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Abstract. In 112  x R. one has catenoids, helicoids and Scherk-type surfaces. A Jenkins-
Serrin type theorem holds here. Moreover there exist complete minimal graphs in H 2 

 with arbitrary continuous asymptotic values. Finally, a graph on a domain of H2  cannot 

have an isolated singularity. 
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1 Errata Corrige 

In the following we will use the notation of the article "Minimal Surfaces in 

H2  x R". 

1. Page 264 in [4]. Formula (1) should be replaced by 

div
Vu ) 2H 

(— = 
F 

2. Page 267. Theorem 1 in [4]. Minimal catenoids Ct  in 112  x R exist only 

for t E (O, 	(see Proposition 5.1 in [3], Theorem 15 in [8]). 

3. In the proof of Step 1 of Theorem 3 in [4], there was a mistake: page 276 
lines 6-14 and Figure 7(b). 
We need to prove that the sequence fu n } is uniformly bounded on compact 

subsets of D. 

Given a complete geodesic a in 112 , E one of the componente of H2  \ a, 

there exists a minimal graph h defined on D, asymptotic to +oo on a and 
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to zero on a,„(E) (see Figure 1 in the disk model of IH1 2). This function 
was found independently by U. Abresch and R. Sa Earp (see [6]). 

Figure 1 

In the halfspace model of 12  with E = {x > O, y > O) : 

jx2 + y2 + y 
h(x, y) = ln 	 x > O, y > O 

Let K be a compact subset of D. Let a be a complete geodesic, disjoint 
from the geodesic containing A, intersecting C in two points, such that 
the region of D bounded by a and A is disjoint from K. The geodesic a 
separates the circle at infinity in two ares; let B denote the arc at infinity 
such that the disk E, bounded by a U B, contains K. Let h be the minimal 
graph on E which is -Foo on a and on B it is the maximum of f on K n C. 
By the maximum principie, each u n  is bounded by h on K. Then, the 
sequence {u n } converges to a minimal solution u on D. 

The existence of Scherk's type surface in a triangle, guarantees that u takes 
the right boundary values, as in [1]. 	 ❑ 

4. Now we improve Theorem 4 in [4]. 

(a) One can relax the hypothesis on the regularity of the curve F. II is 
enough to assume that it is rectifiable instead of C ° . Let us prove it. 
Assume that one has proved Theorem 4 for differentiable boundary 
values. Then, consider two families of differentiable curves approxi-
mating F, constructed as follows. For any e > O, let FÉ c ac„,H2  x R 
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be a differentiable vertical graph above F, such that the vertical dis-
tance between F and F s+ is at most 8. Then, let Fj" C a c„,u12  x R be a 
differentiable vertical graph below F, such that the vertical distance 
between F and is at most e. 

For any e > O there exist a minimal graph /1/I;F ( Mj) with asymptotic 
boundary rs+ (resp. F;). 
By the maximum principie, each surface Mn  in the proof of Theo-
rem 4 in [4] is above Mj and below hence also the limit surface 
M. Now, let e go to zero: as both F8+ and rj converge to the curve 
r, the boundary of M must be r. 

(b) The method of the proof in [4] is correct. There is a mistake in our 
boundary barrier, given by the graph of the function g. Instead of 
the graph of the function g, we use the Abresch-Sa Earp graph. 

5. In Section 7 of [4], we neglegted some references. The original idea of the 
proof of Theorem 5 is from [7]. A removable singularities Theorem anal- 
ogous to Theorem 5, for prescribed mean curvature graphs in Euclidean 
space and hyperbolic space is proved in [5] and [2] respectively. 
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