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Explicit expressions for moments of gamma
order statistics
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Abstract. Explicit closed form expressions are derived for the moments of order
statistics from the gamma and generalized gamma distributions. The expressions involve
the Lauricella functions of type A and type B. The usefulness of the result is illustrated
through two quality control data sets.
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1 Introduction

Why do we need to care about moments of order statistics? Actually, moments
of order statistics play an important role in such areas as quality control testing
and reliability. If the reliability of an item is high, the duration of an “all items
fail” life-test can be too expensive in both time and money. This fact prevents a
practitioner from knowing enough about the product in a relatively short time.
Therefore, a practitioner needs to predict the failure of future items based on the
times of a few early failures. These predictions are often based on moments of
order statistics.

The gamma distribution is a popular model in such areas as life testing and
quality control problems. Some recent applications of the gamma distribution
in these areas are Cohen and Whitten (1986), Crowder and Hamilton (1992),
Grego (1993), Lunani et al. (1997), Chang and Bai (2001), Nahar et al. (2001),
Shapiro and Chen (2001), Stoumbos and Sullivan (2002), Christensen et al.
(2003), Jearkpaporn et al. (2003), Pievatolo et al. (2003), Testik et al. (2003),
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Chang and Bai (2004), Phillips (2004), Ghilagaber (2005), Huang et al. (2005)
and Robinson et al. (2006).

Suppose X1, X2, . . . , Xn is a random sample from the gamma distribution
given by the probability density function (pdf):

f (x) =
xα−1 exp(−x)

0 (α)
(1)

for x > 0 and α > 0. Let X1:n < X2:n < ∙ ∙ ∙ < Xn:n denote the correspond-
ing order statistics. The moments of gamma order statistics are E(Xk

r :n) for
k = 1, 2, . . .. Note that it is sufficient to consider the single parameter gamma
distribution given by (1). This is so because if Y1:n < Y2:n < ∙ ∙ ∙ < Yn:n are
the order statistics for a random sample Y1, Y2, . . . , Yn from the two parameter
gamma pdf

f (y) =
yα−1 exp(−y/c)

cα0 (α)

then E(Y k
r :n) = ck E(Xk

r :n) for all r , n and k.
There has been a large amount of work relating to the moments of gamma order

statistics. As far as we know, there are eight significant papers on the calculation
of E(Xk

r :n). In the earliest paper, Gupta (1960) derived a recurrence relation for
E(Xk

r :n) for integer values of the shape parameter α. Gupta used this relation to
tabulate values of E(Xk

r :n) for various combinations of k, n and α. Gupta also
discussed some illustrative applications to life-testing and reliability problems.
Joshi (1979) re-derived the recurrence relation of Gupta (1960) and showed that
if E(Xk

1:n) for k = −(r − 1), . . . , −1 are known then one can obtain expres-
sions for all of E(Xk

r :n). Krishnaiah et al. (1967) extended the work of Gupta
(1960) for the case that α is any positive real number. Breiter and Krishnaiah
(1968) tabulated the values of E(Xk

r :n), k = 1, 2, 3, 4 for various α obtained by
using the recurrence relations in Krishnaiah et al. (1967). A Gauss-Legendre
quadrature formula was used for the computations. Khan and Khan (1983) de-
rived some recurrence relations for E(Xk

r :n) when f (∙) is the generalized gamma
pdf given by

f (x) =
cxcα−1 exp

(
−xc

)

0 (α)
(2)

for x > 0, α > 0 and c > 0. Based on the available recurrence relations, Walter
and Stitt (1988) constructed extensive tabulations of E(Xk

r :n) for the gamma dis-
tribution. Sobel and Wells (1990) showed that E(Xk

r :n) can be expressed in terms
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of Dirichlet integrals (integrals involving gamma functions) and provided a ta-
ble for reading the Dirichlet integrals. Most recently, Abdelkader (2004) derived
some recurrence relations for E(Xk

r :n) when X1, X2, . . . , Xn are independent but
not identically distributed gamma random variables. Abdelkader also discussed
some applications in reliability.

As seen above, all of the work except for Sobel and Wells (1990) express
E(Xk

r :n) in terms of recurrence relations and/or numerical tables. That is, no
explicit expressions are available for E(Xk

r :n) except for the one given by Sobel
and Wells (1990). The representation given in Sobel and Wells (1990) involves
the Dirichlet integrals which are not well known and for which no standard
routines are available. The use of the various numerical tables can be limited
and highly inaccurate.

In this note, we derive explicit expressions for E(Xk
r :n) that are finite sums of

well known special functions – namely, the Lauricella function of type A (Exton,
1978) defined by

F (n)
A (a, b1, . . . , bn; c1, . . . , cn; x1, . . . , xn)

=
∞∑

m1=0

∙ ∙ ∙
∞∑

mn=0

am1+∙∙∙+mn (b1)m1
∙ ∙ ∙ (bn)mn

(c1)m1
∙ ∙ ∙ (cn)mn

xm1
1 ∙ ∙ ∙ xmn

n

m1! ∙ ∙ ∙ mn!

(3)

and, the Lauricella function of type B (Exton, 1978) defined by

F (n)
B (a1, . . . , an, b1, . . . , bn; c; x1, . . . , xn)

=
∞∑

m1=0

∙ ∙ ∙
∞∑

mn=0

(a1)m1
∙ ∙ ∙ (an)mn

(b1)m1
∙ ∙ ∙ (bn)mn

cm1+∙∙∙+mn

xm1
1 ∙ ∙ ∙ xmn

n

m1! ∙ ∙ ∙ mn!
,

(4)

where ( f )k = f ( f + 1) ∙ ∙ ∙ ( f + k − 1) denotes the ascending factorial. Nu-
merical routines for the direct computation of (3) and (4) are available, see, for
example, Exton (1978) and Aarts (2000).

This note is outlined as follows. Section 2 derives explicit expressions for
E(Xk

r :n) when X1, X2, . . . , Xn is a random sample from (1). The extension
of this result to non-identically distributed (NID) gamma random variables is
considered in Section 3. Some further extensions when X1, X2, . . . , Xn is a
sample from (2) are considered in Section 4. The use of these results for two
data sets on quality testing is illustrated in Section 5.
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2 IID Case

If X1, X2, . . . , Xn is a random sample from (1) then it is well known that the pdf
of Y = Xr :n is given by

fY (y) =
n!

(r − 1)!(n − r)!
{F(y)}r−1 {1 − F(y)}n−r f (y)

for r = 1, 2, . . . , n, where F(∙) is the cumulative distribution function (cdf)
corresponding to (1) given by

F(y) =
γ (α, y)

0(α)
, (5)

where γ (∙, ∙) denotes the incomplete gamma function defined by

γ (α, x) =
∫ x

0
tα−1 exp (−t) dt.

Thus, the kth moment of Xr :n can be expressed as

E
(

Xk
r :n

)
=

n!

(r − 1)!(n − r)! {0(α)}n

×
∫ ∞

0
yk+α−1 exp(−y) {γ (α, y)}r−1 {0(α) − γ (α, y)}n−r dy

=
n!

(r − 1)!(n − r)! {0(α)}n

∫ ∞

0
yk+α−1 exp(−y)

×
n−r∑

`=0

(
n − r

`

)
{0(α)}n−r−` (−1)` {γ (α, y)}r+`−1 dy

=
n!

(r − 1)!(n − r)!

n−r∑

`=0

(−1)`
(

n − r
`

)
{0(α)}−r−`

×
∫ ∞

0
yk+α−1 exp(−y) {γ (α, y)}r+`−1 dy

=
n!

(r − 1)!(n − r)!

n−r∑

`=0

(−1)`
(

n − r
`

)
{0(α)}−r−` I (`).

(6)

Using the series expansion

γ (α, x) = xα

∞∑

m=0

(−x)m

(α + m)m!
,
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the integral I (`) in (6) can be expressed as

I (`) =
∫ ∞

0
yk+α−1 exp(−y)

{

yα
∞∑

m=0

(−y)m

(α + m)m!

}r+`−1

dy =
∫ ∞

0

∞∑

m1=0

∙ ∙ ∙

∙ ∙ ∙
∞∑

mr+`−1=0

(−1)m1+∙∙∙+mr+`−1 yk+α(r+`)+m1+∙∙∙+mr+`−1−1 exp(−y)

(α + m1) ∙ ∙ ∙ (α + mr+`−1)m1! ∙ ∙ ∙ mr+`−1!
dy

=
∞∑

m1=0

∙ ∙ ∙
∞∑

mr+`−1=0

(−1)m1+∙∙∙+mr+`−1

(α + m1) ∙ ∙ ∙ (α + mr+`−1)m1! ∙ ∙ ∙ mr+`−1!

×
∫ ∞

0
yk+α(r+`)+m1+∙∙∙+mr+`−1−1 exp(−y)dy =

∞∑

m1=0

∙ ∙ ∙

∙ ∙ ∙
∞∑

mr+`−1=0

(−1)m1+∙∙∙+mr+`−10 (k + α(r + `) + m1 + ∙ ∙ ∙ + mr+`−1)

(α + m1) ∙ ∙ ∙ (α + mr+`−1)m1! ∙ ∙ ∙ mr+`−1!
.

(7)

Using the fact ( f )k = 0( f + k)/0( f ) and the definition in (3), one can reex-
press (7) as

I (`) = α1−r−`0
(
k + α(r + `)

)
× F (r+`−1)

A

(
k + α(r + `), α, . . . , α;

α + 1, . . . , α + 1;−1, . . . , −1
)
.

(8)

Combining (6) and (8), we obtain the expression

E
(

Xk
r :n

)
=

n!

(r − 1)!(n − r)!

n−r∑

`=0

(−1)`
(

n − r
`

)
{0(α)}−r−` α1−r−`0 (k + α(r + `))

× F(r+`−1)
A (k + α(r + `), α, . . . , α; α + 1, . . . , α + 1;−1, . . . , −1) .

(9)

Note that (9) is a finite sum of the Lauricella function of type A, a function that
can be computed directly, see Section 5.

3 NID Case

Suppose now that X1, X2, . . . , Xn are independent gamma random variables
with the probability density functions (pdfs) given by

fi (x) =
xαi −1 exp(−x)

0 (αi )
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for x > 0 and αi > 0. Let X1:n < X2:n < ∙ ∙ ∙ < Xn:n denote the corresponding
order statistics. To find the kth moment of Xr :n , we use the following result due
to Barakat and Abdelkader (2004):

E
(
Xk

r :n

)
=

n∑

j=n−r+1

(−1) j−n+r−1

(
j − 1
n − r

)
I j (k), (10)

where

I j (k) = k
∑

∙ ∙ ∙
∑

1≤i1<i2<∙∙∙<i j ≤n

∫ ∞

0
xk−1

j∏

t=1

{
1 − Fit (x)

}
dx, (11)

where Fit (∙) is the cdf of Xit given by

Fit (x) =
γ (αit , x)

0(αit )
.

Using the series expansion

1 −
γ (α, x)

0(α)
= xα−1 exp(−x)

∞∑

m=0

x−m

0(α − m)
,

one can express I j (k) in (11) as

I j (k) = k
∑

∙ ∙ ∙
∑

1≤i1<i2<∙∙∙<i j ≤n

∫ ∞

0
xa−1 exp(− j x)

j∏

t=1

∞∑

m=0

x−m

0(αit − m)
dx

= k
∑

∙ ∙ ∙
∑

1≤i1<i2<∙∙∙<i j ≤n

∫ ∞

0
xa−1 exp(− j x)

∞∑

m1=0

∙ ∙ ∙

∙ ∙ ∙
∞∑

m j =0

x−m1−∙∙∙−m j

0(αi1 − m1) ∙ ∙ ∙ 0(αi j − m j )
dx

= k
∑

∙ ∙ ∙
∑

1≤i1<i2<∙∙∙<i j ≤n

∞∑

m1=0

∙ ∙ ∙
∞∑

m j =0

1

0(αi1 − m1) ∙ ∙ ∙ 0(αi j − m j )

×
∫ ∞

0
xa−m1−∙∙∙−m j −1 exp(− j x)dx

= k
∑

∙ ∙ ∙
∑

1≤i1<i2<∙∙∙<i j ≤n

∞∑

m1=0

∙ ∙ ∙
∞∑

m j =0

0
(
a − m1 − ∙ ∙ ∙ − m j

)
jm1+∙∙∙+m j −a

0(αi1 − m1) ∙ ∙ ∙ 0(αi j − m j )
,

(12)
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where a = k + (αi1 − 1) + ∙ ∙ ∙ + (αi j − 1). Noting that

0(αit − mt) =
(−1)mt 0(αit )

(1 − αit )mt

,

0(a − m1 − ∙ ∙ ∙ − m j ) =
(−1)m1+∙∙∙+m j 0(a)

(1 − a)m1+∙∙∙+m j

and the definition in (4), one can reexpress (12) as

I j (k) = k
0 (a) F ( j)

B

(
1, . . . , 1, 1 − αi1, . . . , 1 − αi j ; 1 − a; j, . . . , j

)

0
(
αi1

)
∙ ∙ ∙ 0

(
αi j

)
j a

and hence (10) can be rewritten as

E
(
Xk

r :n

)
= k

n∑

j=n−r+1

(−1) j−n+r−1

(
j − 1
n − r

)
0 (a)

0
(
αi1

)
∙ ∙ ∙ 0

(
αi j

)
j a

× F ( j)
B

(
1, . . . , 1, 1 − αi1, . . . , 1 − αi j ; 1 − a; j, . . . , j

)
.

(13)

Note that (13) is a finite sum of the Lauricella function of type B, a function that
can be computed directly, see Section 5.

4 Generalization

A natural extension of the results in Sections 2 and 3 is to consider the mo-
ments of order statistics for the generalized gamma distribution in (2). Similar
calculations show that (9) generalizes to

E
(

Xk
r :n

)
=

n!

(r − 1)!(n − r)!

n−r∑

`=0

(−1)`
(

n − r
`

)
{0(α)}−r−` α1−r−`0

(
k

c
+ α(r + `)

)

× F(r+`−1)
A

(
k

c
+ α(r + `), α, . . . , α; α + 1, . . . , α + 1;−1, . . . , −1

)

and that (13) generalizes to

E
(
Xk

r :n

)
=

k

c

n∑

j=n−r+1

(−1) j−n+r−1

(
j − 1
n − r

)
0 (a)

0
(
αi1

)
∙ ∙ ∙ 0

(
αi j

)
j a

× F ( j)
B

(
1, . . . , 1, 1 − αi1, . . . , 1 − αi j ; 1 − a; j, . . . , j

)
,

where a = k/c + (αi1 − 1) + ∙ ∙ ∙ + (αi j − 1). For the derivation of the second
expression, we have assumed that X1, X2, . . . , Xn are independent gamma ran-
dom variables from (2) with non-identical αi , i = 1, 2, . . . , n and common c.
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The derivation of an explicit expression for E(Xk
r :n) for the case of non-identical

αi , i = 1, 2, . . . , n and non-identical ci , i = 1, 2, . . . , n is an open problem.

5 Application

We illustrate the use of (9) through two published data sets on quality control.
The first data set shown in Table 1 is taken from Xie et al. (2006). The data
set is from the testing process on a middle-size software project. The data
contains fault correction times for seventeen weeks. The second data set shown
in Table 2 is taken from Nichols and Padgett (2006). The data set relates to
a process producing carbon fibers to be used in constructing fibrous composite
materials. The data contains tensile strength of carbon fibers of 50 mm in length.

Week
Correction

time x
1 3
2 0
3 9
4 20
5 21
6 25
7 11
8 9
9 9

10 2
11 4
12 7
13 5
14 2
15 0
16 8
17 8

Table 1: Fault correction times.

We fitted the gamma distribution given by (1) to both data sets. Because (1) is
in the standard form, we transformed the data on xi and yi to x̄ xi/s2

x and ȳ yi/s2
y ,

respectively, where (x̄, ȳ) and (s2
x , s2

y) the sample means and sample variances,
respectively, for the two data sets. The fitting of (1) to the transformed data was
performed by the method of maximum likelihood. The following estimates were
obtained: α̂ = 1.607 for data set 1 and α̂ = 6.625 for data set 2. Note that for
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3.70 2.74 2.73 2.50 3.60
3.11 3.27 2.87 1.47 3.11
4.42 2.41 3.19 3.22 1.69
3.28 3.09 1.87 3.15 4.90
3.75 2.43 2.95 2.97 3.39
2.96 2.53 2.67 2.93 3.22
3.39 2.81 4.20 3.33 2.55
3.31 3.31 2.85 2.56 3.56
3.15 2.35 2.55 2.59 2.38
2.81 2.77 2.17 2.83 1.92
1.41 3.68 2.97 1.36 0.98
2.76 4.91 3.68 1.84 1.59
3.19 1.57 0.81 5.56 1.73
1.59 2.00 1.22 1.12 1.71
2.17 1.17 5.08 2.48 1.18
3.51 2.17 1.69 1.25 4.38
1.84 0.39 3.68 2.48 0.85
1.61 2.79 4.70 2.03 1.80
1.57 1.08 2.03 1.61 2.12
1.89 2.88 2.82 2.05 3.65

Table 2: Breaking stress of carbon fibers y (Gba).

data set 1 two of the observations are zero. These observations were removed
before the fitting.

We examined the goodness of the fits by plotting the transformed data versus
expected order statistics under the gamma distribution, i.e. plot the transformed
data from Table 1 versus E(Xr :15) for r = 1, 2, . . . , 15 (Fig. 1) and the trans-
formed data from Table 2 versus E(Xr :100) for r = 1, 2, . . . , 100 (Fig. 2). The
fits appear reasonable. Thus, the gamma distribution can be used to predict,
say, the extremes of the relevant distribution. For instance, the 1% and 99%
percentiles (in the case of data set 1, the smallest and the second largest fault
correction times if the software had been tested 100 times) can be estimated
by E(X1:100) and E(X99:100), respectively. Tables 3 and 4 give the values of
E(X1:10i ) and E(X10i −1:10i ) computed using (9) for α̂ = 1.607 and α̂ = 6.625,
respectively.

The expected order statistics E(Xr :15) for r = 1, 2, . . . , 15 and E(Xr :100) for
r = 1, 2, . . . , 100 used in Figures 1 and 2 were computed using both (9) and

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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Figure 1: Sorted values of the transformed fault correction time data (in Table 1)
versus the expected E(Xr :15), r = 1, 2, . . . , 15 computed using (9).

i E(X1:10i ) E(X10i −1:10i )

1 0.300 2.833
2 0.066 5.419
3 0.015 7.921
4 0.004 10.372
5 0.001 12.792
6 0.000 15.193

Table 3: Predictions for fault correction time.

i E(X1:10i ) E(X10i −1:10i )

1 3.285 9.217
2 1.959 13.329
3 1.261 16.842
4 0.842 20.069
5 0.574 23.128
6 0.396 26.075

Table 4: Predictions for breaking stress.
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Figure 2: Sorted values of the transformed breaking stress data (in Table 2)
versus the expected E(Xr :100), r = 1, 2, . . . , 100 computed using (9).

the integration formula given by

E (Xr :n) =
n!

(r − 1)!(n − r)!

∫ ∞

0
y {F(y)}r−1 {1 − F(y)}n−r f (y), (14)

where f (∙) and F(∙) are given by (1) and (5), respectively. The CPU times
in seconds taken for 100 computations of (9) and (14) are shown in Tables
5 and 6 (so, 0.110 is the time taken for 100 computations of E(X1:15) using
(14), 0.080 is the time taken for 100 computations of E(X1:15) using (9), and
so on). The computations were performed using a software supplied by Exton
under a Windows XP 2000 operating system. It is evident that the time taken to
compute (9) is consistently smaller. Thus, besides being explicit, the use of (9)
is more efficient.

6 Conclusions

We have derived explicit expressions for moments of gamma order statistics and
generalized gamma order statistics as finite sums of well known special functions.
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r using (14) using (9)
1 0.110 0.080
2 0.080 0.055
3 0.110 0.090
4 0.110 0.107
5 0.140 0.073
6 0.100 0.075
7 0.140 0.081
8 0.110 0.038
9 0.140 0.018
10 0.140 0.071
11 0.140 0.017
12 0.110 0.038
13 0.150 0.141
14 0.140 0.051
15 0.140 0.114

Table 5: CPU times to compute E(Xr :15).

We have illustrated the efficiency of these expressions by means of two quality
control data sets.

Acknowledgments. The authors would like to thank the Editor and the ref-
eree for carefully reading the paper and for their comments which greatly im-
proved the paper.
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