a minimal set for f if it is compact,
non empty, invariant and minimal (relative to the inclusion) with regard to the
former three properties. Simple examples of minimal sets are the fixed points
and the periodic orbits of a homeomorphism, and in general the w-limit (α-limit)
of any point. Zorn’s lemma implies that every homeomorphism of S1 has at least
one minimal set. If f has periodic points (for example when f does not preserve
orientation) then any minimal set is finite. On the other hand, if f does not have
periodic points the minimal set is unique, infinite and it is the set of accumulation
points of the past orbit and future orbit of any point x ∈ S1. In the latter case
the minimal set is a Cantor set (intransitive case) or all S1 (transitive case). The
following theorem allows us to state that the intransitive case cannot happen
when f is a diffeomorphism of class C2.

Theorem 1.1 (Denjoy). If f is a diffeomorphism of class C1 of S1 without
periodic points and with derivate of bounded variation then f is transitive.
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We can find a proof of this theorem in [1]. In this work, Denjoy also constructs
intransitive diffeomorphisms of class C1 (so called Denjoy’s examples). Also
there exist examples of intransitive diffeomorphisms of class C1+α for α < 1,
constructed by Herman in [3]. From the existence of intransitive diffeomor-
phisms and since any two Cantor sets of S1 are homeomorphic, it follows that
any Cantor set of S1 is C0-minimal (i.e. it is minimal for some homeomorphism).
This is not true when f is a diffeomorphism of class C1. It is easy to verify that
any finite subset of S1 is C1-minimal (i.e. it is minimal for some diffeomorphism
of class C1), but not every Cantor set of S1 is C1-minimal. In [2] Mc Duff proved
that the usual ternary Cantor set is not C1-minimal and in [4] Norton proved that
the affine Cantor sets are not C1-minimal.

Let K be a Cantor set of circle and let K c =
⋃

I j where I j are the connected
components of K c. We define the spectrum of K (EK ) as the ordered set {λi }
(λi+1 < λi ), with λi the lengths of I j for some j . We call covering of the
spectrum of K to every separate family of closed intervals {J i = [αi , βi ]} such
that EK ⊂ ∪Ji and αi+1 ≤ βi+1 < αi . In this condition each connected
component I j of K c is associated to an integer n(I j ) such that |I j | ∈ Jn(I j ).
In [2] Mc Duff conjectured that if λn/λn+1 6→ 1 the Cantor set K is not C1-
minimal (all known C1-minimal Cantor sets satisfy λn/λn+1 → 1).

Definition 1.1. We say that the Cantor set K satisfies the p-separation con-
dition for a covering {Ji } if there exists a non negative integer p such that for
any N > 0 there exists η(N ) > 0 such that

α j+n−1

β j+p+n
≥ (1 + η(N ))

β j

α j+p
(1)

for any integer n, |n| ≤ N , and for all j , sufficiently large.

Adapting the techniques used by Mc Duff in [2], we obtain the following result.

Theorem 1.2. If the Cantor set K satisfies the p-separation condition then the
Cantor set K is not C1-minimal.

This theorem is a generalization of the following theorem proved by Mc Duff
in [2].

Theorem 1.3. If a Cantor set K satisfies the p-separation condition for p = 0
then the Cantor set K is not C1-minimal.
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We say that a covering {Ji } of the spectrum of K is a ε-covering (with ε > 0)

if
α j

β j+1
= 1 + ε, for every j . The other result obtained is the following.

Theorem 1.4. If {Ji } is a ε-covering of the spectrum of a Cantor set K and
βi/αi = k then the Cantor set K is not C1-minimal.

Finally, in the last section we give the construction of a Cantor set that satisfies
the p-separation condition for p = 1, but does not satisfy the condition given by
Mc Duff in [2] (this is the p-separation condition for p = 0).

2 Proof of Theorems 1.2 and 1.4

The following lemmas will be used in the proof of Theorem 1.2.

Lemma 1. If the Cantor set K is C1-minimal and {Ji } is a covering of EK then
αi

βi+1
is bounded.

Proof. We can suppose that any interval of the covering of EK contains some
element of EK . Let f be a diffeomorphism for which K is C1-minimal. If I
is a connected component of K c and {| f n(I )| : n ∈ N} = {γ1, . . . , γ j , . . .} with
γ j+1 < γ j , we have

γ j

γ j+1
≤ max

{
M, 1/m

}
, (2)

where M and m are the maximum and minimum of f ′ respectively. For every i
there exists ji such that γ ji ∈ Ji and γ ji +1 ∈ Ji+1. Then

αi

βi+1
≤

γ ji

γ ji +1
. (3)

Therefore using (2) and (3) we have

αi

βi+1
≤ max

{
M, 1/m

}
.

This ends the proof. �

Lemma 2. If the Cantor set K is C1-minimal and satisfies the p-separation

condition for {Ji } then
β j

α j
is bounded.
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Proof. Taking N = n = 1 in (1) we have

α j

β j+p+1
≥

(
1 + η(1)

) β j

α j+p

for all j sufficiently large. Then

β j

α j
≤

1

1 + η(1)

α j+p

β j+p+1
.

The result follows from the previous lemma. �

It is simple to verify the following properties.

1. If the Cantor set K is C1-minimal for f , then for every r > 1 there exists
a finite covering of K formed by disjoint closed intervals Ti such that if
x, y belong to a same Ti ,

1

r
≤

f
′
(x)

f ′
(y)

≤ r.

2. If the Cantor set K satisfies the p-separation condition for {J j } then

α j

β j+1
≥ 1 + η(1)

for all j , sufficiently large.

Lemma 3. If the Cantor set K is C1-minimal for f and satisfies the p-
separation condition then for every component I of K c, |n(I ) − n( f (I ))| is
bounded.

Proof. If m and M are the minimum and maximum of f ′ respectively then
m|I | ≤ | f (I )| ≤ M |I |. If n( f (I )) ≥ n(I ), using property 2 we have

(1 + η(1))n( f (I ))−n(I ) ≤
αn(I )

βn(I )+1
∙

αn(I )+1

βn(I )+2
∙ ∙ ∙

αn( f (I ))−1

βn( f (I ))

≤
αn(I )

βn( f (I ))
≤

|I |

| f (I )|
≤

1

m
.

If n( f (I )) < n(I ) then

(1 + η(1))n(I )−n( f (I )) ≤
αn( f (I ))

βn(I )
≤

| f (I )|

|I |
≤ M .

In both cases we conclude that |n(I ) − n( f (I ))| is bounded. �
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2.1 Proof of Theorem 1.2

Proof. Suppose by contradiction that the Cantor set K is C1-minimal for f
and satisfies the p-separation condition for the covering {Ji }. From Lemma 3
there exists a non negative integer N0 such that |n(I ) − n( f (I ))| < N0 for any
connected component I of K c. Consider a covering of K formed by disjoint
open intervals T1, . . . , Ts , such that if x and y belong to a same Ti , then

f ′(x)

f ′(y)
< 1 +

η(N0)

3
. (4)

From property 1 we know that such covering exists. Let I and J be two inter-
vals of K c contained in a same Ti , such that n(I ) − n(J ) ≤ p (p is the integer
given by the condition of p-separation). We will prove now that n( f (I )) −
n( f (J )) ≤ p. Suppose by contradiction that n( f (J )) < n( f (I )) − p. Then

| f (J )|

| f (I )|
≥

αn( f (J ))

βn( f (I ))
≥

αn( f (J ))

βn( f (J ))+p+1
.

Using the p-separation condition and that |n(J ) − n( f (J ))| < N0, we obtain

| f (J )|

| f (I )|
≥ (1 + η(N0))

βn(J )

αn(J )+p
.

On the other hand, using (4) we obtain

| f (J )|

| f (I )|
≤

|J |

|I |

(
1 +

η(N0)

3

)
≤

(
1 +

η(N0)

3

)
βn(J )

αn(I )
≤

(
1 +

η(N0)

3

)
βn(J )

αn(J )+p

and this is a contradiction. Therefore, if I and J are in the same component Ti

such that n(I ) − n(J ) ≤ p then n( f (I )) − n( f (J )) ≤ p. For each compo-
nent of the complement of ∪Ti there exists a component of K c that contains it.
Let us denote such components by L1, . . . , Ls . Let I be a component of K c.
As | f j (I )| → 0 when j → ∞ then there exists j0 such that for all j > j0,

n
(

f j (I )
)

> p + max
{
n(Li ) : i = 1, . . . , s

}
.

In these conditions there exists i0 such that f j0(I ) = (a j0, b j0) is contained in
Ti0 . Let c j0 be a point of K contained in Ti0 such that |(c j0, a j0)| < | f j0(I )|.
From here, if J is a connected component of K c contained in (c j0, a j0) then

n
(

f j0(I )
)
− n(J ) ≤ p, and n

(
f j0+1(I )

)
− n( f (J )) ≤ p .
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From the choice of j0 we have that n( f (J )) > max {n(Li ) : i = 1, . . . , s} so
f (J ) 6= Li for i = 1, . . . , s. This shows that f j0+1(I ) and f ((c j0, a j0)) are
in the same Ti . Proceeding inductively we have that for any interval J of K c

contained in (c j0, a j0), f n(J ) 6= Li , for all positive integer n and i = 1, . . . , s.
This is a contradiction because for any interval Li there exist infinite n > 0
such that f −n(Li ) ⊂ (c j0, a j0). �

2.2 Proof of Theorem 1.4

Proof. Suppose by contradiction that the Cantor set K is C1-minimal for a
diffeomorphism f .

Claim. There exist connected components, T and I , of K c such that |T | and
|I | belong to the same interval Ji , but | f (T )| and | f (I )| belong to different ones.

Let δ > 0 be as small as necessary. Let T1, . . . , Ts be as in the proof of
Theorem 1.2 such that if x and y belong to a same Ti , then

1

1 + δ
≤

f ′(x)

f ′(y)
≤ 1 + δ. (5)

Let I , i0, a j0 and c j0 be as in the proof of Theorem 1.2. Recall that f j0(I ) =
(a j0, b j0) ⊂ Ti0 . Denote R = f j0(I ). If L is any connected component of K c

contained in (c j0, a j0), then

1

(1 + δ)q

|L|

|R|
≤

| f q(L)|

| f q(R)|
≤ (1 + δ)q |L|

|R|

while f q̃((c j0, b j0)) is contained in ∪Ti for 0 ≤ q̃ ≤ q. As {Ji } is a ε-covering
with βi/αi = k, if δ is taken sufficiently small, it follows that

∣
∣(n

(
f q1(L)

)
− n

(
f q1(R)

))
−

(
n
(

f q1+1(L)
)
− n

(
f q1+1(R)

))∣∣ ≤ 1 (6)

for 0 ≤ q1 ≤ q. As remarked at the end of the proof of Theorem 1.2, we can
take L = f −q2(L1) for an adequate q2 > 0. Then

n
(

f −q2(L1)
)
− n(R) ≥ 0 and n

(
f q2( f −q2(L1))

)
− n

(
f q2(R)

)
< 1 .

Then (6) implies that there exist q3, q4 > 0 and L j such that

n( f q3( f −q4(L j ))) − n( f q3(R)) = 0
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and
n( f q3+1( f −q4(L j ))) − n( f q3+1(R)) = −1.

Taking T = f q3−q4(L j ) and I = f q3(R) the proof of the claim is finished.
Note, from the proof of the claim, that the intervals T and I are so close

as necessary. Also note that given δ′ > 0 there exists η > 0 such that, if
x, y ∈ E(z, η) we have

1

1 + δ′
<

f ′(x)

f ′(y)
< 1 + δ′ (7)

for any z ∈ K . Then, given δ′ > 0, there exist η > 0, z ∈ K and T, I ⊂ E(z, η)

as in the claim, such that, if x, y ∈ E(z, η) then x, y satisfy (7). As | f (T )|
and | f (I )| do not belong to the same Ji , there exists a ‘gap’ between | f (T )|
and | f (I )|. Therefore, as by hypothesis βi/αi = k, this ‘gap’ produces a new
‘gap’ for the spectrum of the Cantor set K ∩ E(z, η) in between each one of the
original ‘gaps’. Formally, we have that there exists a covering

{
J21

i =
[
α21

i , β21
i

]}
∪

{
J22

i =
[
α22

i , β22
i

]}
.

of the spectrum of K2 = E(z, η) ∩ K such that J21
i ∪ J22

i ⊂ Ji and
β2r

i

α2r
i

< k 1+δ′

1+ε

with r = 1, 2 (see figure 1).

Figure 1

As any C1-minimal Cantor set is locally C1-minimal (see [2]), there exists
K ′

2 ⊂ K2, C1-minimal with {J21
i } ∪ {J22

i } as a covering of its spectrum. Pro-
ceeding inductively we obtain a Cantor set K ′

n , C1-minimal with

{
Jn1

i

}
∪

{
Jn2

i

}
∪ ∙ ∙ ∙ ∪

{
Jnn

i

}
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as a covering of its spectrum and such that 1 ≤
βnr

i
αnr

i
< k

(
1+δ′

1+ε

)n−1
. As ε is fixed

and δ′ is as small as we want, taking n sufficiently large we obtain a contradiction,
and the proof is finished. �

3 Examples of Cantor sets that satisfy the p-separation condition

In this section we will construct a family of Cantor sets that satisfy the p-separ-
ation condition for p = 1 but does not satisfy the McDuff’s condition [2].

3.1 Construction of the Cantor set

First we determine a set of real numbers that will be the spectrum of the Cantor
set (here we are not considering the order). Let γ be a positive number such that
γ < 3 and γ 3/2 > 3. For each positive integer n we consider the set

A(n) =
{
ηnj =

γ
j

2n

34n+2
: j = −n, . . . , n

}
.

If S(n) is the sum of the elements of A(n) we have

S(n) =
n∑

j=−n

ηnj ≤
2n + 1

34n+2
γ 1/2 ≤

γ 1/2

32n
.

Then
∑∞

n=1 S(n) is finite, so the sum of the elements of

B =
{
ηi =

1

3i
: i ∈ N

}
∪

∞⋃

i=1

A(i)

is finite too. We denote this sum by μ. For the set B we have the figure 2.
Consider the set

C =
{

2πx

μ
: x ∈ B

}
.

The sum of the elements of C is 2π . Let Rθ be a rotation of irrational angle θ

in S1 and x a point in S¹. Let m : Z → C be a bijection. We define a family of
open intervals (a j , b j ), j ∈ Z as follows.

a0 = 0, b0 = m(0)

and for any positive integer j

a j = b0 +
∑

Rk
θ (x)∈(x,R j

θ (x))

m(k), b j = a j + m( j).
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.................. ..................
..........................................................                                                  ...........................................

Figure 2

We define

K = S1 \
( ⋃

j∈Z

(
eia j , eib j

)
)

.

Then K is a Cantor set and C is its spectrum.

3.2 p-separation condition for K

We will show that the Cantor set K satisfies the p-separation condition for p = 1.
The elements of C are of the form

ωi =
2π

μ3i
, ωi j =

2πγ
j

2i

μ34i+2

with i ∈ N and j = −i, . . . , i . Therefore

2πγ − 1
2

μ34i+2
≤ ωi j =

2πγ
j

2i

μ34i+2
≤

2πγ
1
2

μ34i+2
.

Now we construct a covering {J j } of C , J j = [α j , β j ], j > 0. If j = 4k + 2 for
some k > 0 then we define

α j =
2πγ − 1

2

μ3 j
, β j =

2πγ
1
2

μ3 j
,

if not

α j = β j =
2π

μ3 j
.
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So, for all integer n we have

α j+n−1

β j+n+1
≥

9

γ
1
2

and
β j

α j+1
≤ 3γ

1
2 .

As γ < 3, then K satisfies a p-separation condition for p = 1. Note that from
Theorem 1.2 we know that the Cantor set K is not C¹-minimal.

3.3 The Cantor set K does not satisfy McDuff’s condition

Suppose that K satisfies the McDuff’s condition (the 0-separation condition) for
a covering {Li }, Li = [αi , βi ]. Note that the McDuff’s condition implies that

every ‘gap’
αi

βi+1
is greater than every ‘non gap’ βi/αi . For a fixed k we have

ωk j

ωk, j−1
=

γ
j

2k

γ
j−1
2k

= γ
1

2k

and it limits is 1 when i → ∞. Then, for a sufficiently large k, every ωk j belongs

to the same interval Lik = [αik , βik ], so
βik

αik

≥ γ .

1. If βik <
2π

μ34k+1
then there exists αr with r < ik such that

βik < αr ≤
2π

μ34k+1
,

so
αr

βik

≤
2π

μ34k+1

2πγ 1/2

μ34k+2

=
3

γ 1/2
< γ ≤

βik

αik

.

Then there exists a ‘gap’ smaller than αr/βik , which is smaller than a ‘non
gap’ βik /αik , and this is a contradiction.

2. If αik >
2π

μ34k+3
a contradiction is proved in a similar way.

3. If βik ≥
2π

μ34k+1
and αik ≤

2π

μ34k+3
then

βik

αik

≥ 9. Then we have that the

‘gap’ βik /αik is greater than every ‘non gap’ (every non ‘gap’ is equal or
smaller than 3) and this is a contradiction.

Then the Cantor set K do not satisfy the McDuff’s condition.
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