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Existence of the non-primitive Weierstrass gap
sequences on curves of genus 8

Jiryo Komeda™ and Akira Ohbuchi**

Abstract. We show that for any possible Weierstrass gap sequence L on a non-singular
curve of genus 8 with twice the smallest positive non-gap is less than the largest gap
there exists a pointed non-singular curve (C, P) over an algebraically closed field of
characteristic 0 such that the Weierstrass gap sequence at P is L. Combining this with
the result in [6] we see that every possible Weierstrass gap sequence of genus 8 is attained
by some pointed non-singular curve.

Keywords: Weierstrass semigroup of a point, Double covering of a curve, Cyclic cov-
ering of an elliptic curve.

Mathematical subject classification: Primary: 14H55; Secondary: 14H30, 14C20.

1 Introduction

Let C be a complete nonsingular irreducible curve of genus g over an alge-
braically closed field & of characteristic 0, which is called a curve in this paper.
Let k(C) be the field of rational functions on C. For a point P of C, we set

H(P) = {a € Ny| there exists f € k(C) with ()oo = @ P},

which is called the Weierstrass semigroup of the point P where Nj denotes the
additive semigroup of non-negative integers. The increasing elements of the
complement No\ H(P) of H(P) in N are called the Weierstrass gap sequence
at P. Then H(P) is a subsemigroup of Ny with §(No\ H(P)) = g.
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Conversely, let H be a subsemigroup of Ny whose complement Ny\ / in Ny
is finite, which is called a numerical semigroup. The cardinality of Ny\ H is said
to be the genus of H, which is denoted by g(H). We say that H is Weierstrass
if there exists a pointed curve (C, P) such that H(P) = H. Hurwitz’ question
in [3] was whether every numerical semigroup is Weierstrass. It had been a
long-standing problem. Buchweitz [1] finally showed that not every numerical
semigroup is Weierstrass. Namely, he gave a non-Weierstrass semigroup of
genus 16. Using the Buchwitz’ method we can show that for any g = 17
there exists a non-Weierstrass semigroup of genus g (for example, see [8]). On
the other hand, one of the authors proved that every numerical semigroup of
genus ¢ < 7 (resp. every primitive numerical semigroup of genus g = 8,9)
is Weierstrass where a numerical semigroup H is said to be primitive if the
largest integer not in H is less than twice the smallest positive integer in H
(see [6], [9D).

In this paper we show that every non-primitive numerical semigroup of genus
8 is Weierstrass. In Section 2 using the known facts we show that any non-
primitive n-semigroup of genus 8 is Weierstrass for n % 6 where a numerical
semigroup H is called an n-semigroup if the minimum positive integer in H is
n. In Section 3 for any non-primitive 6-semigroup H of genus 8 we construct
a double covering of a curve with a ramification point P such that H(P) =
H. Combining our result with Theorem 5.5 in [6] we see that every numerical
semigroup of genus 8 is Weierstrass.

2 Non-primitive n-semigroups of genus 8 for n £ 6

In this section we review the known facts and apply these results to our case. For
a 2-semigroup H there exists a hyperelliptic curve C such that H(P) = H for
any Weierstrass point P on C. This result is classical. We know that every 3-
semigroup is Weierstrass, which is due to Maclachlan [11]. Moreover, one of the
authors proved that every 4-semigroup (resp. every 5-semigroup) is Weierstrass
(see [4] (resp. [5])).

By the above notes it suffices to show that any non-primitive n-semigroup of
genus 8 is Weierstrass for n = 6. By the way there is only one non-primitive
n-semigroup of genus 8 with n = 7. The unique semigroup 7 is generated by
7,9,10, 11, 12 and 13. In view of [7] there is a cyclic covering of an elliptic
curve of degree 8 which has only two ramification points P, and P,, which are
totally ramified, such that H(P)) = H(P,) = H;.
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3 Non-primitive 6-semigroups of genus 8§

In this section we show that for any non-primitive 6-semigroup H of genus 8
there exists a double covering of a curve with a ramification point P such that
H(P) = H. Wedenote by M (H) the minimal set of generators for the semigroup
H. The following table shows all non-primitive 6-semigroups of genus 8.

M((H) No\H

M| 6,7,10,11} | {1,2,3,4,5,8,9, 15)
@ | (6,809,100 |{1,2,3,4,5,7 11,13}
3| 6,809 11} |1{1,2,3,4,5,7, 10,13}
@) | {6,8,10,11,13} | {1,2,3,4,5,7,9, 15}
) | 16,8,10, 11,15} | {1,2,3,4,5,7,9, 13}
©) | 16,9,10, 11,13} | {1,2,3,4,5,7,8, 14}
(D | {6,9,10, 11,14} | {1,2,3,4,5,7,8, 13}

Proposition 3.1. Let H be one of the following 6-semigroups: (2) M(H) =
{6,8,9,10}, (4) M(H) = {6, 8,10, 11, 13} and (5) M(H) = {6, 8, 10, 11, 15}.
Then there is a double covering of a curve of genus 2 with a ramification point
P such that H(IS) = H.

Proof. Let C be a curve of genus 2. Take an ordinary point P on C. We want
to construct a double covering of C with the ramification point P over P such
that H(P) = H.

Case 2) M(H) = {6, 8,9, 10}. We consider the divisor D = 5P. The degree
of 2D — P is 9 > 4, which implies that the divisor 2D — P is very ample. Hence
we have

2D ~ P + (some divisor) = R

where R is a reduced divisor. Here for any two divisors D; and D; on C,
D; ~ D, means that D; and D, are linearly equivalent. Let £ be an invertible
sheaf on C such that £ >~ O¢(—D). Now we have isomorphisms

L%~ Oc(=2D) ~ Oc(—R) C Oc.

Using the composition of the above two isomorphisms we can construct a double
covering 3
m:C=Spec(Oc® L) — C
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whose branch locus is R (See [12]). By Riemann-Hurwitz formula the genus
of C is 8. Let P € C be the ramification point of 7w over P. By Proposition 2.1
in [10] we obtain

h°(C, 0:(2nP)) = h°(C, Oc(nP)) + h°(C, L ® Oc(nP))
for any positive integer n. Hence we get
h°(C, 0:(8P)) = h°(C, Oc(4P)) + h°(C, L® Oc(4P)) =3  and
h°(C, 0z(10P)) = h°(C, Oc(5P)) + h°(C, L ® Oc(5P)) = 5,

which implies that 9 € H (P). Since P is the ramification point over P with
M(H(P)) = {3,4,5}, the se:migroup H(P) contains 6, 8 and 10. In view of
g(H) = 8 we must have H(P) =

Case (4) M(H) = {6, 8,10, 11, 13}. Let Q be a unique point on C such that
the divisor P + Q is a canonical divisor K. Consider the divisor D = 6P — Q.
Since the divisor 2D — P is very ample, we have

2D ~ P + (some divisor) = R

where R is a reduced divisor. In the same way as in the above we get a double
covering .
m:C=Spec(Oc® L) — C

whose branch locus is R. Since we have
h(C, 0:(10P)) = 4+ h°(C, Oc(—P + Q)) =4,
h°(C,0:(12P)) =5+ h°(C,0c(0) =6  and
h(C, 0:(14P)) = 6 + h°(C, Oc(P + Q) =8,

we see that H (P) contains 11 and 13. Hence we get H(P) =

Case (5) M(H) = {6, 8,10, 11, 15}. Let QO be a point on C distinct from P
such that the divisor P + Q is not a canonical divisor K. Consider the divisor
D =6P — Q. We have

2D ~ P + (some divisor) = R
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where R is a reduced divisor. In the same way as in the above we get a double
covering 3
m:C=Spec(Oc® L) — C

whose branch locus is R. Since we have
hY(C, 0:(10P)) = 4, h°(C, O (12P)) = 6,
h(C, 0:(14P)) = 6+ h°(C, Oc(P+ Q)) =7  and
h°(C, 0:(16P)) =7+ h°(C,0c2P + Q)) =9,

we see that H (P) contains 11 and 15. Hence we get H(P)=H. [l

Remark.

1. All the seven remainder semigroups could be treated by Stohr’s methods
as in [14].

2. The case (1) M(H) = {6,7, 10, 11} is a particular case of [16; Korollar
3]. See also [15; p. 204 and 208].

3. The case (2) M(H) = {6, 8,9, 10} is a particular case of [2; p. 422] by
taking ny =ns = 0,1’12 = 1, niy = 3 andn4 =2.

4. The case (4) M(H) = {6,8,10,11,13} and (5) M(H) = {6,8, 10,
11, 15} are particular cases of [13].

Proposition 3.2. Let H be one of the following 6-semigroups: (1) M(H) =
{6,7,10,11}, 3) M(H) = {6,8,9,11} and (7) M(H) = {6,9, 10, 11, 14}.
Then there is a double covering of a non-hyperelliptic curve of genus 3 with a
ramification point P such that H(P) = H.

Proof. Case (1) M(H) = {6,7, 10, 11}. Let C be a non-hyperelliptic curve
of genus 3 with no point S such that M (H(S)) = {3, 4}. Let P be a Weierstrass
point on C. Then we have M (H (P)) = {3, 5, 7}. Let Q be a unique point on C
such that the divisor 3P + Q is a canonical divisor K. In this case Q is distinct
from P. Consider the divisor D = 4P — Q. We want to show that

2D ~ P + (some divisor) = R
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where R is a reduced divisor. It suffices to show that the linear system |2D — P|
is base-point free where for a divisor £ on C the linear system | £ | means the set
of effective divisors which are linearly equivalent to £. Assume that [2D — P)|
were not base-point free. Thenwe get2D — P ~ K+ T for some point 7. Hence
we have 7P — 20 ~ 3P + Q + T, which implies that 4P ~ 30 + T. Since
|4 P| is not base-point free, we should have P = T. Thus, we obtain 3P ~ 30.
Moreover, K ~ 3P 4+ Q ~ 40, which implies that M (H (Q)) = {3, 4}. This is
a contradiction. By Mumford’s method we can construct a double covering

ﬂ:C':Spec(OCGBL)—)C

whose branch locus is R where £ >~ O¢(—D). It suffices to show that 7 and 11
are contained in A (P) where P is the ramification point over P. Since we have

h(C,0:(6P) =2+ h°(C,0c(~P+ Q) =2  and
h°(C, 0:(8P)) =2+ h°(C, 0c(Q)) = 3,
we see that H (13) contains 7. Since we have
h(C, 0:(10P)) =3+ h%(C,0c(P + Q) =4  and
h°(C,0:(12P)) =4+ h°(C,0c2P + Q)) = 6,
we see that H (P) contains 11.
Case (7) M(H) = {6,9,10, 11, 14}. Let C be a non-hyperelliptic curve of
genus 3 with a Weierstrass point P satisfying M(H(P)) = {3,5,7}. Let 4,
B and U be distinct points on C different from P such that the divisor P +

A+ B + U is linearly equivalent to a canonical divisor K. Consider the divisor
D =5P — A — B. We want to show that

2D ~ P + (some divisor ) = R

where R is areduced divisor. Assume that |2D — P| is not base-point free. Then
we get 9P — 24 — 2B ~ K + S for some point S. If § # P, then we may
assume that K 4+ S does not contain P, because K is base-point free. Hence
we get our desired result. If S = P, then we replace B by U. Then we get
9P —24 —2U ~ K + S for some point S distinct from P, because if § = P
we get U = B, a contradiction. We can construct a double covering

7 :C =Spec(Oc ® L) — C
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whose branch locus is R where £ ~ O¢(—D). It suffices to show that H(P) 3
9, 11. Since we have

h°(C,0:8P) =2+ h(C,0c(~P+ A+ B))=2  and
h°(C, 0z(10P)) =3+ h°(C, Oc(4 + B)) = 4,
we see that H (P) contains 9. Since we have
h(C, 0(12P)) = 4+ h°(C, Oc(P + A + B)) =6,

we see that H (}3) contains 11.

Case (3) M(H) = {6,8,9,11}. Let C be a non-hyperelliptic curve of genus
3 with a Weierstrass point P satisfying M (H (P)) = {3,4}. We consider C as
a canonical curve in P>, Let 4 and B be distinct points different from P such
that P + A + B + S is a canonical divisor for some point S. Then there is
no line bitangent to 4 and B, because 4 and B are distinct from P. We set
D =5P — A — B. We want to show that

2D ~ P + ( some divisor ) = R

where R is areduced divisor. Assume that2 D — P were not base-point free. Then
we get2D — P ~ K 4 T for some point 7. Hence we obtain 9P —24 — 2B ~
4P + T, because M(H(P)) = {3,4} implies that 4P is a canonical divisor.
Thus, we have 5P ~ 24 4+ 2B + T. Since the divisor 5P has a base point,
we must have 7 = P, because 4 and B are distinct from P. Hence, we get
K ~ 4P ~ 24 + 2B. This contradicts the assumption that there is no line
bitangent to 4 and B. We can construct a double covering

ﬂ:@:Spec(OCEBL)—>C

whose branch locus is R where £ >~ Oc(—D). It suffices to show that H(f’)
contains 9 and 11. Since we have

h(C,0:8P) =3+ h°(C,0c(~P+ A+ B))=3  and
h°(C,0:(10P)) =3+ h°(C, Oc(4 + B)) =4,

we see that H(Is) contains 9, because of H(P) #5. Since P+ A4+ B ~ K — 3§,
we have

h(C,0:(12P)) =4+ h°(C,Oc(P + A+ B)) = 6.
Hence, H (13) contains 11. O
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Proposition 3.3. Let H be the 6-semigroup with (6) M(H) = {6,9, 10,
11,13}. Then there is a double covering of a curve of genus 4 with a rami-
fication point P such that H(P) = H.

Proof. Let E be an elliptic curve with the origin Q'. For a point P’ of E
we denote by [P’] the element corresponding to P’ when we consider £ as the
abelian group with identity element [Q’]. Moreover, for any integer n, n[P’]
means n times [ P’]. Let P be a point of £ such that P/ # Q"and 2[ P[] = [Q'],
i.e., 2P/ ~ 2Q'. Moreover, P, denotes a point of £ such that

Py#Q, P#P and —5[P]]=3[P], ie, 5P +3P, ~80Q".

Take z € k(E) such that div(z) = 5P +3P; —8Q'. Letw : C —> E be
the surjective morphism corresponding to the inclusion k(E) C k(E)(z'/®) =
k(C). Let y € k(C) and o € Aut(k(C)/k(E)) such that o(y) = gy and
divg(y®) = 5P/ + 3P, — 8Q’, where (g is a primitive 8-th root of unity. Then
there are only two ramification points P; and P, over P/ and P; respectively
and the ramification numbers are 8. Hence by the Riemann-Hurwitz relation the
genus of C is 8. We have

div(y) = 5P +3P, — 7*(Q).
Since the divisor of dy is invariant under the action of o, we have

3
div(dy) = 4P, + 2P, —27*(Q)) + Y 7*(R))

i=1

where R[’s are points of £ which are distinct from P|, P, and Q'. For any
f € k(E),wesetdivg(f) = Z n(P")P'. Then for any r € Ny we obtain
P'eE

div()%) = (8n(P)) + 4+ 5( — D} P, + {8n(P})) + 2+ 3(r — 1)} P,

3
+{n(Q) —r — N (Q) + Y _{n(R) + 1)m*(R)
i=1

+ ) n(PHm*(P),

P'eS
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where S is the set of points P’ € E except P/, P;, Q" and R]’s. We set

3 3
Dy=-P —P;—Q'+> R,  Dj=-20+) R
i=1 i=1
3 3
Dy=-30"+ P+ ) R, Dy=—40'+ P+ Pj+ Y R,
i=1 i=1
3 3
Dy=-50'+2P{+P;+ Y R|, Di=-60'+3P[+P;+) R
i=1 i=1
3 3
Dy=-70'+3P[+2P;+ Y R, D,=-8Q +4P{+2Pj+> Rj.
i=1 i=1

Then for each » = 0, 1,...,7, f € L(Dy) implies that fdy/y'™" is a regular
1-form on C where

L(D)) = {f € K(E) | dive(f) = —D]}.

Since we have

k]

(L)t d 2
y oy gy y
the form dy/y is regarded as a 1-form on E. Hence there exists f € k(E) such
that fdy/y is regular. Then we must have

3
dive(f) =P+ P+ Q — Z Rl ie., (D)) =1

i=1
where for any divisor D we denote by /(D) the dimension of the k-vector space
L (D), because

0 < dive (%) = diva(f) + divg (dy—y)

3
= dive(f) — P — P, —YT*(Q/)'FZ”*(R;)‘

i=1

Moreover, we have /(D)) = 1 forall » = 1,2,...,7, because of deg(D))
= 1forallr = 1,2,...,7. First we will show that /(D| — P)) = 0. If
[(D} — P)) > 0, then we have

3 3
—20'+Y R —P{~D{— P ~0~Dj=—P —P;— Q'+ ) R,
i=1 i=1

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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which implies that P; ~ Q’. This is a contradiction. If /(D) — P{) > 0, then
we have

3 3
—30'+) R/ =Dy—P{~Dy=—P—P,—0'+) R,

i=1 i=1

which implies that P{ + P, ~ 2Q’ ~ 2 P|. This is a contradiction. If /(D] — P))
> 0, then we have

3 3
—4Q' + Py+ Y R/ =D~ P~ Dy=-P/ —Pj— 0+ R,
i=1

i=1
which implies that P{ +2P; ~ 3Q'. Since we have
5P/ +3P, ~8Q ~4Q 4+ 4P|,
we obtain
P/ +2P+ Q' ~4Q ~ P+ 3P,

which implies that Q" ~ P;. This is a contradiction. If /(D — P{) > 0, then
we have

3 3
—5Q'+ P{+P;+Y R/ =D,— P{~Dy=—P—P;— Q0 +) R,
i=1

i=1

which implies that
2P +2P; ~4Q" ~ P/ 4+ 3P;.

This is a contradiction. If /(D5 — P/) > 0, then we have

3 3
—6Q'+2P(+ Pj+» R =D;— P ~Dy=—P—P;— Q'+ Y R,
i=1

i=1
which implies that
3P/ +2P; ~50" ~ Q'+ P[+3P,.

Hence we have
20" ~2P/ ~ Q'+ P;.

This is a contradiction. Now we have
60" ~20"+ P/ +3P,~2P{+ P/ +3P, =3P/ +3P,.

Bull Braz Math Soc, Vol. 39, N. 1, 2008



NON-PRIMITIVE WEIERSTRASS GAP SEQUENCES ON CURVES OF GENUS 8 119

Hence we get

3 3
Dy— P =—=70'+2P/+2P;+ Y Rj~—Q —P/—Pj+> R/ =Dy~0,

i=1 i=1

which implies that /(Dg) = I(Dg — P)) = 1. If (D} — P;) > 0, then we have

3 3
—80'+3P[+2Pj+ Y R =D;— P ~Dy=—P —Pj— Q'+ R,
i=1

i=1
which implies that
4P/ + 3P, ~70Q" ~4P +30'.
Hence we get
3P+ Q' ~40 ~ P[+3P,.
This is a contradiction. By the above we have
I(D; — Py =0foralli # 6 and [(Dy; — P|) = 1,1(Dy —2P]) = 0.

For each» = 0,1, ---, 7 we take a non-zero element f, € L(D,) and we set
¢, = f.dy/y'™". Then by the above we see the following:

ordp (o) =8—1=7=8—1, ords (1) =0+4=5—1,

ords () = —8+9=1=2-1, ords (¢3) = -8+ 14=6=7—1,
ords (g) =—16+19=3=4—1,  ordj(¢s)=—24+24=0=1—1,
ords (P6) = —16+29=13=14—1, ords (¢7) =—32+34=2=3-1.

We note that n € No\ H(P,) if and only if there exists a regular 1-form ¢ on C
such that ord 5,(#) =n — 1. Hence we obtain

No\H(P) ={1,2,3,4,5,7,8, 14}.

Let K be the subfield of £(C) consisting of the elements which are fixed by
the automorphism o*. We denote by C the curve with function field K. Let
n : C —> E be the covering corresponding to the inclusion £(£) C K. Then
n is a morphism of degree 4 with only two ramification point P; over P/ for

i = 1,2. Hence, the genus of C is 4. Moreover, the canonical morphism
C —> C is a double covering with the ramification point P; over P satisfying
M(H(Py)) =1{6,9,10, 11, 13}. O

The following theorem can be deduced from Propositions 3.1, 3.2 and 3.3.
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Theorem 3.4. FEvery non-primitive 6-semigroup of genus 8 is Weierstrass.

Combining the statement in Section 2 and Theorem 3.4 with Theorem 5.5 in
[6] we get the following result:

Corollary 3.5. Any numerical semigroup of genus 8 is Weierstrass.

Acknowledgments. The authors would like to thank the referee for his/her
useful comments, especially Remark which follows Proposition 3.1.
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