

Existence of the non-primitive Weierstrass gap sequences on curves of genus 8

Jiryo Komeda* and Akira Ohbuchi**

Abstract. We show that for any possible Weierstrass gap sequence L on a non-singular curve of genus 8 with twice the smallest positive non-gap is less than the largest gap there exists a pointed non-singular curve (C, P) over an algebraically closed field of characteristic 0 such that the Weierstrass gap sequence at P is L. Combining this with the result in [6] we see that every possible Weierstrass gap sequence of genus 8 is attained by some pointed non-singular curve.

Keywords: Weierstrass semigroup of a point, Double covering of a curve, Cyclic covering of an elliptic curve.

Mathematical subject classification: Primary: 14H55; Secondary: 14H30, 14C20.

1 Introduction

Let *C* be a complete nonsingular irreducible curve of genus *g* over an algebraically closed field *k* of characteristic 0, which is called a *curve* in this paper. Let k(C) be the field of rational functions on *C*. For a point *P* of *C*, we set

 $H(P) = \{ \alpha \in \mathbb{N}_0 | \text{ there exists } f \in k(C) \text{ with } (f)_{\infty} = \alpha P \},\$

which is called the *Weierstrass semigroup of the point* P where \mathbb{N}_0 denotes the additive semigroup of non-negative integers. The increasing elements of the complement $\mathbb{N}_0 \setminus H(P)$ of H(P) in \mathbb{N}_0 are called the *Weierstrass gap sequence* at P. Then H(P) is a subsemigroup of \mathbb{N}_0 with $\sharp(\mathbb{N}_0 \setminus H(P)) = g$.

Received 27 April 2007.

^{*}Partially supported by Grant-in-Aid for Scientific Research (17540046), Japan Society for the Promotion of Science.

^{**}Partially supported by Grant-in-Aid for Scientific Research (17540030), Japan Society for the Promotion of Science.

Conversely, let *H* be a subsemigroup of \mathbb{N}_0 whose complement $\mathbb{N}_0 \setminus H$ in \mathbb{N}_0 is finite, which is called a *numerical semigroup*. The cardinality of $\mathbb{N}_0 \setminus H$ is said to be the *genus* of *H*, which is denoted by g(H). We say that *H* is *Weierstrass* if there exists a pointed curve (C, P) such that H(P) = H. Hurwitz' question in [3] was whether every numerical semigroup is Weierstrass. It had been a long-standing problem. Buchweitz [1] finally showed that not every numerical semigroup is Weierstrass. Namely, he gave a non-Weierstrass semigroup of genus 16. Using the Buchwitz' method we can show that for any $g \ge 17$ there exists a non-Weierstrass semigroup of genus g (for example, see [8]). On the other hand, one of the authors proved that every numerical semigroup of genus $g \le 7$ (resp. every primitive numerical semigroup of genus g = 8, 9) is Weierstrass where a numerical semigroup H is said to be *primitive* if the largest integer not in H is less than twice the smallest positive integer in H (see [6], [9]).

In this paper we show that every non-primitive numerical semigroup of genus 8 is Weierstrass. In Section 2 using the known facts we show that any non-primitive *n*-semigroup of genus 8 is Weierstrass for $n \neq 6$ where a numerical semigroup *H* is called an *n*-semigroup if the minimum positive integer in *H* is *n*. In Section 3 for any non-primitive 6-semigroup *H* of genus 8 we construct a double covering of a curve with a ramification point *P* such that H(P) = H. Combining our result with Theorem 5.5 in [6] we see that every numerical semigroup of genus 8 is Weierstrass.

2 Non-primitive *n*-semigroups of genus 8 for $n \neq 6$

In this section we review the known facts and apply these results to our case. For a 2-semigroup H there exists a hyperelliptic curve C such that H(P) = H for any Weierstrass point P on C. This result is classical. We know that every 3semigroup is Weierstrass, which is due to Maclachlan [11]. Moreover, one of the authors proved that every 4-semigroup (resp. every 5-semigroup) is Weierstrass (see [4] (resp. [5])).

By the above notes it suffices to show that any non-primitive *n*-semigroup of genus 8 is Weierstrass for $n \ge 6$. By the way there is only one non-primitive *n*-semigroup of genus 8 with $n \ge 7$. The unique semigroup H_7 is generated by 7, 9, 10, 11, 12 and 13. In view of [7] there is a cyclic covering of an elliptic curve of degree 8 which has only two ramification points P_1 and P_2 , which are totally ramified, such that $H(P_1) = H(P_2) = H_7$.

3 Non-primitive 6-semigroups of genus 8

In this section we show that for any non-primitive 6-semigroup H of genus 8 there exists a double covering of a curve with a ramification point P such that H(P) = H. We denote by M(H) the minimal set of generators for the semigroup H. The following table shows all non-primitive 6-semigroups of genus 8.

	M(H)	$\mathbb{N}_0ackslash H$
(1)	{6, 7, 10, 11}	{1, 2, 3, 4, 5, 8, 9, 15}
(2)	{6, 8, 9, 10}	$\{1, 2, 3, 4, 5, 7, 11, 13\}$
(3)	{6, 8, 9, 11}	$\{1, 2, 3, 4, 5, 7, 10, 13\}$
(4)	{6, 8, 10, 11, 13}	{1, 2, 3, 4, 5, 7, 9, 15}
(5)	{6, 8, 10, 11, 15}	$\{1, 2, 3, 4, 5, 7, 9, 13\}$
(6)	{6, 9, 10, 11, 13}	$\{1, 2, 3, 4, 5, 7, 8, 14\}$
(7)	{6, 9, 10, 11, 14}	{1, 2, 3, 4, 5, 7, 8, 13}

Proposition 3.1. Let *H* be one of the following 6-semigroups: (2) $M(H) = \{6, 8, 9, 10\}, (4) M(H) = \{6, 8, 10, 11, 13\} and (5) M(H) = \{6, 8, 10, 11, 15\}.$ Then there is a double covering of a curve of genus 2 with a ramification point \tilde{P} such that $H(\tilde{P}) = H$.

Proof. Let *C* be a curve of genus 2. Take an ordinary point *P* on *C*. We want to construct a double covering of *C* with the ramification point \tilde{P} over *P* such that $H(\tilde{P}) = H$.

Case (2) $M(H) = \{6, 8, 9, 10\}$. We consider the divisor D = 5P. The degree of 2D - P is 9 > 4, which implies that the divisor 2D - P is very ample. Hence we have

$$2D \sim P + (\text{some divisor}) = R$$

where *R* is a reduced divisor. Here for any two divisors D_1 and D_2 on *C*, $D_1 \sim D_2$ means that D_1 and D_2 are linearly equivalent. Let \mathcal{L} be an invertible sheaf on *C* such that $\mathcal{L} \simeq \mathcal{O}_C(-D)$. Now we have isomorphisms

$$\mathcal{L}^{\otimes 2} \simeq \mathcal{O}_C(-2D) \simeq \mathcal{O}_C(-R) \subset \mathcal{O}_C.$$

Using the composition of the above two isomorphisms we can construct a double covering

$$\pi: C = \operatorname{Spec}(\mathcal{O}_C \oplus \mathcal{L}) \longrightarrow C$$

Bull Braz Math Soc, Vol. 39, N. 1, 2008

whose branch locus is R (See [12]). By Riemann-Hurwitz formula the genus of \tilde{C} is 8. Let $\tilde{P} \in \tilde{C}$ be the ramification point of π over P. By Proposition 2.1 in [10] we obtain

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(2n\tilde{P})) = h^{0}(C, \mathcal{O}_{C}(nP)) + h^{0}(C, \mathcal{L} \otimes \mathcal{O}_{C}(nP))$$

for any positive integer n. Hence we get

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(8\tilde{P})) = h^{0}(C, \mathcal{O}_{C}(4P)) + h^{0}(C, \mathcal{L} \otimes \mathcal{O}_{C}(4P)) = 3 \quad \text{and} \\ h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(10\tilde{P})) = h^{0}(C, \mathcal{O}_{C}(5P)) + h^{0}(C, \mathcal{L} \otimes \mathcal{O}_{C}(5P)) = 5,$$

which implies that $9 \in H(\tilde{P})$. Since \tilde{P} is the ramification point over P with $M(H(P)) = \{3, 4, 5\}$, the semigroup $H(\tilde{P})$ contains 6, 8 and 10. In view of g(H) = 8 we must have $H(\tilde{P}) = H$.

Case (4) $M(H) = \{6, 8, 10, 11, 13\}$. Let Q be a unique point on C such that the divisor P + Q is a canonical divisor K. Consider the divisor D = 6P - Q. Since the divisor 2D - P is very ample, we have

$$2D \sim P + (\text{some divisor}) = R$$

where R is a reduced divisor. In the same way as in the above we get a double covering

$$\pi: \tilde{C} = \operatorname{Spec}(\mathcal{O}_C \oplus \mathcal{L}) \longrightarrow C$$

whose branch locus is R. Since we have

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(10\tilde{P})) = 4 + h^{0}(C, \mathcal{O}_{C}(-P+Q)) = 4,$$

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(12\tilde{P})) = 5 + h^{0}(C, \mathcal{O}_{C}(Q)) = 6 \quad \text{and}$$

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(14\tilde{P})) = 6 + h^{0}(C, \mathcal{O}_{C}(P+Q)) = 8,$$

we see that $H(\tilde{P})$ contains 11 and 13. Hence we get $H(\tilde{P}) = H$.

Case (5) $M(H) = \{6, 8, 10, 11, 15\}$. Let Q be a point on C distinct from P such that the divisor P + Q is not a canonical divisor K. Consider the divisor D = 6P - Q. We have

$$2D \sim P + (\text{some divisor}) = R$$

where R is a reduced divisor. In the same way as in the above we get a double covering

$$\pi: \tilde{C} = \operatorname{Spec}(\mathcal{O}_C \oplus \mathcal{L}) \longrightarrow C$$

whose branch locus is R. Since we have

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(10\tilde{P})) = 4, h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(12\tilde{P})) = 6,$$

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(14\tilde{P})) = 6 + h^{0}(C, \mathcal{O}_{C}(P+Q)) = 7 \quad \text{and}$$

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(16\tilde{P})) = 7 + h^{0}(C, \mathcal{O}_{C}(2P+Q)) = 9,$$

we see that $H(\tilde{P})$ contains 11 and 15. Hence we get $H(\tilde{P}) = H$.

Remark.

- 1. All the seven remainder semigroups could be treated by Stöhr's methods as in [14].
- 2. The case (1) $M(H) = \{6, 7, 10, 11\}$ is a particular case of [16; Korollar 3]. See also [15; p. 204 and 208].
- 3. The case (2) $M(H) = \{6, 8, 9, 10\}$ is a particular case of [2; p. 422] by taking $n_1 = n_5 = 0$, $n_2 = 1$, $n_3 = 3$ and $n_4 = 2$.
- 4. The case (4) $M(H) = \{6, 8, 10, 11, 13\}$ and (5) $M(H) = \{6, 8, 10, 11, 15\}$ are particular cases of [13].

Proposition 3.2. Let *H* be one of the following 6-semigroups: (1) $M(H) = \{6, 7, 10, 11\}$, (3) $M(H) = \{6, 8, 9, 11\}$ and (7) $M(H) = \{6, 9, 10, 11, 14\}$. Then there is a double covering of a non-hyperelliptic curve of genus 3 with a ramification point \tilde{P} such that $H(\tilde{P}) = H$.

Proof. Case (1) $M(H) = \{6, 7, 10, 11\}$. Let *C* be a non-hyperelliptic curve of genus 3 with no point *S* such that $M(H(S)) = \{3, 4\}$. Let *P* be a Weierstrass point on *C*. Then we have $M(H(P)) = \{3, 5, 7\}$. Let *Q* be a unique point on *C* such that the divisor 3P + Q is a canonical divisor *K*. In this case *Q* is distinct from *P*. Consider the divisor D = 4P - Q. We want to show that

$$2D \sim P + (\text{some divisor}) = R$$

 \square

where *R* is a reduced divisor. It suffices to show that the linear system |2D - P| is base-point free where for a divisor *E* on *C* the linear system |E| means the set of effective divisors which are linearly equivalent to *E*. Assume that |2D - P| were not base-point free. Then we get $2D - P \sim K + T$ for some point *T*. Hence we have $7P - 2Q \sim 3P + Q + T$, which implies that $4P \sim 3Q + T$. Since |4P| is not base-point free, we should have P = T. Thus, we obtain $3P \sim 3Q$. Moreover, $K \sim 3P + Q \sim 4Q$, which implies that $M(H(Q)) = \{3, 4\}$. This is a contradiction. By Mumford's method we can construct a double covering

$$\pi: \tilde{C} = \operatorname{Spec}(\mathcal{O}_C \oplus \mathcal{L}) \longrightarrow C$$

whose branch locus is R where $\mathcal{L} \simeq \mathcal{O}_C(-D)$. It suffices to show that 7 and 11 are contained in $H(\tilde{P})$ where \tilde{P} is the ramification point over P. Since we have

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(6\tilde{P})) = 2 + h^{0}(C, \mathcal{O}_{C}(-P+Q)) = 2$$
 and
 $h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(8\tilde{P})) = 2 + h^{0}(C, \mathcal{O}_{C}(Q)) = 3,$

we see that $H(\tilde{P})$ contains 7. Since we have

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(10\tilde{P})) = 3 + h^{0}(C, \mathcal{O}_{C}(P+Q)) = 4$$
 and
 $h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(12\tilde{P})) = 4 + h^{0}(C, \mathcal{O}_{C}(2P+Q)) = 6,$

we see that $H(\tilde{P})$ contains 11.

Case (7) $M(H) = \{6, 9, 10, 11, 14\}$. Let *C* be a non-hyperelliptic curve of genus 3 with a Weierstrass point *P* satisfying $M(H(P)) = \{3, 5, 7\}$. Let *A*, *B* and *U* be distinct points on *C* different from *P* such that the divisor *P* + A + B + U is linearly equivalent to a canonical divisor *K*. Consider the divisor D = 5P - A - B. We want to show that

$$2D \sim P + (\text{ some divisor }) = R$$

where *R* is a reduced divisor. Assume that |2D - P| is not base-point free. Then we get $9P - 2A - 2B \sim K + S$ for some point *S*. If $S \neq P$, then we may assume that K + S does not contain *P*, because *K* is base-point free. Hence we get our desired result. If S = P, then we replace *B* by *U*. Then we get $9P - 2A - 2U \sim K + S$ for some point *S* distinct from *P*, because if S = Pwe get U = B, a contradiction. We can construct a double covering

$$\pi: C = \operatorname{Spec}(\mathcal{O}_C \oplus \mathcal{L}) \longrightarrow C$$

whose branch locus is R where $\mathcal{L} \simeq \mathcal{O}_C(-D)$. It suffices to show that $H(\tilde{P}) \ni$ 9, 11. Since we have

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(8\tilde{P}) = 2 + h^{0}(C, \mathcal{O}_{C}(-P + A + B)) = 2$$
 and
 $h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(10\tilde{P})) = 3 + h^{0}(C, \mathcal{O}_{C}(A + B)) = 4,$

we see that $H(\tilde{P})$ contains 9. Since we have

$$h^0(\tilde{C}, \mathcal{O}_{\tilde{C}}(12\tilde{P})) = 4 + h^0(C, \mathcal{O}_C(P + A + B)) = 6$$

we see that $H(\tilde{P})$ contains 11.

Case (3) $M(H) = \{6, 8, 9, 11\}$. Let *C* be a non-hyperelliptic curve of genus 3 with a Weierstrass point *P* satisfying $M(H(P)) = \{3, 4\}$. We consider *C* as a canonical curve in \mathbb{P}^2 . Let *A* and *B* be distinct points different from *P* such that P + A + B + S is a canonical divisor for some point *S*. Then there is no line bitangent to *A* and *B*, because *A* and *B* are distinct from *P*. We set D = 5P - A - B. We want to show that

$$2D \sim P + (\text{ some divisor }) = R$$

where *R* is a reduced divisor. Assume that 2D-P were not base-point free. Then we get $2D - P \sim K + T$ for some point *T*. Hence we obtain $9P - 2A - 2B \sim 4P + T$, because $M(H(P)) = \{3, 4\}$ implies that 4P is a canonical divisor. Thus, we have $5P \sim 2A + 2B + T$. Since the divisor 5P has a base point, we must have T = P, because *A* and *B* are distinct from *P*. Hence, we get $K \sim 4P \sim 2A + 2B$. This contradicts the assumption that there is no line bitangent to *A* and *B*. We can construct a double covering

$$\pi: \tilde{C} = \operatorname{Spec}(\mathcal{O}_C \oplus \mathcal{L}) \longrightarrow C$$

whose branch locus is R where $\mathcal{L} \simeq \mathcal{O}_C(-D)$. It suffices to show that $H(\tilde{P})$ contains 9 and 11. Since we have

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(8\tilde{P})) = 3 + h^{0}(C, \mathcal{O}_{C}(-P + A + B)) = 3 \quad \text{and} \\ h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(10\tilde{P})) = 3 + h^{0}(C, \mathcal{O}_{C}(A + B)) = 4,$$

we see that $H(\tilde{P})$ contains 9, because of $H(P) \not\supseteq 5$. Since $P + A + B \sim K - S$, we have

$$h^{0}(\tilde{C}, \mathcal{O}_{\tilde{C}}(12\tilde{P})) = 4 + h^{0}(C, \mathcal{O}_{C}(P + A + B)) = 6.$$

Hence, $H(\tilde{P})$ contains 11.

Bull Braz Math Soc, Vol. 39, N. 1, 2008

Proposition 3.3. Let *H* be the 6-semigroup with (6) $M(H) = \{6, 9, 10, 11, 13\}$. Then there is a double covering of a curve of genus 4 with a ramification point \tilde{P} such that $H(\tilde{P}) = H$.

Proof. Let *E* be an elliptic curve with the origin Q'. For a point P' of *E* we denote by [P'] the element corresponding to P' when we consider *E* as the abelian group with identity element [Q']. Moreover, for any integer *n*, n[P'] means *n* times [P']. Let P'_1 be a point of *E* such that $P'_1 \neq Q'$ and $2[P'_1] = [Q']$, i.e., $2P'_1 \sim 2Q'$. Moreover, P'_2 denotes a point of *E* such that

$$P'_2 \neq Q', P'_2 \neq P'_1$$
 and $-5[P'_1] = 3[P'_2],$ i.e., $5P'_1 + 3P'_2 \sim 8Q'_2$

Take $z \in k(E)$ such that $\operatorname{div}(z) = 5P'_1 + 3P'_2 - 8Q'$. Let $\pi : \tilde{C} \longrightarrow E$ be the surjective morphism corresponding to the inclusion $k(E) \subset k(E)(z^{1/8}) = k(\tilde{C})$. Let $y \in k(\tilde{C})$ and $\sigma \in \operatorname{Aut}(k(\tilde{C})/k(E))$ such that $\sigma(y) = \zeta_8 y$ and $\operatorname{div}_E(y^8) = 5P'_1 + 3P'_2 - 8Q'$, where ζ_8 is a primitive 8-th root of unity. Then there are only two ramification points \tilde{P}_1 and \tilde{P}_2 over P'_1 and P'_2 respectively and the ramification numbers are 8. Hence by the Riemann-Hurwitz relation the genus of \tilde{C} is 8. We have

$$\operatorname{div}(y) = 5\tilde{P}_1 + 3\tilde{P}_2 - \pi^*(Q').$$

Since the divisor of dy is invariant under the action of σ , we have

$$\operatorname{div}(dy) = 4\tilde{P}_1 + 2\tilde{P}_2 - 2\pi^*(Q') + \sum_{i=1}^3 \pi^*(R'_i)$$

where R'_i 's are points of E which are distinct from P'_1 , P'_2 and Q'. For any $f \in k(E)$, we set $\operatorname{div}_E(f) = \sum_{P' \in E} n(P')P'$. Then for any $r \in \mathbb{N}_0$ we obtain

$$div\left(\frac{fdy}{y^{1-r}}\right) = \{8n(P'_1) + 4 + 5(r-1)\}P_1 + \{8n(P'_2) + 2 + 3(r-1)\}P_2 + \{n(Q') - r - 1\}\pi^*(Q') + \sum_{i=1}^3 \{n(R'_i) + 1\}\pi^*(R'_i) + \sum_{P' \in S} n(P')\pi^*(P'),$$

where S is the set of points $P' \in E$ except P'_1, P'_2, Q' and R'_i 's. We set

$$\begin{split} D_0' &= -P_1' - P_2' - Q' + \sum_{i=1}^3 R_i', \qquad D_1' = -2Q' + \sum_{i=1}^3 R_i', \\ D_2' &= -3Q' + P_1' + \sum_{i=1}^3 R_i', \qquad D_3' = -4Q' + P_1' + P_2' + \sum_{i=1}^3 R_i', \\ D_4' &= -5Q' + 2P_1' + P_2' + \sum_{i=1}^3 R_i', \qquad D_5' = -6Q' + 3P_1' + P_2' + \sum_{i=1}^3 R_i', \\ D_6' &= -7Q' + 3P_1' + 2P_2' + \sum_{i=1}^3 R_i', \qquad D_7' = -8Q' + 4P_1' + 2P_2' + \sum_{i=1}^3 R_i'. \end{split}$$

Then for each r = 0, 1, ..., 7, $f \in L(D'_r)$ implies that $f dy/y^{1-r}$ is a regular 1-form on \tilde{C} where

$$L(D'_r) = \left\{ f \in k(E) \mid \operatorname{div}_E(f) \ge -D'_r \right\}.$$

Since we have

$$\sigma\left(\frac{dy}{y}\right) = \frac{d\sigma y}{\sigma y} = \frac{d\zeta_{8}y}{\zeta_{8}y} = \frac{dy}{y},$$

the form dy/y is regarded as a 1-form on *E*. Hence there exists $f \in k(E)$ such that f dy/y is regular. Then we must have

$$\operatorname{div}_{E}(f) = P'_{1} + P'_{2} + Q' - \sum_{i=1}^{3} R'_{i}$$
, i.e., $l(D'_{0}) = 1$

where for any divisor D we denote by l(D) the dimension of the k-vector space L(D), because

$$0 \leq \operatorname{div}_{\tilde{C}}\left(\frac{f\,dy}{y}\right) = \operatorname{div}_{\tilde{C}}(f) + \operatorname{div}_{\tilde{C}}\left(\frac{dy}{y}\right)$$
$$= \operatorname{div}_{\tilde{C}}(f) - \tilde{P}_1 - \tilde{P}_2 - \pi^*(Q') + \sum_{i=1}^3 \pi^*(R'_i).$$

Moreover, we have $l(D'_r) = 1$ for all r = 1, 2, ..., 7, because of $deg(D'_r) = 1$ for all r = 1, 2, ..., 7. First we will show that $l(D'_1 - P'_1) = 0$. If $l(D'_1 - P'_1) > 0$, then we have

$$-2Q' + \sum_{i=1}^{3} R'_{i} - P'_{1} \sim D'_{1} - P'_{1} \sim 0 \sim D'_{0} = -P'_{1} - P'_{2} - Q' + \sum_{i=1}^{3} R'_{i},$$

Bull Braz Math Soc, Vol. 39, N. 1, 2008

which implies that $P'_2 \sim Q'$. This is a contradiction. If $l(D'_2 - P'_1) > 0$, then we have

$$-3Q' + \sum_{i=1}^{3} R'_{i} = D'_{2} - P'_{1} \sim D'_{0} = -P'_{1} - P'_{2} - Q' + \sum_{i=1}^{3} R'_{i},$$

which implies that $P'_1 + P'_2 \sim 2Q' \sim 2P'_1$. This is a contradiction. If $l(D'_3 - P'_1) > 0$, then we have

$$-4Q' + P'_2 + \sum_{i=1}^{3} R'_i = D'_3 - P'_1 \sim D'_0 = -P'_1 - P'_2 - Q' + \sum_{i=1}^{3} R'_i,$$

which implies that $P'_1 + 2P'_2 \sim 3Q'$. Since we have

$$5P'_1 + 3P'_2 \sim 8Q' \sim 4Q' + 4P'_1$$

we obtain

$$P'_1 + 2P'_2 + Q' \sim 4Q' \sim P'_1 + 3P'_2,$$

which implies that $Q' \sim P'_2$. This is a contradiction. If $l(D'_4 - P'_1) > 0$, then we have

$$-5Q' + P'_1 + P'_2 + \sum_{i=1}^3 R'_i = D'_4 - P'_1 \sim D'_0 = -P'_1 - P'_2 - Q' + \sum_{i=1}^3 R'_i,$$

which implies that

$$2P_1' + 2P_2' \sim 4Q' \sim P_1' + 3P_2'.$$

This is a contradiction. If $l(D'_5 - P'_1) > 0$, then we have

$$-6Q' + 2P'_1 + P'_2 + \sum_{i=1}^3 R'_i = D'_5 - P'_1 \sim D'_0 = -P'_1 - P'_2 - Q' + \sum_{i=1}^3 R'_i,$$

which implies that

$$3P'_1 + 2P'_2 \sim 5Q' \sim Q' + P'_1 + 3P'_2.$$

Hence we have

$$2Q'\sim 2P_1'\sim Q'+P_2'.$$

This is a contradiction. Now we have

$$6Q' \sim 2Q' + P'_1 + 3P'_2 \sim 2P'_1 + P'_1 + 3P'_2 = 3P'_1 + 3P'_2.$$

Bull Braz Math Soc, Vol. 39, N. 1, 2008

Hence we get

$$D'_{6} - P'_{1} = -7Q' + 2P'_{1} + 2P'_{2} + \sum_{i=1}^{3} R'_{i} \sim -Q' - P'_{1} - P'_{2} + \sum_{i=1}^{3} R'_{i} = D'_{0} \sim 0,$$

which implies that $l(D'_6) = l(D'_6 - P'_1) = 1$. If $l(D'_7 - P'_1) > 0$, then we have

$$-8Q' + 3P'_1 + 2P'_2 + \sum_{i=1}^{3} R'_i = D'_7 - P'_1 \sim D'_0 = -P'_1 - P'_2 - Q' + \sum_{i=1}^{3} R'_i,$$

which implies that

$$4P_1' + 3P_2' \sim 7Q' \sim 4P_1' + 3Q'.$$

Hence we get

$$3P_2' + Q' \sim 4Q' \sim P_1' + 3P_2'$$

This is a contradiction. By the above we have

$$l(D'_i - P'_1) = 0$$
 for all $i \neq 6$ and $l(D'_6 - P'_1) = 1$, $l(D'_6 - 2P'_1) = 0$.

For each $r = 0, 1, \dots, 7$ we take a non-zero element $f_r \in L(D'_r)$ and we set $\phi_r = f_r dy/y^{1-r}$. Then by the above we see the following:

$\operatorname{ord}_{\tilde{P}_1}(\phi_0) = 8 - 1 = 7 = 8 - 1,$	$\operatorname{ord}_{\tilde{P}_1}(\phi_1) = 0 + 4 = 5 - 1,$
$\operatorname{ord}_{\tilde{P}_1}(\phi_2) = -8 + 9 = 1 = 2 - 1,$	$\operatorname{ord}_{\tilde{P}_1}(\phi_3) = -8 + 14 = 6 = 7 - 1,$
$\operatorname{ord}_{\tilde{P}_1}(\phi_4) = -16 + 19 = 3 = 4 - 1,$	$\operatorname{ord}_{\tilde{P}_1}(\phi_5) = -24 + 24 = 0 = 1 - 1,$
$\operatorname{ord}_{\tilde{P}_1}(\phi_6) = -16 + 29 = 13 = 14 - 1,$	$\operatorname{ord}_{\tilde{P}_1}(\phi_7) = -32 + 34 = 2 = 3 - 1.$

We note that $n \in \mathbb{N}_0 \setminus H(\tilde{P}_1)$ if and only if there exists a regular 1-form ϕ on \tilde{C} such that $\operatorname{ord}_{\tilde{P}_1}(\phi) = n - 1$. Hence we obtain

$$\mathbb{N}_0 \setminus H(\tilde{P}_1) = \{1, 2, 3, 4, 5, 7, 8, 14\}.$$

Let *K* be the subfield of $k(\tilde{C})$ consisting of the elements which are fixed by the automorphism σ^4 . We denote by *C* the curve with function field *K*. Let $\eta : C \longrightarrow E$ be the covering corresponding to the inclusion $k(E) \subset K$. Then η is a morphism of degree 4 with only two ramification point P_i over P'_i for i = 1, 2. Hence, the genus of *C* is 4. Moreover, the canonical morphism $\tilde{C} \longrightarrow C$ is a double covering with the ramification point \tilde{P}_1 over P_1 satisfying $M(H(\tilde{P}_1)) = \{6, 9, 10, 11, 13\}$.

The following theorem can be deduced from Propositions 3.1, 3.2 and 3.3.

Theorem 3.4. *Every non-primitive* 6-*semigroup of genus* 8 *is Weierstrass.*

Combining the statement in Section 2 and Theorem 3.4 with Theorem 5.5 in [6] we get the following result:

Corollary 3.5. Any numerical semigroup of genus 8 is Weierstrass.

Acknowledgments. The authors would like to thank the referee for his/her useful comments, especially Remark which follows Proposition 3.1.

References

- [1] R.O. Buchweitz. On Zariski's criterion for equisingularity and non-smoothable monomial curves. preprint **113** University of Hannover, 1980.
- [2] A. Garcia. Weights of Weierstrass points in double coverings of curves of genus one or two. Manuscripta Math., 55 (1986), 419–432.
- [3] A. Hurwitz. Über algebraischer Gebilde mit eindeutigen Transformationen in sich. Math. Ann., **41** (1893), 403–442.
- [4] J. Komeda. On Weierstrass points whose first non-gaps are four. J. reine angew. Math., 341 (1983), 68–86.
- [5] J. Komeda. On the existence of Weierstrass points whose first non-gaps are five. Manuscripta Math., 76 (1992), 193–211.
- [6] J. Komeda. On the existence of Weierstrass gap sequences on curves of genus ≤ 8.
 J. Pure Appl. Algebra, 97 (1994), 51–71.
- [7] J. Komeda. *Cyclic coverings of an elliptic curve with two branch points and the gap sequences at the ramification points.* Acta Arithmetica, LXXXI (1997), 275–297.
- [8] J. Komeda. Non-Weierstrass numerical semigroups. Semigroup Forum, 57 (1998), 157–185.
- [9] J. Komeda. Existence of the primitive Weierstrass gap sequences on curves of genus 9. Bol. Soc. Bras. Mat., 30 (1999), 125–137.
- [10] J. Komeda and A. Ohbuchi. Weierstrass points with first non-gap four on a double covering of a hyperelliptic curve. Serdica Math. J., 30 (2004), 43–54.
- [11] C. Maclachlan. Weierstrass points on compact Riemann surfaces. J. London Math. Soc., 3 (1971), 722–724.
- [12] D. Mumford. *Prym varieties I.* Contributions to Analysis, Academic Press, New York, 1974, pp. 325–350.
- [13] G. Oliveira and F.L.R. Pimentel. On Weierstrass semigroups of double covering of genus two curves. Preprint (2006).
- [14] F.L.R. Pimentel and G. Oliveira. *Realizing numerical semigroups as Weierstrass semigroups: a computational approach*. JP Jour. Algebra, Number Theory and Appl., 6 (2006), 445–454.

- [15] K.-O. Stöhr. On the moduli spaces of Gorenstein curves with symmetric Weierstrass semigroups. J. reine angew. Math., **441** (1993), 189–213.
- [16] R. Waldi. Deformation von Gorenstein-Singularitäten der Kodimension 3. Math. Ann., 242 (1979), 201–208.

Jiryo Komeda

Department of Mathematics Center for Basic Education and Integrated Learning Kanagawa Institute of Technology Atsugi, 243-0292 JAPAN

E-mail: komeda@gen.kanagawa-it.ac.jp

Akira Ohbuchi

Department of Mathematics Faculty of Integrated Arts and Sciences Tokushima University Tokushima, 770-8502 JAPAN

E-mail: ohbuchi@ias.tokushima-u.ac.jp