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Existence of the non-primitive Weierstrass gap
sequences on curves of genus 8
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Abstract. We show that for any possible Weierstrass gap sequence L on a non-singular
curve of genus 8 with twice the smallest positive non-gap is less than the largest gap
there exists a pointed non-singular curve (C, P) over an algebraically closed field of
characteristic 0 such that the Weierstrass gap sequence at P is L . Combining this with
the result in [6] we see that every possible Weierstrass gap sequence of genus 8 is attained
by some pointed non-singular curve.
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1 Introduction

Let C be a complete nonsingular irreducible curve of genus g over an alge-
braically closed field k of characteristic 0, which is called a curve in this paper.
Let k(C) be the field of rational functions on C . For a point P of C , we set

H(P) = {α ∈ N0| there exists f ∈ k(C) with ( f )∞ = αP},

which is called the Weierstrass semigroup of the point P where N0 denotes the
additive semigroup of non-negative integers. The increasing elements of the
complement N0\H(P) of H(P) in N0 are called the Weierstrass gap sequence
at P . Then H(P) is a subsemigroup of N0 with ](N0\H(P)) = g.
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Conversely, let H be a subsemigroup of N0 whose complement N0\H in N0

is finite, which is called a numerical semigroup. The cardinality of N0\H is said
to be the genus of H , which is denoted by g(H). We say that H is Weierstrass
if there exists a pointed curve (C, P) such that H(P) = H . Hurwitz’ question
in [3] was whether every numerical semigroup is Weierstrass. It had been a
long-standing problem. Buchweitz [1] finally showed that not every numerical
semigroup is Weierstrass. Namely, he gave a non-Weierstrass semigroup of
genus 16. Using the Buchwitz’ method we can show that for any g = 17
there exists a non-Weierstrass semigroup of genus g (for example, see [8]). On
the other hand, one of the authors proved that every numerical semigroup of
genus g 5 7 (resp. every primitive numerical semigroup of genus g = 8, 9)
is Weierstrass where a numerical semigroup H is said to be primitive if the
largest integer not in H is less than twice the smallest positive integer in H
(see [6], [9]).

In this paper we show that every non-primitive numerical semigroup of genus
8 is Weierstrass. In Section 2 using the known facts we show that any non-
primitive n-semigroup of genus 8 is Weierstrass for n 6= 6 where a numerical
semigroup H is called an n-semigroup if the minimum positive integer in H is
n. In Section 3 for any non-primitive 6-semigroup H of genus 8 we construct
a double covering of a curve with a ramification point P such that H(P) =
H . Combining our result with Theorem 5.5 in [6] we see that every numerical
semigroup of genus 8 is Weierstrass.

2 Non-primitive n-semigroups of genus 8 for n 6= 6

In this section we review the known facts and apply these results to our case. For
a 2-semigroup H there exists a hyperelliptic curve C such that H(P) = H for
any Weierstrass point P on C . This result is classical. We know that every 3-
semigroup is Weierstrass, which is due to Maclachlan [11]. Moreover, one of the
authors proved that every 4-semigroup (resp. every 5-semigroup) is Weierstrass
(see [4] (resp. [5])).

By the above notes it suffices to show that any non-primitive n-semigroup of
genus 8 is Weierstrass for n = 6. By the way there is only one non-primitive
n-semigroup of genus 8 with n = 7. The unique semigroup H7 is generated by
7, 9, 10, 11, 12 and 13. In view of [7] there is a cyclic covering of an elliptic
curve of degree 8 which has only two ramification points P1 and P2, which are
totally ramified, such that H(P1) = H(P2) = H7.
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3 Non-primitive 6-semigroups of genus 8

In this section we show that for any non-primitive 6-semigroup H of genus 8
there exists a double covering of a curve with a ramification point P such that
H(P) = H . We denote by M(H) the minimal set of generators for the semigroup
H . The following table shows all non-primitive 6-semigroups of genus 8.

M(H) N0\H

(1) {6, 7, 10, 11} {1, 2, 3, 4, 5, 8, 9, 15}

(2) {6, 8, 9, 10} {1, 2, 3, 4, 5, 7, 11, 13}

(3) {6, 8, 9, 11} {1, 2, 3, 4, 5, 7, 10, 13}

(4) {6, 8, 10, 11, 13} {1, 2, 3, 4, 5, 7, 9, 15}

(5) {6, 8, 10, 11, 15} {1, 2, 3, 4, 5, 7, 9, 13}

(6) {6, 9, 10, 11, 13} {1, 2, 3, 4, 5, 7, 8, 14}

(7) {6, 9, 10, 11, 14} {1, 2, 3, 4, 5, 7, 8, 13}

Proposition 3.1. Let H be one of the following 6-semigroups: (2) M(H) =
{6, 8, 9, 10}, (4) M(H) = {6, 8, 10, 11, 13} and (5) M(H) = {6, 8, 10, 11, 15}.
Then there is a double covering of a curve of genus 2 with a ramification point
P̃ such that H(P̃) = H .

Proof. Let C be a curve of genus 2. Take an ordinary point P on C . We want
to construct a double covering of C with the ramification point P̃ over P such
that H(P̃) = H .

Case (2) M(H) = {6, 8, 9, 10}. We consider the divisor D = 5P . The degree
of 2D − P is 9 > 4, which implies that the divisor 2D − P is very ample. Hence
we have

2D ∼ P + (some divisor) = R

where R is a reduced divisor. Here for any two divisors D1 and D2 on C ,
D1 ∼ D2 means that D1 and D2 are linearly equivalent. Let L be an invertible
sheaf on C such that L ' OC(−D). Now we have isomorphisms

L⊗2 ' OC(−2D) ' OC(−R) ⊂ OC .

Using the composition of the above two isomorphisms we can construct a double
covering

π : C̃ = Spec(OC ⊕ L) −→ C

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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whose branch locus is R (See [12]). By Riemann-Hurwitz formula the genus
of C̃ is 8. Let P̃ ∈ C̃ be the ramification point of π over P . By Proposition 2.1
in [10] we obtain

h0(C̃,OC̃(2n P̃)) = h0(C,OC(n P)) + h0(C,L⊗ OC(n P))

for any positive integer n. Hence we get

h0(C̃,OC̃(8P̃)) = h0(C,OC(4P)) + h0(C,L⊗ OC(4P)) = 3 and

h0(C̃,OC̃(10 P̃)) = h0(C,OC(5P)) + h0(C,L⊗ OC(5P)) = 5,

which implies that 9 ∈ H(P̃). Since P̃ is the ramification point over P with
M(H(P)) = {3, 4, 5}, the semigroup H(P̃) contains 6, 8 and 10. In view of
g(H) = 8 we must have H(P̃) = H .

Case (4) M(H) = {6, 8, 10, 11, 13}. Let Q be a unique point on C such that
the divisor P + Q is a canonical divisor K . Consider the divisor D = 6P − Q.
Since the divisor 2D − P is very ample, we have

2D ∼ P + (some divisor) = R

where R is a reduced divisor. In the same way as in the above we get a double
covering

π : C̃ = Spec(OC ⊕ L) −→ C

whose branch locus is R. Since we have

h0(C̃,OC̃(10 P̃)) = 4 + h0(C,OC(−P + Q)) = 4,

h0(C̃,OC̃(12 P̃)) = 5 + h0(C,OC(Q)) = 6 and

h0(C̃,OC̃(14P̃)) = 6 + h0(C,OC(P + Q)) = 8,

we see that H(P̃) contains 11 and 13. Hence we get H(P̃) = H .

Case (5) M(H) = {6, 8, 10, 11, 15}. Let Q be a point on C distinct from P
such that the divisor P + Q is not a canonical divisor K . Consider the divisor
D = 6P − Q. We have

2D ∼ P + (some divisor) = R

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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where R is a reduced divisor. In the same way as in the above we get a double
covering

π : C̃ = Spec(OC ⊕ L) −→ C

whose branch locus is R. Since we have

h0(C̃,OC̃(10 P̃)) = 4, h0(C̃,OC̃(12 P̃)) = 6,

h0(C̃,OC̃(14P̃)) = 6 + h0(C,OC(P + Q)) = 7 and

h0(C̃,OC̃(16P̃)) = 7 + h0(C,OC(2P + Q)) = 9,

we see that H(P̃) contains 11 and 15. Hence we get H(P̃) = H . �

Remark.

1. All the seven remainder semigroups could be treated by Stöhr’s methods
as in [14].

2. The case (1) M(H) = {6, 7, 10, 11} is a particular case of [16; Korollar
3]. See also [15; p. 204 and 208].

3. The case (2) M(H) = {6, 8, 9, 10} is a particular case of [2; p. 422] by
taking n1 = n5 = 0, n2 = 1, n3 = 3 and n4 = 2.

4. The case (4) M(H) = {6, 8, 10, 11, 13} and (5) M(H) = {6, 8, 10,

11, 15} are particular cases of [13].

Proposition 3.2. Let H be one of the following 6-semigroups: (1) M(H) =
{6, 7, 10, 11}, (3) M(H) = {6, 8, 9, 11} and (7) M(H) = {6, 9, 10, 11, 14}.
Then there is a double covering of a non-hyperelliptic curve of genus 3 with a
ramification point P̃ such that H(P̃) = H .

Proof. Case (1) M(H) = {6, 7, 10, 11}. Let C be a non-hyperelliptic curve
of genus 3 with no point S such that M(H(S)) = {3, 4}. Let P be a Weierstrass
point on C . Then we have M(H(P)) = {3, 5, 7}. Let Q be a unique point on C
such that the divisor 3P + Q is a canonical divisor K . In this case Q is distinct
from P . Consider the divisor D = 4P − Q. We want to show that

2D ∼ P + (some divisor) = R

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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where R is a reduced divisor. It suffices to show that the linear system |2D − P|
is base-point free where for a divisor E on C the linear system |E | means the set
of effective divisors which are linearly equivalent to E . Assume that |2D − P|
were not base-point free. Then we get 2D− P ∼ K +T for some point T . Hence
we have 7P − 2Q ∼ 3P + Q + T , which implies that 4P ∼ 3Q + T . Since
|4P| is not base-point free, we should have P = T . Thus, we obtain 3P ∼ 3Q.
Moreover, K ∼ 3P + Q ∼ 4Q, which implies that M(H(Q)) = {3, 4}. This is
a contradiction. By Mumford’s method we can construct a double covering

π : C̃ = Spec(OC ⊕ L) −→ C

whose branch locus is R where L ' OC(−D). It suffices to show that 7 and 11
are contained in H(P̃) where P̃ is the ramification point over P . Since we have

h0(C̃,OC̃(6P̃)) = 2 + h0(C,OC(−P + Q)) = 2 and

h0(C̃,OC̃(8P̃)) = 2 + h0(C,OC(Q)) = 3,

we see that H(P̃) contains 7. Since we have

h0(C̃,OC̃(10 P̃)) = 3 + h0(C,OC(P + Q)) = 4 and

h0(C̃,OC̃(12 P̃)) = 4 + h0(C,OC(2P + Q)) = 6,

we see that H(P̃) contains 11.

Case (7) M(H) = {6, 9, 10, 11, 14}. Let C be a non-hyperelliptic curve of
genus 3 with a Weierstrass point P satisfying M(H(P)) = {3, 5, 7}. Let A,
B and U be distinct points on C different from P such that the divisor P +
A + B + U is linearly equivalent to a canonical divisor K . Consider the divisor
D = 5P − A − B. We want to show that

2D ∼ P + ( some divisor ) = R

where R is a reduced divisor. Assume that |2D − P| is not base-point free. Then
we get 9P − 2A − 2B ∼ K + S for some point S. If S 6= P , then we may
assume that K + S does not contain P , because K is base-point free. Hence
we get our desired result. If S = P , then we replace B by U . Then we get
9P − 2A − 2U ∼ K + S for some point S distinct from P , because if S = P
we get U = B, a contradiction. We can construct a double covering

π : C̃ = Spec(OC ⊕ L) −→ C

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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whose branch locus is R where L ' OC(−D). It suffices to show that H(P̃) 3
9, 11. Since we have

h0(C̃,OC̃(8P̃) = 2 + h0(C,OC(−P + A + B)) = 2 and

h0(C̃,OC̃(10 P̃)) = 3 + h0(C,OC(A + B)) = 4,

we see that H(P̃) contains 9. Since we have

h0(C̃,OC̃(12 P̃)) = 4 + h0(C,OC(P + A + B)) = 6,

we see that H(P̃) contains 11.

Case (3) M(H) = {6, 8, 9, 11}. Let C be a non-hyperelliptic curve of genus
3 with a Weierstrass point P satisfying M(H(P)) = {3, 4}. We consider C as
a canonical curve in P2. Let A and B be distinct points different from P such
that P + A + B + S is a canonical divisor for some point S. Then there is
no line bitangent to A and B, because A and B are distinct from P . We set
D = 5P − A − B. We want to show that

2D ∼ P + ( some divisor ) = R

where R is a reduced divisor. Assume that 2D−P were not base-point free. Then
we get 2D − P ∼ K + T for some point T . Hence we obtain 9P − 2A − 2B ∼
4P + T , because M(H(P)) = {3, 4} implies that 4P is a canonical divisor.
Thus, we have 5P ∼ 2A + 2B + T . Since the divisor 5P has a base point,
we must have T = P , because A and B are distinct from P . Hence, we get
K ∼ 4P ∼ 2A + 2B. This contradicts the assumption that there is no line
bitangent to A and B. We can construct a double covering

π : C̃ = Spec(OC ⊕ L) −→ C

whose branch locus is R where L ' OC(−D). It suffices to show that H(P̃)

contains 9 and 11. Since we have

h0(C̃,OC̃(8P̃)) = 3 + h0(C,OC(−P + A + B)) = 3 and

h0(C̃,OC̃(10 P̃)) = 3 + h0(C,OC(A + B)) = 4,

we see that H(P̃) contains 9, because of H(P) 63 5. Since P + A + B ∼ K − S,
we have

h0(C̃,OC̃(12 P̃)) = 4 + h0(C,OC(P + A + B)) = 6.

Hence, H(P̃) contains 11. �
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Proposition 3.3. Let H be the 6-semigroup with (6) M(H) = {6, 9, 10,

11, 13}. Then there is a double covering of a curve of genus 4 with a rami-
fication point P̃ such that H(P̃) = H .

Proof. Let E be an elliptic curve with the origin Q′. For a point P ′ of E
we denote by [P ′] the element corresponding to P ′ when we consider E as the
abelian group with identity element [Q′]. Moreover, for any integer n, n[P ′]
means n times [P ′]. Let P ′

1 be a point of E such that P ′
1 6= Q′ and 2[P ′

1] = [Q′],
i.e., 2P ′

1 ∼ 2Q′. Moreover, P ′
2 denotes a point of E such that

P ′
2 6= Q′, P ′

2 6= P ′
1 and − 5[P ′

1] = 3[P ′
2], i.e., 5P ′

1 + 3P ′
2 ∼ 8Q′.

Take z ∈ k(E) such that div(z) = 5P ′
1 + 3P ′

2 − 8Q′. Let π : C̃ −→ E be
the surjective morphism corresponding to the inclusion k(E) ⊂ k(E)(z1/8) =
k(C̃). Let y ∈ k(C̃) and σ ∈ Aut(k(C̃)/k(E)) such that σ(y) = ζ8 y and
divE(y8) = 5P ′

1 + 3P ′
2 − 8Q′, where ζ8 is a primitive 8-th root of unity. Then

there are only two ramification points P̃1 and P̃2 over P ′
1 and P ′

2 respectively
and the ramification numbers are 8. Hence by the Riemann-Hurwitz relation the
genus of C̃ is 8. We have

div(y) = 5P̃1 + 3P̃2 − π∗(Q′).

Since the divisor of dy is invariant under the action of σ , we have

div(dy) = 4P̃1 + 2 P̃2 − 2π∗(Q′) +
3∑

i=1

π∗(R′
i )

where R′
i ’s are points of E which are distinct from P ′

1, P ′
2 and Q′. For any

f ∈ k(E), we set divE( f ) =
∑

P ′∈E

n(P ′)P ′. Then for any r ∈ N0 we obtain

div
( f dy

y1−r

)
= {8n(P ′

1) + 4 + 5(r − 1)}P1 + {8n(P ′
2) + 2 + 3(r − 1)}P2

+ {n(Q′) − r − 1}π∗(Q′) +
3∑

i=1

{n(R′
i ) + 1}π∗(R′

i )

+
∑

P ′∈S

n(P ′)π∗(P ′),

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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where S is the set of points P ′ ∈ E except P ′
1, P ′

2, Q′ and R′
i ’s. We set

D′
0 = −P ′

1 − P ′
2 − Q′ +

3∑

i=1

R′
i , D′

1 = −2Q′ +
3∑

i=1

R′
i ,

D′
2 = −3Q′ + P ′

1 +
3∑

i=1

R′
i , D′

3 = −4Q′ + P ′
1 + P ′

2 +
3∑

i=1

R′
i ,

D′
4 = −5Q′ + 2P ′

1 + P ′
2 +

3∑

i=1

R′
i , D′

5 = −6Q′ + 3P ′
1 + P ′

2 +
3∑

i=1

R′
i ,

D′
6 = −7Q′ + 3P ′

1 + 2P ′
2 +

3∑

i=1

R′
i , D′

7 = −8Q′ + 4P ′
1 + 2P ′

2 +
3∑

i=1

R′
i .

Then for each r = 0, 1, . . . , 7, f ∈ L(D′
r ) implies that f dy/y1−r is a regular

1-form on C̃ where

L(D′
r ) =

{
f ∈ k(E) | divE( f ) ≥ −D′

r

}
.

Since we have

σ

(
dy

y

)
=

dσ y

σ y
=

dζ8 y

ζ8 y
=

dy

y
,

the form dy/y is regarded as a 1-form on E . Hence there exists f ∈ k(E) such
that f dy/y is regular. Then we must have

divE( f ) = P ′
1 + P ′

2 + Q′ −
3∑

i=1

R′
i , i.e., l(D′

0) = 1

where for any divisor D we denote by l(D) the dimension of the k-vector space
L(D), because

0 5 divC̃

(
f dy

y

)
= divC̃( f ) + divC̃

(
dy

y

)

= divC̃( f ) − P̃1 − P̃2 − π∗(Q′) +
3∑

i=1

π∗(R′
i ).

Moreover, we have l(D′
r ) = 1 for all r = 1, 2, . . . , 7, because of deg(D′

r )

= 1 for all r = 1, 2, . . . , 7. First we will show that l(D′
1 − P ′

1) = 0. If
l(D′

1 − P ′
1) > 0, then we have

−2Q′ +
3∑

i=1

R′
i − P ′

1 ∼ D′
1 − P ′

1 ∼ 0 ∼ D′
0 = −P ′

1 − P ′
2 − Q′ +

3∑

i=1

R′
i ,

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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which implies that P ′
2 ∼ Q′. This is a contradiction. If l(D′

2 − P ′
1) > 0, then

we have

−3Q′ +
3∑

i=1

R′
i = D′

2 − P ′
1 ∼ D′

0 = −P ′
1 − P ′

2 − Q′ +
3∑

i=1

R′
i ,

which implies that P ′
1 + P ′

2 ∼ 2Q′ ∼ 2P ′
1. This is a contradiction. If l(D′

3 − P ′
1)

> 0, then we have

−4Q′ + P ′
2 +

3∑

i=1

R′
i = D′

3 − P ′
1 ∼ D′

0 = −P ′
1 − P ′

2 − Q′ +
3∑

i=1

R′
i ,

which implies that P ′
1 + 2P ′

2 ∼ 3Q′. Since we have

5P ′
1 + 3P ′

2 ∼ 8Q′ ∼ 4Q′ + 4P ′
1,

we obtain
P ′

1 + 2P ′
2 + Q′ ∼ 4Q′ ∼ P ′

1 + 3P ′
2,

which implies that Q′ ∼ P ′
2. This is a contradiction. If l(D′

4 − P ′
1) > 0, then

we have

−5Q′ + P ′
1 + P ′

2 +
3∑

i=1

R′
i = D′

4 − P ′
1 ∼ D′

0 = −P ′
1 − P ′

2 − Q′ +
3∑

i=1

R′
i ,

which implies that
2P ′

1 + 2P ′
2 ∼ 4Q′ ∼ P ′

1 + 3P ′
2.

This is a contradiction. If l(D′
5 − P ′

1) > 0, then we have

−6Q′ + 2P ′
1 + P ′

2 +
3∑

i=1

R′
i = D′

5 − P ′
1 ∼ D′

0 = −P ′
1 − P ′

2 − Q′ +
3∑

i=1

R′
i ,

which implies that

3P ′
1 + 2P ′

2 ∼ 5Q′ ∼ Q′ + P ′
1 + 3P ′

2.

Hence we have
2Q′ ∼ 2P ′

1 ∼ Q′ + P ′
2.

This is a contradiction. Now we have

6Q′ ∼ 2Q′ + P ′
1 + 3P ′

2 ∼ 2P ′
1 + P ′

1 + 3P ′
2 = 3P ′

1 + 3P ′
2.
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Hence we get

D′
6 − P ′

1 = −7Q′ + 2P ′
1 + 2P ′

2 +
3∑

i=1

R′
i ∼ −Q′ − P ′

1 − P ′
2 +

3∑

i=1

R′
i = D′

0 ∼ 0,

which implies that l(D′
6) = l(D′

6 − P ′
1) = 1. If l(D′

7 − P ′
1) > 0, then we have

−8Q′ + 3P ′
1 + 2P ′

2 +
3∑

i=1

R′
i = D′

7 − P ′
1 ∼ D′

0 = −P ′
1 − P ′

2 − Q′ +
3∑

i=1

R′
i ,

which implies that

4P ′
1 + 3P ′

2 ∼ 7Q′ ∼ 4P ′
1 + 3Q′.

Hence we get
3P ′

2 + Q′ ∼ 4Q′ ∼ P ′
1 + 3P ′

2.

This is a contradiction. By the above we have

l(D′
i − P ′

1) = 0 for all i 6= 6 and l(D′
6 − P ′

1) = 1, l(D′
6 − 2P ′

1) = 0.

For each r = 0, 1, ∙ ∙ ∙ , 7 we take a non-zero element fr ∈ L(D′
r ) and we set

φr = fr dy/y1−r . Then by the above we see the following:

ordP̃1
(φ0) = 8 − 1 = 7 = 8 − 1, ordP̃1

(φ1) = 0 + 4 = 5 − 1,

ordP̃1
(φ2) = −8 + 9 = 1 = 2 − 1, ordP̃1

(φ3) = −8 + 14 = 6 = 7 − 1,

ordP̃1
(φ4) = −16 + 19 = 3 = 4 − 1, ordP̃1

(φ5) = −24 + 24 = 0 = 1 − 1,

ordP̃1
(φ6) = −16 + 29 = 13 = 14 − 1, ordP̃1

(φ7) = −32 + 34 = 2 = 3 − 1.

We note that n ∈ N0\H(P̃1) if and only if there exists a regular 1-form φ on C̃
such that ord P̃1

(φ) = n − 1. Hence we obtain

N0\H(P̃1) =
{
1, 2, 3, 4, 5, 7, 8, 14

}
.

Let K be the subfield of k(C̃) consisting of the elements which are fixed by
the automorphism σ 4. We denote by C the curve with function field K . Let
η : C −→ E be the covering corresponding to the inclusion k(E) ⊂ K . Then
η is a morphism of degree 4 with only two ramification point Pi over P ′

i for
i = 1, 2. Hence, the genus of C is 4. Moreover, the canonical morphism
C̃ −→ C is a double covering with the ramification point P̃1 over P1 satisfying
M(H(P̃1)) = {6, 9, 10, 11, 13}. �

The following theorem can be deduced from Propositions 3.1, 3.2 and 3.3.
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Theorem 3.4. Every non-primitive 6-semigroup of genus 8 is Weierstrass.

Combining the statement in Section 2 and Theorem 3.4 with Theorem 5.5 in
[6] we get the following result:

Corollary 3.5. Any numerical semigroup of genus 8 is Weierstrass.

Acknowledgments. The authors would like to thank the referee for his/her
useful comments, especially Remark which follows Proposition 3.1.
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