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Abstract. There is a correspondence between functions in the maximal ideal of the
local ring of a rational singularity and certain positive divisors supported on the excep-
tional fiber of a resolution of the singularity. Here we give an algorithm to obtain a
generating set over Z of these divisors.
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1 Introduction

An isolated singularity of a complex surface is called rational if the geometric
genus of the surface does not change under a resolution of the singularity. Here
we are interested in the functions in the maximal ideal of the local ring of a
rational singularity. There is a correspondence between these functions and
certain positive divisors supported on the exceptional fiber of a resolution of the
singularity (see [2] or [7]). The set of such divisors forms a semigroup, called
the semigroup of Lipman.

In this work, we give an algorithm to obtain a minimal generating set over Z
of the semigroup of Lipman by using the construction of a toric variety corre-
sponding to a given semigroup of Lipman. This algorithm works not only for
rational singularities but also for other type of singularities. The motivation for
such a work comes from a deep connection between the elements of the semi-
group of Lipman and topological invariants of the corresponding singularity. For
instance, these divisors can be used to calculate Seiberg–Witten invariants of the
plumbed manifold corresponding to a singularity (see [8]), also to read the open
book structure of this manifold (see [3], [1]).
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2 Semigroup of Lipman

Let S be a sufficiently small representative of a germ (S, 0) of a normal analytic
surface singularity embedded in CN . A resolution of S is a complex analytic
surface X and a proper holomorphic map π : X −→ S such that its restriction to
X −π−1(0) is a biholomorphic map and X −π−1(0) is dense in X . By the Main
Theorem of Zariski, the exceptional fiber E := π−1(0) is a connected curve. Let
us denote by E1, ∙ ∙ ∙ , En its irreducible components and by M(E) = (ai j ) its
associated intersection matrix, where aii is the self-intersection of Ei , and ai j is
the number of the intersection points of Ei and E j . It is well known that M(E)

is negative definite.
Let G denotes the set of divisors supported on E with integer coefficients:

G =
{ n∑

i=1

mi Ei | mi ∈ Z
}
.

When mi ∈ N the elements of G are called positive divisors supported on E .
As in [7], consider the set

E+(E) =
{
Y ∈ G | (Y ∙ Ei ) ≤ 0 for all i

}
.

In [11], Zariski proves that the subset E+(E) of G is not empty. Furthermore,
for any element Y =

∑
mi Ei in E+(E), it is easy to see that the inequality

(Y ∙ Ei ) ≤ 0 implies that mi ≥ 1 for all i . Moreover, E+(E) is a semigroup,
called the semigroup of Lipman. A partial order on E+(E) is defined as follows:
Given two elements

Y1 =
n∑

i=1

ai Ei and Y2 =
n∑

i=1

bi Ei

of E+(E), we write Y1 ≤ Y2 if ai ≤ bi for all i . The smallest element of E+(E)

can be calculated by Laufer’s algorithm (see [5], 4.1). By using a similar process,
we can find all other elements in E+(E) (see [9, 10]).

Theorem 2.1 (see [2]). A singularity of a normal analytic surface in CN is
rational if and only if the arithmetic genus of the smallest element in E+(E)

associated to a resolution of the singularity vanishes.

Then we obtain:
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Corollary 2.2 (see [2]). The exceptional fiber of any resolution of a rational
singularity is a normal crossing divisor, with each Ei nonsingular and of genus
zero, and any two distinct components intersecting transversally in at most one
point.

A proof of this corollary can be also found in [10].
Generally speaking, we are interested in the semigroup of Lipman associated

to the exceptional fiber of a resolution of a rational singularity. Nevertheless the
same algorithm also holds for nonrational singularities.

3 Generators of the semigroup of Lipman

For any element Y ′ =
∑n

i=1 mi Ei in G we have

M(E) ∙
(
m1, m2, . . . , mn

)t
=

(
y1, y2, . . . , yn

)t
.

This says that (Y ′ ∙ Ei ) = yi . Let us denote by δi the column matrix with
coefficients 0 everywhere except in the i-th row, where the entry is −1, and
consider M(E) ∙ (mi1, mi2, . . . , min)

t = δi . We have mi j ∈ Q+. Set Fi =∑n
j=1 mi j E j . Then we can write Fi as Fi = ki ∙ Fi

′ for some ki ∈ Q+ such that
the coordinates of the Fi

′ are positive integers and relatively prime. Hence Fi
′

is an element of E+(E).

Definition 3.1. Let U+(E) = {D1, . . . , Dn} be a subset of E+(E) such that
each element in E+(E) can be written as a linear combination of Di ’s with
coefficients in Z+ (in Q+). The elements of U+(E) are called Z-generators
(resp. Q-generators) of E+(E).

Remark 3.2. Notice that the F ′
i generate E+(E) over Q+.

3.1 Z-generators of the semigroup of Lipman

We present an algorithm to find the minimal generators over Z of the semigroup
of Lipman.

Algorithm. To determine generators over Z of the semigroup of Lipman, we
consider E+(E) as E+(E) = σ∨ ∩ N , where σ∨ is the rational polyhedral cone
generated by the Fi , and N is the lattice G. The ring S(E) = C[E+(E)] is
called the semigroup ring associated to the exceptional fiber E of a resolution
of a rational singularity. We can now reduce our problem to one of determining
the ring structure of this semigroup ring.
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Let N = 〈E1, . . . , En〉 be a lattice generated by the components of E and
M = 〈E∗

1 , . . . , E∗
n 〉 be the dual lattice of N with dual pairing denoted by 〈, 〉

such that 〈Ei , E∗
j 〉 = 1 if i = j, 0 otherwise. We denote N ⊗Z R by NR and

the dual space M ⊗Z R by MR. Let σ∨ be the rational polyhedral cone defined
by E+(E) in NR. The semigroup σ∨ ∩ N is finitely generated. The associated
semigroup ring S(E) is C[σ∨ ∩ N ].

We consider F1, . . . , Fn as above. Let N ′ = 〈F1, . . . , Fn〉 be a lattice and
M ′ be the dual lattice of N ′ generated by F∗

1 , . . . , F∗
n such that 〈Fi , F∗

j 〉 = 1
if i = j , and 0 otherwise. We obtain:

Proposition 3.3. The dual lattice M ′ of N ′ is generated by the rows of M(E)

multiplied by −1.

Proof. The proof follows from the construction of the Fi . More explicitly, let
Fi =

∑n
j=1 ai j E j such that M(E)(ai1, ai2, . . . , ain)

T = δi , where δi is a n × 1
matrix with i-th row −1 and other entries 0. Since M(E) is invertible we can
write

(ai1, . . . , ain) =
1

det M(E)
(bi1, . . . , bin)

for some bi j . From the following condition 〈Fi , F∗
j 〉 = 1 if i = j , 0 otherwise

we obtain (ci j )(ai1, . . . , ain)
T = −δi , where

F∗
i =

n∑

j=1

ci j E∗
j .

Thus (ci j ) = −M(E).
The lattice M ′ is a sublattice of finite index of M and σ∨ ∩ N ⊂ σ∨ ∩ N ′.

Then we have the following Proposition:

Proposition 3.4. With the preceding notation, C[σ∨ ∩ N ] = C[N ′]
M
M ′ .

Proof. See page 34 in Fulton [4].

Remark 3.5. The affine variety SpecC[σ∨ ∩ N ] has only quotient singu-
larities.

To explicitly find the associated semigroup ringC[σ∨ ∩ N ], we first determine
the ring C[N ′] and then the ring of invariants C[N ′]

M
M ′ under the M

M ′ -action.
As examples, we determine Z-generators of the semigroup of Lipman for simple
singularities, a determinantal singularity and a minimally elliptic singularity.
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3.2 Examples

Example 3.6. Let E be the exceptional divisor of the minimal resolution of an
An−1-type singularity. We have Ei ∙ E j = 1 if | j − i | = 1, −2 if i = j and 0
otherwise. The Fi for E+(E) are

Fi =
1

n

[
(n−i)E1+2(n−i)E2+∙ ∙ ∙+i(n−i)Ei +i(n−i−1)Ei+1+∙ ∙ ∙+i En−1

]
.

Note that the semigroup of Lipman E+(E) (respectively the semigroup ring
S(E)) for a given singularity of type An−1 is sometimes denoted by E+(An−1)

or E+(0) (respectively S(An−1) or S(0)), where 0 is the dual graph of given
singularity. The same notation also applies to other type of singularities.

We denote the ring C[N ] by C[x1, . . . , xn−1]. Thus we can write C[N ′] =
C[u1, ∙ ∙ ∙ , un−1], where

ui = x
(n−i)

n
1 x

2(n−i)
n

2 ∙ ∙ ∙ x
i(n−i)

n
i x

i(n−i−1)
n

i+1 ∙ ∙ ∙ x
i
n
n−1.

On the other hand, the finite group M
M ′ can be described as follows:

Proposition 3.7. The group M
M ′ is a cyclic group of order n generated by ε for

a singularity of type An−1, where ε is a primitive nth root of unity.

Proof. Let F = F + M ′ ∈ M ′ where F = b1 E∗
1 +∙ ∙ ∙+ bn−1 E∗

n−1 ∈ M . Then
F ∈ M ′. In other words, there exist integers ai such that

b1 E∗
1 + ∙ ∙ ∙ + bn−1 E∗

n−1 = a1 F∗
1 + ∙ ∙ ∙ + an−1 F∗

n−1.

Since the F∗
i can be written in terms of the E∗

i , we can solve the ai in terms of
the bi . More explicitly, we have the following system:

ai = Fi b
t (1)

for i = 1, . . . , n − 1, where b = (b1, b2, . . . , bn−1). If we set bi = 0 for i 6= 1,
then we can observe that the smallest integer for b1 satisfying the system (1)
should be n. This means that ord E∗

1 = n. Similarly, it can be shown that
ord En−1 = n. It suffices to solve the system (1) for i = 1. In other words, the
system (1) is equivalent to the following equation

a1 =
1

n

(
(n − 1)b1 + (n − 2)b2 + ∙ ∙ ∙ + bn−1

)
.
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From here we can observe that

2E∗
1 − E∗

2 , 3E∗
1 − E∗

3 , . . . , (n − 2)E∗
1 − En−2, E∗

1 + E∗
n−1 ∈ M ′.

Hence M/M ′ is generated by E∗
1 . Setting ε = E∗

1 , the result follows.
Any element Y =

∑n−1
i=1 ai Ei ∈ E+(An−1) should satisfy M(E)at = −bt

for some bi ≥ 0 where a = (a1, a2 . . . , an−1) and b = (b1, b2 . . . , bn−1). This
condition is equivalent to (n − 1)b1 + (n − 2)b2 + . . . + 2bn−2 + bn−1 ∈ nZ.
Thus we obtain S(An−1) = C[u1, . . . , un−1]〈ε〉, where the action

ε ∙ ub1
1 ub2

2 ∙ ∙ ∙ ubn−1
n−1 = ε(n−1)b1+(n−2)b2+∙∙∙+2bn−2+bn−1ub1

1 ub2
2 ∙ ∙ ∙ ubn−1

n−1 .

For instance, in the case of A3, the Fi for E+(A3) are

F1 =
1

4
(3, 2, 1), F2 =

1

4
(2, 4, 2), F3 =

1

4
(1, 2, 3).

The group M
M ′ is a cyclic group generated by an element ε of order 4. The ring

of invariants under the action ε ∙ ub1
1 ub2

2 ub3
3 = ε3b1+2b2+b3ub1

1 ub2
2 ub3

3 should sat-
isfy the following condition 3b1 + 2b2 + b3 ≡ 0 mod 4. Therefore the ring of
invariants is generated by monomials

u4
1, u2

2, u4
3, u1u3, u2

1u2, u2
3u2.

In other words, the corresponding Z-generators of E+(E) are

(3, 2, 1), (1, 2, 1), (1, 2, 3), (1, 1, 1), (2, 2, 1), (1, 2, 2).

Example 3.8. Let E be the exceptional divisor of the minimal resolution of
a Dn-type singularity for n ≥ 4. The intersection matrix M(Dn) is defined by
(Ei ∙ E j ) = 1 if j = i +1 for i = 1, . . . , n−2, (En−2 ∙ En) = 1 and (Ei ∙ E j ) = 0
otherwise. We have det M(Dn) = 4 when n is even; det M(Dn) = −4 when n
is odd. Then the Fi for E+(E) are the following:

Fi = E1 + 2E2 + ∙ ∙ ∙ + (i − 1)Ei−1 + i(Ei + Ei+1 + ∙ ∙ ∙ + En−2)

+
i

2

(
En−1 + En

)
for i ≤ n − 2,

Fn−1 =
1

2

(
E1 + 2E2 + ∙ ∙ ∙ + (n − 2)En−2

)
+

n

4
En−1 +

(n − 2)

4
En,

Fn =
1

2

(
E1 + 2E2 + ∙ ∙ ∙ + (n − 2)En−2

)
+

(n − 2)

4
En−1 +

n

4
En.
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We let C[N ] = C[x1, . . . , xn] and C[N ′] = C[u1, . . . , un], where

ui = x1x2
2 ∙ ∙ ∙ xi−1

i−1 xi
i x i

i+1 ∙ ∙ ∙ xi
n−2x

i
2
n−1x

i
2
n for i ≤ n − 2,

un−1 = x
1
2
1 x

2
2
2 ∙ ∙ ∙ x

(n−2)
2

n−2 x
n
4

n−1x
(n−2)

4
n ,

un = x
1
2
1 x

2
2
2 ∙ ∙ ∙ x

(n−2)
2

n−2 x
(n−2)

4
n−1 x

n
4

n .

The finite group M
M ′ is more complicated to describe explicitly in the case of Dn

than in the case of An .
Let F = F + M ′ ∈ M ′ where F = b1 E∗

1 + ∙ ∙ ∙ + bn E∗
n ∈ M . Then F ∈ M ′.

In other words, there exist integers ai such that

b1 E∗
1 + ∙ ∙ ∙ + bn E∗

n = a1 F∗
1 + ∙ ∙ ∙ + an F∗

n .

Since the F∗
i can be written in terms of the E∗

i , we can solve the ai in terms of
the bi as in the case of the proof of Proposition 3.7. More explicitly, we have the
following system:

ai = Fi b
t (2)

for i = 1, . . . , n, where b = (b1, b2, . . . , bn).

Proposition 3.9.

(a) If n is odd, then the ring of invariants is generated by the following:

u2
1, u2, u2

3, u4, . . . , u2
n−4, un−3, u2

n−2, u4
n−1, u4

n,

ui u j for i, j = 1, 3, . . . , n − 2 and i 6= j, un−1un,

ui u
2
n−1 for i = 1, 3, . . . , n − 2, ui u

2
n for i = 1, 3, . . . , n − 2.

(b) If n is even, then the ring of invariants is generated by the following:

u2
1, u2, u2

3, u4, . . . , un−4, u2
n−3, un−2, u2

n−1, u2
n,

ui u j for i, j = 1, 3, . . . , n − 3 and i 6= j,

ui un−1un for i = 1, 3, . . . , n − 3.

Proof. Assume that (a) holds. From the system of the equations (2), if we
set bi = 0 for all i 6= 1, then the smallest integer for b1 will be 2. Similarly,
we can prove that the smallest integers for other bi are 2 for i = 3, . . . , n − 2,
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bn−1 = bn = 4, bi = 1 otherwise. In other words, ord E∗
i = 2 for i =

1, 3, . . . , n − 2, ord E∗
n−1 = ord E∗

n = 4, ord E∗
i = 1 otherwise. By a simple

observation the system of the equations is equivalent to the following system of
equations:

b1 + b3 + ∙ ∙ ∙ + bn−2 + bn−1 +
bn−1 + bn

2
∈ 2Z,

b1 + b3 + ∙ ∙ ∙ + bn−2 + bn +
bn−1 + bn

2
∈ 2Z.

(3)

where bi can be at most 2 for i = 1, 3, . . . , n − 2 mod 2; at most 4 mod 4
for i = n − 1, n; 1 otherwise. Then by solving the system of equations (3) (a)
follows.

Now we assume that n is even. In a similarly way, we can prove that ord E∗
i = 2

for i = 1, 3, . . . , n − 3, n − 1, n; 1 otherwise. Finding generators for the ring
of invariants is equivalent to solving the following system of equations:

bn−1 + bn ∈ 2Z, b1 + b3 . . . + bn−3 + bn ∈ 2Z,

b1 + b3 . . . + bn−3 + bn−1 ∈ 2Z.

We can observe that the bi can be at most 2 for i = 1, 3, . . . , n − 3, n − 1, n
mod 2. By solving this system we can deduce that (b) follows.

This proposition explicitly gives Z-generators for E+(Dn). For instance, in
the case of D4, the Fi for the semigroup are

F1 = E1 + E2 +
1

2

(
E3 + E4

)
, F2 = E1 + 2E2 + E3 + E4,

F3 =
1

2

(
E1 + 2E2

)
+ E3 +

1

2
E4, F4 =

1

2

(
E1 + 2E2

)
+

1

2
E3 + E4.

In this case we can explicitly determine the group M/M ′ ' Z2 × Z2. Any
element Y =

∑n−1
i=1 ai Ei ∈ E+(Dn) should satisfy M(E)at = −bt for some

bi ≥ 0 where a = (a1, a2 . . . , an) and b = (b1, b2 . . . , bn). This condition is
equivalent to the following the system of equations:

b3 + b4 ∈ 2Z, b1 + b4 ∈ 2Z, b1 + b3 ∈ 2Z,

where b1, b3, b4 can be at most 2 mod 2 and b2 = 1. This gives the generators
for the ring of invariants: u2

1, u2
3, u2

4, u2, u1u3u4.

Example 3.10. Let E be the exceptional divisor of the minimal resolution of
an En-type singularity for n = 6, 7, 8. The intersection matrix M(En) is given by
(Ei ∙Ei ) = −2 for i = 1, . . . , n, (E3 ∙En) = 1, (Ei ∙E j ) = 1 for i = 1, . . . , n−2
if j = i + 1 and 0 otherwise.
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Remark 3.11. By the formula Fi = M(E)−1δi we can obtain:

(i) if n = 6 then det M(E6) = 3 and

F1 =
1

3
(4, 5, 6, 4, 2, 3), F2 =

1

3
(5, 10, 12, 8, 4, 6),

F3 = (2, 4, 6, 4, 2, 3), F4 =
1

3
(4, 8, 12, 10, 5, 6),

F5 =
1

3
(2, 4, 6, 5, 4, 3), F6 = (1, 2, 3, 2, 1, 2);

(ii) if n = 7 then det M(E7) = −2 and

F1 = (2, 3, 4, 3, 2, 1, 2), F2 = (3, 6, 8, 6, 4, 2, 4),

F3 = (4, 8, 12, 9, 6, 3, 6), F4 =
1

2
(6, 12, 18, 15, 10, 5, 9),

F5 = (2, 4, 6, 5, 4, 2, 3), F6 =
1

2
(2, 4, 6, 5, 4, 3, 3),

F7 =
1

2
(4, 8, 12, 9, 6, 3, 7);

(iii) if n = 8 then det M(E8) = 1 and

F1 = (4, 7, 10, 8, 6, 4, 2, 5), F2 = (7, 14, 20, 16, 12, 8, 4, 10),

F3 = (10, 20, 30, 24, 18, 12, 6, 15), F4 = (8, 16, 24, 20, 15, 10, 5, 12),

F5 = (6, 12, 18, 15, 12, 8, 4, 9), F6 = (4, 8, 12, 10, 8, 6, 3, 6),

F7 = (2, 4, 6, 5, 4, 3, 2, 3), F8 = (5, 10, 15, 12, 9, 6, 3, 8);

We give the following proposition for E6, E7, E8 without proof. It can be
proved by using the same technique as in the other examples above.

Proposition 3.12.

(i) In the case of an E6-type singularity, the generators for the ring of invari-
ants are

u3
1, u3

2, u3, u3
4, u3

5, u6, u1u2, u1u5, u2u4, u4u5, u2
2u5, u2u2

5, u2
1u4, u1u2

4,

where

u1 = x
4
3
1 x

5
3
2 x

6
3
3 x

4
3
4 x

2
3
5 x6, u2 = x

5
3
1 x

10
3

2 x
12
3

3 x
8
3
4 x

4
3
5 x

6
3
6 ,

u3 = x2
1 x4

2 x6
3 x4

4 x2
5 x3

6 , u4 = x
4
3
1 x

8
3
2 x

12
3

3 x
10
3

4 x
5
3
5 x

6
3
6 ,

u5 = x
2
3
1 x

4
3
2 x

6
3
3 x

5
3
4 x

4
3
5 x6, u6 = x1x2

2 x3
3 x2

4 x5x2
6 .

Bull Braz Math Soc, Vol. 39, N. 1, 2008



“main” — 2008/3/25 — 12:40 — page 132 — #10

132 SELMA ALTINOK and MERAL TOSUN

(ii) In the case of an E7-type singularity, the generators for the ring of invari-
ants are

u1, u2, u3, u2
4, u5, u2

6, u2
7, u4u6, u4u7, u6u7,

where

u1 = x2
1 x3

2 x4
3 x3

4 x2
5 x6x2

7 , u2 = x3
1 x6

2 x8
3 x6

4 x4
5 x2

6 x4
7 ,

u3 = x4
1 x8

2 x12
3 x9

4 x6
5 x3

6 x6
7 , u4 = x

6
2
1 x

12
2

2 x
18
2

3 x
15
2

4 x
10
2

5 x
5
2
6 x

9
2
7 ,

u5 = x2
1 x4

2 x6
3 x5

4 x4
5 x2

6 x3
7 , u6 = x

2
2
1 x

4
2
2 x

6
2
3 x

5
2
4 x

4
2
5 x

3
2
6 x

3
2
7 ,

u7 = x
4
2
1 x

8
2
2 x

12
2

3 x
9
2
4 x

6
2
5 x

3
2
6 x

7
2
7 .

(iii) In the case of an E8-type singularity, the generators for ring of invari-
ants are

u1, u2, u3, u4, u5, u6, u7, u8,

where

u1 = x4
1 x7

2 x10
3 x8

4 x6
5 x4

6 x2
7 x5

8 , u2 = x7
1 x14

2 x20
3 x16

4 x12
5 x8

6 x4
7 x10

8 ,

u3 = x10
1 x20

2 x30
3 x24

4 x18
5 x12

6 x6
7 x15

8 , u4 = x8
1 x16

2 x24
3 x20

4 x15
5 x10

6 x5
7 x12

8 ,

u5 = x6
1 x12

2 x18
3 x15

4 x12
5 x8

6 x4
7 x9

8 , u6 = x4
1 x8

2 x12
3 x10

4 x8
5 x6

6 x3
7 x6

8 ,

u7 = x2
1 x4

2 x6
3 x5

4 x4
5 x3

6 x2
7 x3

8 , u8 = x5
1 x10

2 x15
3 x12

4 x9
5 x6

6 x3
7 x8

8 .

Example 3.13. Now we consider a determinantal rational surface singularity.
Let E be the exceptional fiber of the minimal resolution of an A2

2-type singularity
such that E4 ∙ Ei = 0 for i = 1, 3, E4 ∙ E2 = 1, E2

4 = −3 and Ei ∙ E j = 1 if
| j − i | = 1, −2 if i = j and 0 otherwise for i = 1, 2, 3.

From the formula Fi = M(E)−1δi for each i we obtain

F1 =
1

8
(7, 6, 3, 2), F2 =

1

8
(6, 12, 6, 4),

F3 =
1

8
(3, 6, 7, 2), F4 =

1

8
(2, 4, 2, 4)

Now we consider the ring C[N ] = C[x1, x2, x3, x4]. Then we obtain C[N ′] =
C[u1, u2, u3, u4], where

u1 = x
7
8
1 x

6
8
2 x

3
8
3 x

2
8
4 , u2 = x

6
8
1 x

12
8

2 x
6
8
3 x

4
8
4 , u3 = x

3
8
1 x

6
8
2 x

7
8
3 x

2
8
4 , u4 = x

2
8
1 x

4
8
2 x

2
8
3 x

4
8
4 .
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In order to understand the group structure of M/M ′, we consider an element
F = F + M ′ ∈ M ′ where F = b1 E∗

1 + b2 E∗
2 + b3 E∗

3 + b4 E∗
4 ∈ M . Hence

F ∈ M ′. Therefore there exist elements ai such that

b1 E∗
1 + b2 E∗

2 + b3 E∗
3 + b4 E4 = a1 F∗

1 + a2 F∗
2 + a3 F∗

3 + a4 F∗
4 .

Since the F∗
i can be written in terms of the E∗

i we can solve the ai in terms of
the bi . In other words,

ai = Fi b
t , (4)

where b = (b1, b2, b3, b4). Since the ai ∈ Z we can deduce that ord(E∗
1) =

ord(E∗
3) = 8, ord(E∗

2) = ord(E∗
4) = 4. Under the M/M ′-action the ring of

invariants ub1
1 ub2

2 ub3
3 ub4

4 come from the solutions (b1, b2, b3, b4) of the system of
equations (4). This system is equivalent to the following system of equations:

6b1 + 7b2 + 3b3 + 2b4 ∈ 8Z, 2b1 + b2 + b3 + 2b4 ∈ 4Z.

Therefore by solving the latter system of equations we can obtain the generators
of the ring of invariants:

u8
1, u4

2, u8
3, u4

4, u1u3
3, u3

1u3, u5
1u7

3, u7
1u5

3, u2u4, u2
3u4, u2

1u4, u3
2u2

3, u2
2u4

3,

u2u6
3, u2

1u3
2, u4

1u2
2, u6

1u2, u4
1u6

3u4, u6
1u4

3u4, u3
1u5

3u2
4, u2

1u4
3u3

4,

u4
1u2

3u3
4, u1u3u3

4, u1u2u3.

Example 3.14. We examine a Tr-type singularity, which is a minimally elliptic
singularity. In the minimal resolution of a Tr-type singularity there are three
nonsingular rational curves Ei meeting transversely at the same point. We are
interested in such a Tr-type singularity for which the self intersections of the
exceptional curves Ei are E2

1 = E2
2 = −2 and E2

3 = −3.
By a similar argument as above we can determine the Fi :

F1 =
1

3
(5, 4, 1), F2 =

1

3
(4, 5, 1), F3 =

1

3
(3, 3, 3).

Now we consider the ring C[N ] = C[x1, x2, x3]. Then we obtain C[N ′] =
C[u1, u2, u3] where

u1 = x
5
3
1 x

4
3
2 x

1
3
3 , u2 = x

4
3
1 x

5
3
2 x

1
3
3 , u3 = x1x2x3.

By examining the structure of M/M ′ we obtain that M/M ′ is a cyclic group of
order 3 generated by E∗

1 and ord(E∗
1) = ord(E∗

2) = 3, ord(E∗
3) = 1. We set

E∗
i = ε. Therefore the ring of invariants under the action

ε ∙ ub1
1 ub2

2 ub3
3 = ε5b1+4b2+3b3ub1

1 ub2
2 ub3

3
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should satisfy the following condition 2b1 + b2 ≡ 0 mod 3. Hence we can
obtain the generators of the ring of invariants as follows:

u3
1, u3

2, u3, u1u2.

Remark 3.15. With the preceding notation, the ring of invariants C[N ′]
M
M ′

is given by the monomials lying on the compact part of the Newton polygon of

u
d(Y )

1
1 u

d(Y )
2

2 ∙ ∙ ∙ ud(Y )
n

n

for each Y ∈ E+(E), where d(Y )
i = −(Y ∙ Ei ).

Let

S :=
{(

d(Y )

1 , d(Y )

2 , . . . , d(Y )
n

)
| d(Y )

i = −(Y ∙ Ei ) for all Y ∈ E+(E)
}
.

Consider the convex hull of the points (d(Y )

1 , d(Y )

2 , . . . , d(Y )
n ) in S. Then the

elements of S which are on the compact part of the boundary of the convex hull
(called the Newton polygon) generate S.
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