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An information geometry algorithm for
distribution control

Fengwei Zhong, Huafei Sun and Zhenning Zhang

Abstract. In this paper, we consider the problem of distribution control from the view-
point of information geometry. Different from most existing models used in stochastic
control, it is assumed that the control input directly affects the distribution of the sys-
tem output in probability sense. Here, we set up a new manifold (S), meanwhile the
B-spline manifold (B) and the system output manifold (M) can be referred to as its
submanifolds. We give an information geometrical algorithm which can be called as
geodesic-projection algorithm using the properties of manifold. In the geodesic step, we
can obtain the geodesic equation from the initial point V0 = (ω10, ω20, ∙ ∙ ∙ , ω(n−1)0)

to the specified point Vg = (ω1g, ω2g, ∙ ∙ ∙ , ω(n−1)g) in B. This gives us an optimal
trajectory for the points changing along in B. In the projection step, we project the
sample points selected from the geodesic onto M . The coordinates of the projections in
M give the trajectory of the control input u.
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1 Introduction

Recently, in the control of stochastic system, scholars mainly concern with how
to design control input in order to control the shape of the output probability den-
sity function of an unknown stochastic system, and make the output probability
density function as close as possible to the target function. Several algorithms
([6], [7], [8], [9]) have been obtained and worked well for some stochastic sys-
tems. Among these algorithms, the B-spline function approximation algorithm
([10]) has been working particularly well to approximate the output probabil-
ity density function of an unknown stochastic system. The B-spline function is
formed by linear combination of all the pre-specified basis functions. When all
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the basis functions are fixed, the weights of the B-spline function can be regarded
as directly related to the control input. Unfortunately all these algorithms have
an extra constraint that the dynamics between the weights and the control inputs
must be known. In the present paper, we give a new method of distribution
control from information geometrical point of view to overcome this constraint.

Information geometry was proposed by Amari, until now it has been well
applied into various fields, and it provides us new ways to solve some problems
effectively. In this paper, we set the output probability density functions of an
unknown stochastic system and the B-spline functions as two different manifolds,
where control input (u) and weight vector (V) of B-spline functions play the role
of coordinates in this two manifolds, respectively.

The purpose of distribution control is to adjust the control input u, such that the
final system output probability density function p(y; u f ) is as close as possible
to the target function g(y), and to study the trajectory of the parameter vector u
turning from the initial distribution p(y, u0) to the finial distribution p(y, u f ).
We can get to our object under the help of B-spline function. We consider that
g(y) can be approximated by B-spline function B(y; V ), and at some point with
the coordinate Vg = (ω1g, ω2g, ∙ ∙ ∙ , ω(n−1)g), they are infinitely close, that is,

g(y) = B(y; Vg)+ e, y ∈ [a, b] (1.1)

where e denotes the approximation error, and it is small enough under the choice
of the pre-specified basis functions so that we can neglect it in the rest of this
paper.

The key steps for designing the control input u are the following:

1. To formulate the relation between the weight vector (V) of the B-spline
function and control input (u).

2. To choose the trajectory so that the points in B-spline manifold can change
from the initial point V0 to the specified point Vg smoothly and efficiently.

In the present paper, we use the projection between manifolds to give the
relation between u and V , and use the geodesic to give an optimal trajectory from
the initial point to the specified point in B-spline manifold. Then projecting the
sample points selected from the geodesic on B onto M , we can get the trajectory
of the control input u.
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2 Preliminaries

Definition 2.1. Suppose that p(x; θ) is a probability density function on a set
X , where θ is the parameter of the probability density function. Let

S =
{

p(x; θ)
∣
∣ θ ∈ 2

}
(2.1)

be a set formed by probability density functions p(x; θ), then we call S a statis-
tical manifold, where θ plays the role of coordinate system.

Definition 2.2. Let us consider a family of probability distributions of a random
variable x (which maybe a vector) whose probability density functions are spec-
ified by an n-dimensional parameter θ = (θ1, θ2, ∙ ∙ ∙ , θn). When the probability
density function can be written as

p(x; θ) = exp

{
n∑

i=1

θi ri (x)+ K (x)− ψ(θ)

}

, (2.2)

where ri (x), i = 1, 2, . . . , n, are functions of x , the family S =
{

p(x; θ)
∣
∣ θ ∈ 2

}

is called an exponential family. θ = (θ1, θ2, . . . , θn) is natural coordinate system,
and ψ(θ) is the potential function with respect to θ .

Definition 2.3. The Fisher metric, α-connection and α-curvature tensor of a
statistical manifold are defined by

gi j =
∫
∂ log p(x; θ)

∂θ i

∂ log p(x; θ)

∂θ j
p(x; θ)dx, (2.3)

0
(α)
i jk = E

[
(∂i∂ j l(x; θ))(∂kl(x; θ))

]

+
1 − α

2
E

[
(∂i l(x; θ))(∂ j l(x; θ))(∂kl(x; θ))

]
,

(2.4)

R(α)i jkl =
(
∂ j0

(α)s
ik − ∂i0

(α)s
jk

)
gsl +

(
0
(α)
j tl 0

(α)t
ik − 0

(α)
i tl 0

(α)t
jk

)
, (2.5)

where

l(x; θ) = log p(x; θ), ∂i =
∂

∂θi
,

and E denotes the expectation with respect to p(x; θ).

When α = 0, it is the Riemannian case.
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Definition 2.4. The geodesic equation θ(t) of a manifold is given by

θ̈ i + 0
(α)i
jk θ̇

j θ̇ k = 0, (2.6)

where 0(α)ijk = 0
(α)
jkl g

li , (gli ) is the inverse of (gli ).

Next let us give a useful measure which is different from the general distance
of two points in statistical manifold, Kullback divergence.

Definition 2.5. Let P = f (x) and Q = g(x) be two points in a manifold where
x ∈ X, and the Kullback divergence of the two points is defined by

D(P, Q) =
∫

X

f (x) log
f (x)

g(x)
dx, (2.7)

and D(P, Q) = 0 if and only if P = Q.

Finally let us introduce an important theorem.

Theorem 2.1 (Projection Theorem, [2]). Let M be a smooth submanifold in
S. For a given point P ∈ S, let Q be the point that belongs to M and is closest
to P in the sense of the Kullback divergence, that is,

Q = arg min
Q′ ∈M

D(P, Q
′
), (2.8)

the point Q is given by the dual geodesic projection of P to M . Furthermore,
the projection is unique when M is e-flat. (See Figure 1)

Figure 1: Projection Q from point P to submanifold M .
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3 Model representation

Suppose that the unknown stochastic system has m inputs, so the control in-
put u is an m-dimensional vector. And y ∈ [a, b] denotes the output of the
unknown stochastic system, so the output probability density functions of the
unknown stochastic system is referred to as p(y; u), where u plays a role of an
m-dimensional vector-valued parameter. (See Figure 2)

Figure 2: The considered unknown system.

We adjust u to control the shape of the output probability density functions
p(y; u) as close as possible to the target function g(y). Suppose that the output
probability density functions p(y; u) is continuous and finite in [a, b], then
use the B-spline function formed as

∑n
i=1 ω

′

i (u)Bi (y) to approximate p(y, u),
where Bi (y) are the pre-specified basis functions andω

′

i (u) are the corresponding
weight components.

Since
∫ b

a p(y; u) = 1, the B-spline function has the constraint

∫ b

a

n∑

i=1

ω
′

i (u)Bi (y)dy = 1 ,

this means that only n − 1 weights of B-spline function are independent. To
guarantee such a constraint, we define

bi =
∫ b

a
Bi (y)dy (i = 1, 2, . . . , n),

L(y) = b−1
n Bn(y),

C(y) =
(

B1(y)−
Bn(y)

∫ b

a
Bn(y)dy

∫ b

a
B1(y)dy,

...

Bn−1(y)−
Bn(y)

∫ b

a
Bn(y)dy

∫ b

a
Bn−1(y)dy

)
,

so B-spline function can also be written as

B(y; V ) = C(y) ∙ V + L(y), (3.1)
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and satisfies
∫ b

a B(y; V )dy = 1, where V = (ω1, ω2, . . . , ωn−1) is the weight
vector corresponding to the re-constructed basis C(y) which is an (n − 1)-
dimensional vector.

We use the B-spline function (3.1) to approximate the output probability den-
sity functions p(y; u) of the unknown stochastic system, and e denotes the ap-
proximation error, that is,

p(y; u) = B(y; V )+ e. (3.2)

The purpose of adjusting the control input u is to make the final output prob-
ability density function p(y; u f ) as close as possible to a specified distribution
g(y), where

g(y) = C(y) ∙ Vg + L(y), (3.3)

and can be regarded as a point in B-spline manifold with coordinate Vg =
(ω1g, ω2g, . . . , ω(n−1)g).

Once such an idea is formulated, the next question arising from many practical
situations is to see how the parameter of a distribution can be selected so that
the actual distribution is made as close as possible to the target distribution, and
study the trajectory of the parameter turning, this is a control problem, and has
many applications in particulate processing.

4 Information geometrical algorithm for distribution control

In this section, we may redescribe the distribution control problem in the context
of information geometry. It is assumed that the initial system output distribution
is characterized by u0 and the desired distribution is characterized by u f which
should be as close as possible to Vg in the sense of Kullback divergence, then
focus will be made on the evaluation of how the weight vector V will behave in
tuning the initial distribution p(y, u0) to the final distribution p(y, u f ). Thus an
effective trajectory of V should be chosen. Then the coordinate of the projections
from V onto M will give the trajectory of control input u.

Next we will introduce three manifolds.

Definition 4.1. Let

B =
{

B(y; V )
∣
∣ B(y; V ) = C(y) ∙ V + L(y), V = (ω1, ω2, . . . , ωn−1)

}

be B-spline manifold, and V = (ω1, ω2, . . . , ωn−1) plays the role of coordinate
system.
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Definition 4.2. Let

M =
{

p(y; u)
∣
∣ p(y; u) is the output probability density function

of unknown stochastic system.
}

be system output manifold, and u plays the role of coordinate system. Here u is
an m-dimensional vector-valued parameter, denoted by u = (u1, . . . , um).

Definition 4.3. Let S be the set of all smooth non-zero probability distributions
of y, that is

S =
{
r(y) | r(y) > 0

}
. (4.1)

This is an infinite-dimensional manifold, and has dual flat structure (see [11]).

In this paper, we take the case where the system output probability density
functions are subject to the exponential family distribution as an example, that
is, M can be written as

M =
{

p(y; u)
∣
∣p(y; u) = exp{u ∙ y − ψ(u)}

}
, (4.2)

where u is the control input, and plays the role of coordinate system.
Any parametric model is just a finite-dimensional submanifold of S in the

framework of [11], and we can get

Proposition 4.1. B is a −1-flat submanifold of S, and M is a 1-flat submani-
fold of S.

The manifolds we consider here have so good properties as described in Propo-
sition 4.1 that given a point P ∈ M ⊂ S, the point Q̂ ∈ B ⊂ S that minimizes
D(Q, P) is given by the e-projection of P onto B. The e-projection is given by
the e-geodesic connecting Q̂ and P which is orthogonal to B at Q̂.

Dually, for a given point Q ∈ B ⊂ S, the point P̂ ∈ M ⊂ S that minimizes
D(Q, P) is given by the m-projection of Q ∈ B onto M . The m-projection is
given by the m-geodesic connecting P̂ and Q which is orthogonal to M at P̂ .

We know the initial point P0 ∈ M ⊂ S with the coordinate u0 and the target
point Qg ∈ B ⊂ S with the coordinate Vg. We want to get Pf in M which is
an optimal estimation of Qg ∈ B in the sense of Kullback divergence, and a

trajectory P̂0 Pf of the control input u turning from P0 to Pf . We project P0 onto
B, obtain Q0 ∈ B with the coordinate V0 = (ω10, . . . , ω(n−1)0). In manifold,
generally, geodesic is considered as a "straight" curve connecting the two points,
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so the geodesic connecting Q0 and Qg can provide an optimal trajectory in
B-spline manifold. And this geodesic can be obtain by (2.6).

Then we select some sample points on Q̂0 Qg in a fixed learning rate, and
make m-projection onto M , also Pf is obtained by projecting Qg onto M .

From the above consideration, we can formulate the geodesic-projection al-
gorithm as follows. (See Figure 3)

Figure 3: The geodesic-projection algorithm.

1. For a given initial point P0 ∈ M ⊂ S with the coordinate u0, projecting P0

onto B, we get Q0 = 5B P0 ∈ B that minimizes D(Q, P0), where 5B P0

denotes the e-geodesic-projection from P0 onto B;

2. Select some sample points along the geodesic which connects Q0(= V0)

and Qg(= Vg) in a fixed learning rate, we get the point Q1(= V1), . . . ,

Qn(= Vn), Qg(= Vg);

3. Projecting these points onto M , we get

P1 = 5M Q1, . . . , Pn = 5M Qn, Pf = 5M Qg ,

those minimize D(Q1, P), . . . , D(Qn, P) and D(Qg, P) respectively,
where 5M Q denotes the m-geodesic-projection from Q onto M .

The coordinates of P1, P2, . . . , Pf are u1, u2, . . . , u f . Connecting points P0,

P1, P2, . . . , Pf using a smooth curve, we get the trajectory of the control input
u and the optimal approximation of g(y): p(y; u f ).

Bull Braz Math Soc, Vol. 39, N. 1, 2008



“main” — 2008/3/25 — 11:44 — page 9 — #9

AN INFORMATION GEOMETRY ALGORITHM FOR DISTRIBUTION CONTROL 9

When M is an exponential family manifold, because it is e-flat, or at least an
α-convex manifold, the projection from Q ∈ B to M is unique; because B is
m-flat, the projection from P ∈ M to B is unique. This uniqueness will avoid
the existence of the local minima and guarantee the stability of controller design.
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