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Addendum to “Complete rotation hypersurfaces
with Hk constant in space forms”*

A. Gervasio Colares1 and Oscar Palmas2

Abstract. Here we study complete rotation hypersurfaces with constant k-th mean
curvature Hk in Sn+1, k even and 2 < k < n. We prove the existence of a constant
H0

k < 0 such that there are no such hypersurfaces for Hk < H 0
k . We have only one

compact hypersurface of this kind with Hk = H0
k . For each H0

k < Hk < 0 there
is a corresponding family of complete immersed rotation hypersurfaces, each family
containing two isoparametric hypersurfaces. For Hk ≥ 0, there is also such a family,
now containing only one isoparametric hypersurface. Finally, we prove the existence of
compact hypersurfaces with arbitrarily large Hk , neither isometric to a sphere nor to a
product of spheres.
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1 Introduction

This paper is a continuation of [5], where the second named author classified
the hypersurfaces given in the title for ambient spaces of non-positive curvature,
while leaving some open questions for an spherical ambient space, namely: we
left open some questions about rotation hypersurfaces with Hk constant in Sn+1.
The aim here is to analyze this last case. (For completeness, we will recall in a
moment the definitions and notation used in [5].)

Our work here may be compared with a paper by F. Brito and M.L. Leite [1],
where the authors proved that there are no compact minimal embedded rotation
hypersurfaces in Sn+1 other than Clifford tori and round geodesic spheres. On
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the other hand, they proved the existence of infinitely many compact embedded
rotation hypersurfaces in Sn+1 with non-zero constant mean curvature, showing
that the situation is radically different in this case. Their method may be resumed
as follows: they associate to each curve generating a rotation hypersurface a
function which turns out to be periodic. Then, they proved that the only cases
where the period is adequate for the profile curve to close well correspond to the
hypersurfaces given above.

The study of the period was also developed in [2] for the constant scalar
curvature case, where M.L. Leite proved the existence of compact embedded
rotation hypersurfaces with constant scalar curvature not isometric to products
of spheres.

More recently, H. Li and G. Wei [3] proved a characterization theorem for
compact embedded rotation hypersurfaces in Sn+1 with Hk = 0, showing that
there exists only two such kinds of hypersurfaces, namely, Clifford tori and round
geodesic spheres. It is worth to observe that H. Otsuki already treated the case
of minimal rotation hypersurfaces in [4].

As the cases of constant mean curvature, constant scalar curvature and Hk = 0
were treated in the papers cited above, we restrict ourselves to the cases 2 < k <

n, proving the following results.

Theorem 1.1. Let k be an even integer such that 2 < k < n and

H 0
k = −

2

n

(
k − 2

n − k

)(k−2)/2

. (1)

Then,

1. There are no complete immersed rotation hypersurfaces in Sn+1 with con-
stant k-th mean curvature Hk < H 0

k ;

2. There is only one complete immersed rotation hypersurface in Sn+1 with
constant k-th mean curvature Hk = H 0

k . Moreover, this hypersurface is
compact and thus embedded in Sn+1;

3. If H 0
k < Hk < 0, there is a monoparametric family of complete immersed

rotation hypersurface in Sn+1 with constant k-th mean curvature Hk. This
family contains two isoparametric hypersurfaces.

For completeness, we have included in the Theorem above the items 1 and 2
already present in [5].
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Theorem 1.2. If Hk ≥ 0, there is a monoparametric family of complete im-
mersed rotation hypersurface in Sn+1 with constant k-th mean curvature Hk.
This family contains one isoparametric hypersurface. Moreover, for N arbitrar-
ily large, there is a compact hypersurface M in Sn+1 with constant k-th mean
curvature Hk > N, neither isometric to a sphere nor to a product of spheres
with constant radii.

2 Definitions and basic lemmas

We recall that rotation hypersurfaces in Sn+1 are constructed taking the orbit of a
curve α (called the profile curve) under the orthogonal transformations in Rn+2

leaving fixed a geodesic γ . Denote by s the arc length parameter of α, by r(s)
the distance from α(s) to γ , given by the length of a geodesic ray from α(s) to
a point p ∈ γ and by h(s) the height function measured from a fixed origin in γ

to the point p. The profile curve α is parameterized by arc length if and only if

ṙ2 +
(

d f

dr

)2

ḣ2 = 1. (2)

where f (s) = sin r(s). (Compare with eq. 2.2 in [2].) It follows that

ḣ2 =
1 − ṙ2

cos2 r
=

1 − f 2 − ḟ 2

(1 − f 2)2
. (3)

It was proved in [5] that a rotation hypersurface constructed in this way has
constant k-th mean curvature Hk if and only if f (s) satisfies the following dif-
ferential equation:

nHk f k = (n − k)(1 − f 2 − ḟ 2)k/2 − k(1 − f 2 − ḟ 2)(k−2)/2( f̈ + f ) f, (4)

where the derivatives are taken with respect to s. This expression is equivalent
(see [5]) to its first integral, given by

Gk( f, ḟ ) = f n−k
(
(1 − f 2 − ḟ 2)k/2 − Hk f k

)
= C, (5)

where C is constant; that is, f is a solution of (4) if and only if the pair ( f, ḟ ) is
entirely contained in a level curve of Gk . Moreover, f (s) is defined for all s if
and only if the pair ( f (s), ḟ (s)) satisfies

f 2 + ḟ 2 ≤ 1 and f ≥ 0.

Thus, we are lead to analyze the level curves of

Gk(u, v) = un−k
(
(1 − u2 − v2)k/2 − Hkuk

)
, where u2 + v2 ≤ 1.
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The following lemmas give the basic information about the level curves of
Gk . In the next section we will translate this information to describe the rotation
hypersurfaces we are interested in.

Lemma 2.1. The level curve Gk(u, v) = 0 consists of the v-axis (u = 0) and
the conic (

1 + H 2/k
k

)
u2 + v2 = 1,

which is contained in the region u2 + v2 ≤ 1 if and only if Hk ≥ 0.

The proof is straightforward and we omit it.

Lemma 2.2. The critical point set of Gk(u, v) consists of the v-axis (u = 0)
and the points (u, 0) on the u-axis satisfying

g(x) = nHk xk
0 + kx2

0 − (n − k) = 0, (6)

where x = u/
√

1 − u2.

Proof. Another straightforward calculation gives

∂Gk

∂u
= − kun−k

(
u(1 − u2 − v2)k/2−1 + Hkuk−1

)

+ (n − k)un−k−1
(
(1 − u2 − v2)k/2 − Hkuk

)
,

∂Gk

∂v
= − kun−kv(1 − u2 − v2)k/2−1.

From ∂Gk/∂v = 0, we have to consider three cases:

1. u = 0. Then ∂Gk/∂u = 0 is equivalent to

un−k−1(1 − v2)k/2 = 0.

If n − k − 1 > 0, then the above expression vanishes and the v-axis is
contained in the critical point set of Gk . On the other hand, if n−k−1 = 0,
then v = ±1.

2. 1 − u2 − v2 = 0. Then ∂Gk/∂u = 0 reduces to nHkun−1 = 0. Thus
u = 0 or Hk = 0.

3. v = 0. ∂Gk/∂u = 0 gives u = 0 or

−ku2(1 − u2)k/2−1 − k Hkuk + (n − k)
(
(1 − u2)k/2 − Hkuk

)
= 0

Dividing by (1 − u2)k/2 and simplifying, we get the equation (6). �

Next we study in detail the equation g(x) = 0 given by (6) in the above lemma.
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Lemma 2.3. If Hk ≥ 0, equation (6) has one positive solution. On the other
hand, if Hk < 0, then equation (6) has zero, one or two non-negative solutions.
respectively, whenever Hk is less than, equal to, or greater than the constant H 0

k
given by (1).

Proof. Just for reference, we calculate the first and second derivatives of g(x):

g′(x) = knHk xk−1 + 2kx, and g′′(x) = k(k − 1)nHk xk−2 + 2k.

Suppose first that Hk > 0. Then g′(x) ≥ 0 for x ≥ 0, g′(0) = 0 and
g′′(0) ≥ 0. Moreover,

g(0) = −(n − k) < 0 and g(x) → +∞ when x → +∞.

These facts imply that g(x) = 0 has only one positive solution. The case Hk = 0
is similar, but easier, since in this case g(x) = kx2 − (n − k).

It remains to analyze the case Hk < 0. Again, g has a local minimum at
x = 0 and g(0) < 0. The function g has another critical point x0 given by
knHk xk−2

0 + 2k = 0, or

xk−2
0 = −

2

nHk
. (7)

As it is easily verified, g′(x0) < 0 so g has a local maximum at x0. Also, note
that g(x) → −∞ when x → ∞. Thus the equation g(x) = 0 has zero, one
or two solutions depending, respectively, on whether g(x0) is negative, zero or
positive. From g(x0) = 0 and (7) we obtain the value of H 0

k given in (1). �

Corolary 2.4. If Hk ≥ 0, the function Gk(u, v) has one critical point of the
form (u, 0), 0 < u < 1. On the other hand, if Hk < 0, the function Gk(u, v)

has zero, one or two critical points of the form (u, 0), 0 < u < 1, whenever,
respectively, Hk is less than, equal to or greater than the constant H 0

k given
in (1).

3 Proof of the theorems

As in [2] and [3], we will describe the rotation hypersurfaces by studying the
level sets of the function Gk . Let us analyze first the case Gk = 0.

Proposition 3.1. The level curve Gk(u, v) = 0 is associated to a hypersphere
orthogonal to a geodesic.
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Proof. The condition Gk(u, v) = 0 may be translated as

(
1 + H 2/k

k

)
f 2 + ḟ 2 = 1.

We integrate this equation with initial condition f (0) = 0 to get

f (s) =
sin

(√
1 + H 2/k

k s
)

√
1 + H 2/k

k

and thus

h(s) = − arctan
cos

(√
1 + H 2/k

k s
)

H 1/k
k

generating a semicircle of radius 1/

√
1 + H 2/k

k in the orbit space, which in turn
generates a hypersphere orthogonal to a geodesic. (For details, see [2].) �

Now we analyze the critical point set of Gk .

Proposition 3.2. Every critical point (u, 0) of Gk(u, v), 0 < u < 1, corre-
sponds to a curve equidistant to a geodesic, which in turn generates a hyper-
surface with constant principal curvatures isometric to a product of spheres of
constant radii.

Proof. At a critical point (u, 0) with 0 < u < 1, the distance r of the profile
curve to a fixed geodesic is constant. As the principal curvatures are given by
functions of r , they are constant. Thus the corresponding hypersurfaces are given
as a product of spheres of constant radii. �

Now we are in position to prove our main results.

Proof of Theorem 1.1. For Hk < H 0
k , the region inside the unit circle contains

no critical points of Gk . In fact, it may be seen that ∂Gk/∂u 6= 0, so that every
level curve can be seen as a graph over the v-axis and so must leave the unit
circle. Thus, there are no corresponding complete rotation hypersurfaces in this
case.

If Hk = H 0
k , Corollary 2.4 gives one critical point of Gk inside the unit circle.

By a continuity argument, this critical point must be degenerate. Again, every
level curve leaves the unit circle.
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For H 0
k < Hk < 0, Corollary 2.4 gives two critical points of Gk inside the unit

circle. To see that Gk attains a maximum at one of them, note that for Hk = 0,
Gk attains a maximum at (

√
(n − k)/n, 0); moreover, for Hk = 0 it is easy to

see that the second partial derivatives of Gk satisfy

∂2Gk

∂ f 2
,
∂2Gk

∂ ḟ 2
< 0,

∂2Gk

∂ f ∂ ḟ
= 0,

so (
√

(n − k)/n, 0) is a non-degenerate critical point where Gk attains its maxi-
mum. A continuity argument completes the proof of the existence of a maximum
of Gk for Hk close to 0. It is easily seen that the level curves near this point are
closed, thus generating complete immersed rotation hypersurfaces with constant
k-th mean curvature Hk . �

In the case Hk > 0, two values of C must be pointed out. The first one is 0,
which gives a hypersphere, as stated in Proposition 3.1. The second one is C0,
the maximum value of Gk at the only critical point given by Corollary 2.4. This
particular value gives a hypersurface with constant principal curvatures isometric
to a product of spheres of constant radii, as stated in Proposition 3.2.

Now we will study the behavior of level sets corresponding to values of C in
the interval (0, C0). For every such C , the level set Gk( f, ḟ ) = C is a closed
curve contained in the region given by f 2 + ḟ 2 < 1. Let a(Hk, C) and b(Hk, C)

be points of the domain of f where it attains its minimum and maximum values,
respectively, with no critical points of f in the interval (a(Hk, C), b(Hk, C)).
Let α(s) be the corresponding profile curve and h(s) its height function. Thus
we may use (3) and (5) to write

ḣ2 =
1

(1 − f 2)2

(
C + Hk f n

f n−k

)2/k

.

Dividing by the expression for ḟ 2 obtained from (5) and simplifying, we have
(

dh

d f

)2

=
1

(1 − f 2)2

(C + Hk f n)2/k

f 2(n−k)/k(1 − f 2) − (C + Hk f n)2/k
. (8)

We will see that h is periodic with respect to f , its period P(Hk, C) being
calculated as follows:

1

2
P(Hk, C) = h(b(Hk, C)) − h(a(Hk, C))

=
∫ b(Hk ,C)

a(Hk ,C)

dh

d f
d f,
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so that
1

2
P(Hk, C) =

∫ b(Hk ,C)

a(Hk ,C)

1

1 − f 2

(C + Hk f n)1/k
√

f 2(n−k)/k(1 − f 2) − (C + Hk f n)2/k
d f. (9)

The profile curves generate an embedded rotation hypersurface if this period
P(Hk, C) has the form 2π/m, m = 1, 2, . . . . In the following lemmas we will
study the behavior of this period function.

Lemma 3.3. Fix Hk ≥ 0 and let a(Hk, C), b(Hk, C) and P(Hk, C) be de-
fined as above. Then a(Hk, C) is a decreasing function of C, while b(Hk, C)

and P(Hk, C) are increasing functions of C.

Proof. The properties of a(Hk, C) and b(Hk, C) follow from the fact that Gk

has a maximum at the only critical point. �

Lemma 3.4. With the above notation, the period function satisfies

P(Hk, 0) = 2 arctan
1

H 1/k
k

. (10)

Proof. Recall that in this case we have

h(s) = − arctan
cos

(√
1 + H 2/k

k s
)

H 1/k
k

.

Note also that
1

2
P(Hk, 0) = h(s1) − h(s0).

We choose s0 = 0, so that

h(0) = − arctan
1

H 1/k
k

.

The other limit value s1 satisfies

1
√

1 + H 2/k
k

= f (s1) =
sin

(√
1 + H 2/k

k s1

)

√
1 + H 2/k

k

.

Thus, cos
(√

1 + H 2/k
k s1

)
= 0 and h(s1) = 0, proving the lemma. �
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Remark 3.5. It is clear from (10) that P(Hk, 0) is a decreasing function of Hk ,
satisfying

lim
Hk→0

P(Hk, 0) = π.

In fact, H. Li and G. Wei studied in [3] the case Hk = 0 and proved that
π ≤ P(0, C) < 2π for every C in the image [0, C0] of Gk , where as before C0

is the value of Gk at the only critical point ( f0, 0),

f0 =

√
n − k

n
.

We may calculate the precise limit of P(0, C) when f → f0 (or equivalently
C → C0) following [2]. First observe that

C0 = lim
f → f0

Gk(u, 0) =
(

n − k

n

)(n−k)/2 (
k

n

)k/2

.

In (9), we calculate the Taylor polynomial of the term inside the square root
around f0, so that

lim
f → f0

P(0, C) = lim
f → f0

2C1/k

1 − f 2

∫ f0+
√

ε/A

f0−
√

ε/A

d f
√

ε − A( f − f0)2
,

where

A =
1

k

(
n − k

n

)(n−2k)/k

(n − k).

As the above integral converges to π/
√

A, we have (as in the case k = 2
analyzed in [2]) that

lim
f → f0

P(0, C) =
√

2π.

Proof of Theorem 1.2. The statements about the existence of immersed and
isoparametric hypersurfaces follow from the analysis of the corresponding func-
tion Gk , similarly to the case Hk < 0.

On the other hand, the existence of compact hypersurfaces follows from con-
tinuity of P(Hk, C): Since P(Hk, 0) is given by (10), this function varies from
π to 0 when Hk → ∞, so that for each N > 0 there is a H ′

k > N such that
P(H ′

k, 0) = 2π/m, m ∈ N. By continuity, there is a Hk > N and C 6= 0, C0

sufficiently near 0 such that P(Hk, C) = 2π/m. Thus, the corresponding hy-
persurface is compact and neither isometric to a sphere nor to a product of
spheres. �
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