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Abstract. We study curves of genus 3 over algebraically closed fields of characteristic
2 with the canonical theta characteristic totally supported in one point. We compute the
moduli dimension of such curves and focus on some of them which have two Weierstrass
points with Weierstrass directions towards the support of the theta characteristic. We
answer questions related to order sequence and Weierstrass weight of Weierstrass points
and the existence of other Weierstrass points with similar properties.
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1 Introduction

In the present article we study curves of genus 3 over fields of characteristic 2.
In the case when the ground field is finite we have a recent wide classification
(cf. [NR]). Here we assume the ground field is algebraically closed and we also
assume the canonical theta characteristic is totally supported in one point.

So if C is such a curve then we can find a canonical divisor on C of the form 4P0

where P0 is precisely the support of the theta characteristic. These curves must
be non-hyperelliptic and hence canonically embedded in P2 as a plane quartic
described by an affine equation in a way that P0 is the origin. Our first concern
here has to do with the moduli dimension of these curves. We have the following
result.
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Theorem 1. The isomorphism classes of irreducible nonsingular projective
curves of genus 3 over an algebraically closed field of characteristic 2, with the
canonical theta characteristic totally supported at one point, form an algebraic
variety of dimension 4.

In characteristic 0, a similar problem was studied by A. M. Vermeulen. He
proved in 1983 (cf. [V]) that the subspace ofM3 consisting of curves with one
hyperflex has dimension 5.

Afterwards we impose an additional condition: that there exists 2 Weierstrass
points, say Q1 and Q2, with Weierstrass direction towards P0 which means that
3Qi + P0 is a canonical divisor on C for i = 1, 2. These curves are the main
subject of this work. We summarize the results we get in the following statement.

Theorem 2. The isomorphism classes of irreducible nonsingular projective
curves of genus 3 over an algebraically closed field of characteristic 2 with the
canonical theta characteristic totally supported at one point with 2 Weierstrass
directions towards it form an algebraic variety of dimension 2. Every such a
curve is canonically isomorphic to a plane curve with affine equation

Ca,b,c : x + y + ax3 y + bx2 y2 + cxy3 = 0

where (a : b : c) ∈ P2 does not lie in abc = 0 nor a + b + c = 0. We also
have:

(i) the origin has order sequence 0, 1, 4 and its Weierstrass weight is 5, 8 or
20 according to a 6= c, a = c 6= b or a = b = c, respectively, and in any
case it is the unique point with this Weierstrass weight; there are other
Weierstrass points with order sequence 0, 1, 4 only in curves Ca,1,1/a with
a 6= 1, and these points have Weierstrass weight 4.

(ii) all 4 infinite points are Weierstrass points with order sequence 0, 1, 3,
Weierstrass weight 1, having Weierstrass directions towards the origin
and being the only ones with this latter property.

(iii) if a = c all Weierstrass points other than the origin are simple Weierstrass
points. If a = b = c the origin is the unique finite Weierstrass point,
otherwise the other 16 Weierstrass points are 4 by 4 collinear.

(iv) there is a Weierstrass point having a Weierstrass direction towards a Weier-
strass point at the infinity if and only if a2c + b3 + b2a = 0. In this case
there are 3 such Weierstrass points and these points are collinear.
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(v) there are two Weierstrass points with Weierstrass directions towards two
different Weierstrass points at the infinity only in case of the 3 curves Ca,1,a

with a3 + a + 1 = 0.

(vi) there is a Weierstrass point with Weierstrass direction towards another
Weierstrass point having itself a Weierstrass direction towards a Weier-
strass point at the infinity only in the case of the 9 curves Cλ−3,1,λ3(1+λ3)

for λ a root of h1(λ) = λ9 + λ8 + λ7 + λ6 + λ4 + λ2 + 1.

2 Preliminaries

Let C be an irreducible non-singular algebraic curve of genus 3 over a field
of characteristic 2. And let us also assume that there exists a canonical theta
characteristic θ0 = | 1

2 div(dx)| on C (with x a separating variable) which can be
represented by a divisor of the form 2P0 for a certain P0 ∈ C . In this situation 4P0

is a positive canonical divisor so that the point P0 has canonical order sequence
0, 1, 4. It follows that the curve is nonhyperelliptic and hence h0(OC(2P0)) = 1
and 2P0 is the only positive divisor in the class θ0.

Since C is nonhyperelliptic let us consider it canonically embedded in P2 as a
smooth plane quartic given by

f (x, y) =
∑

i+ j≤4

ci j x
i y j , ci j ∈ k. (1)

For a general plane curve of genus g over a field of characteristic p we have
that the Cartier operator

C : �1(0) −→ �1(0)

which acts on the space of regular differentials of C can be expressed as

C(hdx) = −
(

d p−1h

dx p−1

)1/p

dx

(cf. [SV2]). The Hasse-Witt invariant σ is defined as the rank of the matrix

(
hi j

)(
h p

i j

)
∙ ∙ ∙

(
h pg−1

i j

)

for
(
hi j

)
the Hasse-Witt matrix, that is,

(
h1/p

i j

)
represents the Cartier operator.

In general a curve C of genus 3 admits a number of 7, 4, 2 or 1 bitangents,
depending on the values σ = 3, 2, 1 or 0 of the Hasse-Witt invariant (cf. [SV2]
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pg. 60). In our case, as the canonical theta characteristic θ0 does have a section,
the Cartier operator necessarily has a non-trivial kernel, and so σ = 2, 1 or 0.

In the case of a non-singular plane curve (such as our canonical plane quartic)
given by f (x, y) = 0 as in (1), the differential ω = dx

fy
is regular and

H 0(OC(div(ω)) =
{
h ∈ k[x, y] | deg(h) ≤ deg( f ) − 3

}
.

We have that ( [SV2] Theorem 1.1) in the case of characteristic 2 yields the
formula for the Cartier operator

C(hω) =
(

∂2

∂x∂y
h f

)1/2

ω,

giving the Hasse-Witt matrix

H =




c11 c01 c10

c31 c21 c30

c13 c03 c12



 .

We will use the theory of Weierstrass points, for which we refer to ( [SV1]
Section 1). In the case of a non-singular plane curve the results we need are
collected below.

To compute the (canonical) Weierstrass points in curves of genus 3 over a field
of characteristic 2 we use the classical Wronskian since from [K] there are no
non-classical curves in this situation. Using the separating variable x we obtain

W 0,1,2
x = det







1 x y

0 1 D(1)
x (y)

0 0 D(2)
x (y)





 = D(2)

x (y),

where D(i)
x (y) stands for the i th Hasse-Schmidt derivative. To compute the

Wronskian we take generic Taylor expansions

T(x) = x + t

T(y) = y + D(1)
x (y)t + D(2)

x (y)t2 + ∙ ∙ ∙

and use that
f (T(x),T(y)) =

∑

i, j

ci jT(x)iT(y) j = 0.
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This yields

D(2)
x (y) =

wK

f 3
y

,

where the numerator wK is given by

wK = fx fy

∑

i, j≡1 mod 2

ci j x
i−1 y j−1

+ f 2
y

∑

i≡2,3 mod 4

ci j x
i−2 y j

+ f 2
x

∑

j≡2,3 mod 4

ci j x
i y j−2,

for

fx =
∑

i≡1 mod 2

ci j x
i−1 y j and fy =

∑

j≡1 mod 2

ci j x
i y j−1.

The ramification divisor (cf. [SV1] pg. 3) is given by

RK = div (D(2)
x (y)) + 3 div (dx) + 3E

= div (wK ) + 3 div
(

dx

fy

)
+ 3E

= div (wK ) + 6E

where E = div (ω) = div
(

dx
fy

)
is the intersection divisor of the curve with

the infinite line. The finite Weierstrass points are thus the zeros (counted with
multiplicities) of the numerator wK of D(2)

x (y). In our case of genus 3 and
characteristic 2 there are altogether 24 Weierstrass points.

If P is a Weierstrass point then its order sequence may be only 0, 1, 3 or
0, 1, 4 and as a consequence of ( [SV1] Theorem 1.5) its Weiertrass weight is 1
in the first case and greater than 2 in the second. The intersection divisor of the
tangent of the curve at P is then 3P + Q (with P = Q if the order sequence
at P is 0, 1, 4). If Q itself is a Weierstrass point then we will say that P has a
Weierstrass direction towards Q and

P
W

−→ Q

will denote this situation.
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3 The moduli problem

We start this section with a result used to rule out some (in principle) possible
degenerate situations. Recall that there are curves in prime characteristics having
just one Weierstrass point.

Proposition 3.1. The Weierstrass points of a smooth plane quartic in charac-
teristic 2 with the canonical theta characteristic supported at one point are non
collinear.

Proof. If all Weierstrass points were collinear then we can suppose that the
line containing them is the infinite line. In this case the numerator wK of the
Wronskian would be a non-zero constant, as there will be no finite Weierstrass
points.

We can further assume that the canonical theta characteristic θ0 contains the
divisor 2P0, for P0 = (1 : 0 : 0), and that the tangent line of the curve at P0

is given by y = 0. This implies that c10 = c20 = c30 = c40 = 0 in (1).
Moreover, as 2P0 is a divisor in the class θ0 it follows that 4P0 = div(y) dx

fy
, the

intersection divisor of the line y = 0 with the curve, is a canonical divisor in
the kernel of the Cartier operator. Given the above expression of the Hasse-Witt
matrix this implies c12 = 0. With these normalizations the equation (1) for
the curve simplifies to

f (x, y) = 1 + c01 y + c11xy + c02 y2 + c21x2 y + c03 y3 + c31x3 y

+ c22x2 y2 + c13xy3 + c04 y4.

The expression wK is then given by

wK =
[(

c2
21c31 + c11c2

31

)
y
]
x5 +

[(
c2

21c22 + c2
31c02

)
y2 +

(
c3

21 + c2
31c01

)
y
]
x4

+
[(

c11c2
13 + c2

03c31
)
y5 +

(
c2

01c31 + c3
11

)
y
]
x +

(
c2

13c02 + c2
03c22

)
y6

+
(
c2

13c01 + c2
03c21

)
y5 +

(
c2

01c22 + c2
11c02

)
y2 +

(
c2

01c21 + c2
11c01

)
y.

If we successively subtract multiples of f (x, y) from the expression wK so
as to cancel in the resulting expressions the initial terms with respect to the
lexicographic order with x > y, we obtain a remainder of the form

r = c5
31x3 + ∙ ∙ ∙ .

This remainder must be a constant, and so c31 = 0, but this condition will result
in a singularity at P0, and so the result is proved. �
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For the remainder we use other normalizations for such a curve. Now we bring
the support P0 of the positive divisor in the canonical theta characteristic θ0 to
the origin (0 : 0 : 1) and force the tangent of the curve at P0 to be the line given
by x = y. This tangent line intersects the curve at P0 with contact multiplicity
4, and thus never meets the curve again.

Theorem 3.2. The isomorphism classes of curves of genus three having the
canonical theta characteristic represented by a positive divisor supported at one
point form an algebraic variety of dimension 4.

Proof. In terms of the coefficients of the equation (1) defining the curve the
normalizations stated above imply c00 = c10 + c01 = c20 + c11 + c02 = c30 +
c21 + c12 + c03 = 0.

As 2P0 is a divisor in the class θ0 it follows that 4P0 = div(x + y) dx
fy

, the
intersection divisor of the line x = y with the curve, is a canonical divisor in
the kernel of the Cartier operator. Given the above expression of the Hasse-Witt
matrix this implies c21 + c30 = c03 + c12 = 0.

From the preceding proposition we can use a projective plane transformation
in order to take one Weierstrass point to the location Q1 = (1 : 0 : 0) and another
to Q2 = (0 : 1 : 0). The projective automorphisms that fix these normalizations
of the origin P0 = (0 : 0 : 1), of the tangent at the origin y = x and of the two
infinite Weiertrass points Q1 = (1 : 0 : 0) and Q2 = (0 : 1 : 0) form a subgroup
G of PGl2(k) consisting of (classes of) matrices

G :=









s00 0 0
0 s00 0
0 0 s22



 ; s00, s22 6= 0






/
k∗. (2)

As a consequence of the choice of points Q1 e Q2 we have c04 = c40 =
0. The tangent lines at these points (after the necessary homogenizations and
dehomogeneizations) are, respectively,

c30z + c31 y = 0 and c03z + c13x = 0.

These are Weierstrass points, and so these equations divide the quadratic parts
appearing in the local expression of f . These divisibility conditions yield

c2
31c20 + c2

30c22 + c30c31c21 = 0 and c2
13c02 + c2

03c22 + c03c13c12 = 0,
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and these may be rewritten as

c2
31c20 + c2

30c22 + c2
30c31 = 0 and (3)

c2
13c02 + c2

03c22 + c2
03c13 = 0. (4)

The result is now just parameter counting, once we observe that the two con-
ditions above are algebraically independent. The curve is given by the equation
f = f1 + f2 + f3 + f4 = 0, where fi is the homogeneous part of degree i so
that, with the chosen normalizations,

f1(x, y) = x + y

f2(x, y) = c20x2 + (c20 + c02)xy + c02 y2

f3(x, y) = c30x3 + c30x2 y + c03xy2 + c03 y3

f4(x, y) = c31x3 y + c22x2 y2 + c13xy3,

is isomorphic, through a projective plane transformation given by an element of
the group G described above, to the curve given by

f1(x, y) + α−1 f2(x, y) + α−2 f3(x, y) + α−3 f4(x, y) = 0,

for α = s00
s22

. In these equations the conditions (3) and (4) have not yet been taken
into consideration. �

4 Curves with two Weierstrass directions towards the support of the
canonical theta characteristic

We can ask the question of when the curve has two Weierstrass points Q1 and
Q2 with Weierstrass directions towards P0:

Q1
W

−→ P0 and Q2
W

−→ P0.

We can certainly use a projective plane transformation to bring these Weierstrass
points to the chosen infinite locations (1 : 0 : 0) and (0 : 1 : 0). This implies
c30 = c03 = 0, and from (3) and (4) we deduce

c2
31c20 = 0 and c2

13c02 = 0.

On the other hand, if c31 = 0 or c13 = 0 then the infinite points Q1 or Q2 are
singular, respectively, and so both c31 and c13 are non-zero, so that if c30 = c03 =
0 then also c20 = c02 = 0.

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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If c30 = c03 = 0 and c20 = c02 = 0 then the equation of the curve simplifies to

Ca,b,c : x + y + ax3 y + bx2 y2 + cxy3 = 0. (5)

This family of curves were used in [RV] for displayed examples of minimal
curves and eventually minimal curves.

Remark 4.1. We left the details to the reader to check that a curve Ca,b,c as
above is irreducible if and only if a + b + c 6= 0.

The proof of the following result is straightforward:

Proposition 4.2. The curve Ca,b,c is singular if and only if abc = 0.

The intersection divisor with the infinite line is given by

Q1 + Q2 + Qδ + Qδ+1,

where

Qδ =
(

b

a
δ : 1 : 0

)
and Qδ+1 :=

(
b

a
δ +

b

a
: 1 : 0

)
,

for δ is any root of the Artin-Schreier equation

t2 + t +
ca

b2
= (t + δ)(t + δ + 1) = 0.

Under the hypothesis a, b, c 6= 0 these points are all distinct. Moreover, the
next result shows that these 4 infinite points are Weierstrass points with order
sequence 0, 1, 3 and have Weierstrass directions towards the origin and there is
no finite Weierstrass point with Weierstrass direction towards the origin.

Theorem 4.3. In the family of curves Ca,b,c the Hasse-Witt invariant σ is 0 or
2 according to a = c or not. The rank of the Cartier operator is always 2.

In the curve Ca,b,c the origin is a Weierstrass point having order sequence
0, 1, 4 and its Weierstrass weight is 5, 8 or 20 according to a 6= c, a = c 6=
b or a = b = c, respectively, and in any case it is the unique point with
this Weierstrass weight. All 4 infinite points are Weierstrass points with or-
der sequence 0, 1, 3, Weierstrass weight 1, having Weierstrass directions to-
wards the origin and being the only ones with this latter property. There are
other Weierstrass points with order sequence 0, 1, 4 only in curves Ca,1,1/a with
a 6= 1, and these points have Weierstrass weight 4.
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Proof. The Hasse-Witt matrix of the curve Ca,b,c is given by

H =




0 1 1
a 0 0
c 0 0





and thus the Hasse-Witt invariant σ , which is the rank of the matrix



0 1 1
a 0 0
c 0 0








0 1 1
a2 0 0
c2 0 0








0 1 1
a4 0 0
c4 0 0



 =




0 a2 + c2 a2 + c2

a(a4 + c4) 0 0
c(a4 + c4) 0 0





is given by

σ =

{
2 if a 6= c

0 if a = c

If a = c then the origin P is the unique point having 0, 1, 4 as order-sequence.
In fact, if Q is another point with this order-sequence then we have 4P ∼ 4Q
where ∼ means linearly equivalent to. Since there are no 2-torsion points (the
Hasse invariant is zero) we get 2P ∼ 2Q, but the curve is not hyperelliptic.

The numerator of the Wronskian for the curves Ca,b,c is given by

wK = fx fy
(
ax2 + cy2

)
+ f 2

y

(
axy + by2

)
+ f 2

x

(
bx2 + cxy

)

= bx2 + by2 + (a + c)xy +
(
ax2 + cy2

)
+

(
ax2 + cy2

)2
(x + y).

The following hold:

div(x) = 2Q2 + P0 −
[
Q1 + Qδ + Qδ+1

]

div(y) = 2Q1 + P0 −
[
Q2 + Qδ + Qδ+1

]
.

Because of ( [SV1] Theorem 1.5) the origin is a Weierstrass point with weight
greater than 2 having x as a local parameter, and the following expansions hold

y = x + (a + b + c)x4 + (a + c)(a + b + c)x7+

+ ((a + c)2(a + b + c) + (b + c)(a + b + c)2)x10 + ∙ ∙ ∙

wK = (a + c)(a + b + c)x5 + (a + b + c)2(b + c)x8 + ∙ ∙ ∙

If a = c then the order of wK at the origin is greater than 5, and the expansions
are

y = x + bx4 + (b + a)b2x10 + ab3x13 + ab4(a + b)x19 + ∙ ∙ ∙

wK = b2(b + a)x8 + b4(b3 + a3 + b2a)x20 + ∙ ∙ ∙
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If also b + c = 0 (so that a = b = c) then the order of wK at the origin is 20,
and the origin is the unique finite Weierstrass point. Summarizing we have:

vP0(wK ) = vP0(RK ) =






5 if a 6= c

8 if a = c 6= b

20 if a = b = c

At the points Q1 and Q2 the following holds:

vQ2(wK ) = vQ1(wK ) = −5 and vQ2(RK ) = vQ1(RK ) = 1,

and so these points are Weiertrass points with orders 0, 1, 3 and weight 1.
The other infinite points Qδ and Qδ+1 are Weierstrass points with orders 0, 1, 3

and weight 1, since taking the local parameter t = 1/y the local expansion of
x begins as

x =
b

a
δt−1 + ∙ ∙ ∙ ,

and thus

ax2 + cy2 =
(

b2

a
δ2 + c

)
t−2 + ∙ ∙ ∙ ; as δ2 + δ =

ca

b2

this first coefficient

b2

a
δ2 + c =

b2

a

(
δ2 +

ca

b2

)
=

b2

a
δ

is nonzero. At Qδ, for instance, the tangent is given by x +
b

a
δy = 0, and the

intersection divisor of this tangent with the curve is given by 3Qδ + P0, so that
Qδ and Qδ+1 have Weierstrass directions towards the origin.

A line in the pencil through the origin has the equation y = αx , which taken
into the equation for Ca,b,c gives

x
(
1 + α + x3

(
aα + bα2 + cα3

))
= 0.

If α 6= 1 this equation does not have a multiple root, showing that no finite
point of the curve other than the origin has its tangent passing through the origin.
As a consequence, the infinite points are the only ones in the curve with Weier-
strass direction towards the origin.

Bull Braz Math Soc, Vol. 39, N. 1, 2008
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Second coordinates of other Weierstrass points are given by the Sylvester
resultant R( f, wK ) between f and wK :

R( f, wK ) = y20(a2(c4ab4 + c4b5 + c5b4)) + y17(a2(ac4b3 + b5c3 + b4c4 + a2c3b3))

+ y14(a2(b7 + c3a4 + a2c5 + a2b4c + a3c2b2 + a2c2b3 + b6a + b4c3))

+ y11(a2(b5c + a3c2b + b4a2 + b5a + c2a4 + a2c4 + b4c2 + ba2c3))

+ y8(a2(b3a2 + a4c + b2a3 + a2c3)) + y5(a2(a4 + a2c2 + ba3 + ba2c)).

The roots of R( f, wK ) are the second coordinates of finite Weierstrass points, but
the counting of multiplicities needs some care: R( f, wK ) has a multiple root in
a higher Weierstrass point (that is, one having a higher weight in the ramification
divisor or, equivalently (cf. [SV1] Theorem 1.5), having orders 0, 1, 4), but a
multiple root of R( f, wK ) would also happen if 2 distinct Weierstrass points had
the same second coordinate. Note that the origin is counted with multiplicity 5
if a 6= c, 8 if a = c 6= b and 20 if a = b = c.

If the curve has Weierstrass points with orders 0, 1, 4 other than the origin then
the polynomial R( f, wK ) has other multiple roots. This situation is given by the
discriminant of R( f, wK )/(y5). To simplify the computation of this discriminant
we set b = 1, which is allowed because of the action of G; this discriminant is
then given by

disc
(

R( f, wK )

y5

)
= (a + c)2(a + c + 1)2(1 + ac)12.

The factor a + c is expected: the origin in this case has multiplicity greater
than 5. The second factor is a + c + 1 = a + b + c, which is never zero. If the

third factor is zero then a =
1

c
, and then

a3 R( f, wK )

y5
=

(
a2 + a + 1

)(
y3 + a(a + 1)

)(
y12 + a4(a + 1)

)
.

If a2 + a + 1 = 0 then a ∈ F4 \ F2, but then c =
1

a
= a + 1 = a2 and hence

a2 + a + 1 = a + b + c = 0, which is against our moduli hypothesis. If a 6∈ F4

then the three distinct roots of

y12 = a4(a + 1)

are second coordinates of Weierstrass points with order sequence 0, 1, 4, all of
then having weight four, and the three distinct roots of

y3 = a(a + 1)

are second coordinates of Weierstrass points with order sequence 0, 1, 3, all of
then having weight 1, as follows from direct computations. �
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Theorem 4.4. The isomorphism classes of curves of genus 3 having the canon-
ical theta characteristic represented by a positive divisor supported at one point
having 2 Weierstrass directions towards it form an algebraic variety of dimen-
sion two.

Proof. There are exactly 4 Weierstrass points having Weierstrass directions
towards the origin, and we may choose 2 of them to the normalized positions
(1 : 0 : 0) and (0 : 1 : 0) in 12 ways. Having chosen these 2 infinite Weiertrass
points, the group that fixes these normalizations is the group G described in (2)
above. This group fixes the point P0 = (0 : 0 : 1) and each point of the infinite
line Z = 0, acting by homothety on finite points: (a : b : 1) 7→ (αa : αb : 1),

where α :=
s00

s22
. Thus the curve Ca,b,c is isomorphic to the curve Cλa,λb,λc for

λ 6= 0. �

Theorem 4.5. In the curve Ca,b,a all Weierstrass points other than the origin
are simple Weierstrass points. If b = a the origin is the unique finite Weierstrass
point, otherwise the other 16 Weierstrass points are 4 by 4 collinear. These 4
lines containing them are lines in the pencil of lines through (1 : 1 : 0), and so is
the canonical bitangent.

Proof. If a = c then there are no other bitangents, and thus all Weierstrass
points except the origin have orders 0, 1, 3 and weight one. Besides the infinite
points, these Weierstrass points are given by the zeros of

wK (x, y) = a2(x + y)5 + (a + b)(x + y)2

= (x + y)2
[
a2(x + y)3 + a + b

]

As x 6= y away from the origin, these Weierstrass points occur in pairs (x : y : 1)

and (y : x : 1), the above equation being symmetric in x and y, as expected: if
a = c then x ↔ y is an automorphism of the curve. The above equation gives a
relation among the coordinates of Weierstrass points

x + y =
(

a + b

a2

)1/3

. (6)

If a = b = c only the origin is a finite Weierstrass point, as we have seen. If

a = c 6= b then
a + b

a2
never vanishes and has 3 distinct cubic roots, and thus

the other 12 Weierstrass points are on the 3 lines given by (6), occurring in 3 sets
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of 4 collinear points. These 3 lines are concurrent at the infinite point (1 : 1 : 0),
which is also a point in the canonical bitangent x = y. �

If a 6= c there are 3 non-canonical bitangents, corresponding to α0 + α1x +
α2 y = 0 where






α0

α1

α2




 is a solution of H






α0

α1

α2




 =






0 1 1

a 0 0

c 0 0











α0

α1

α2




 =






α2
0

α2
1

α2
2






(cf. [SV2] Proposition 3.3). Therefore, for each one of the 3 distinct roots of
α3 = a + c 6= 0, there is one non-canonical bitangent given by

α1/2 + a1/2x + c1/2 y = 0.

These non-canonical bitangents are concurrent at the infinite point (c1/2: a1/2: 0).

5 Other Weierstrass directions

Having seen that the infinite points have Weierstrass directions towards the origin,
and also that these are the only Weierstrass points with this property, one can ask
when a finite Weierstrass point has a Weierstrass direction towards an infinite
Weierstrass point Qi . This is the content of the following result.

Proposition 5.1. The curve Ca,b,c has a Weierstrass point P having a Weier-
strass direction towards a Weierstrass point Q1, as in the situation

P
W

−→ Q1
W

−→ P0 (7)

if and only if a2c+b3 +b2a = 0. In this case there are 3 such Weierstrass points
P , and these points are collinear.

Proof. Such curves Ca,b,c have a finite Weierstrass point with a “horizontal”
tangent y + μ = 0 passing through Q1. Substitution into the equation (5) of the
curve Ca,b,c yields the polynomial

aμx3 + bμ2x2 + (cμ3 + 1)x + μ =
∑

i

ci x
i .

The line y +μ = 0 is the tangent of a Weierstrass point with Weiertrass direction
towards Q1 if and only if this polynomial is a cube c3(x + λ)3, and this will

Bull Braz Math Soc, Vol. 39, N. 1, 2008



“main” — 2008/3/25 — 12:42 — page 151 — #15

ON CERTAIN CURVES OF GENUS THREE IN CHARACTERISTIC TWO 151

happen if and only if λ =
c2

c3
=

c1

c2
=

c0

c1
, which is equivalent to

c2
2 + c1c3 = μ

[
(b2 + ac)μ3 + a

]
= 0 and

c2
1 + c0c2 = c2μ6 + bμ3 + 1 = 0.

This will happen only if ca2 + b3 + b2a = 0. In this case, normalizing to b = 1,
there are 3 such Weierstrass points given by Pλ := (λ : aλ : 1), for λ = 1

a1/3

a cubic root of 1
a . The tangent y = aλ meets the curve again at the infinite

point Q1 = (1 : 0 : 0) so that Pλ has a Weierstrass direction towards Q1 which
has a Weierstrass direction towards P0:

Pλ
W

−→ Q1
W

−→ P0.

These points are collinear, the line y = ax passing through all of them. �

Corollary 5.2. The isomorphism classes of curves of genus 3 having the
canonical theta characteristic represented by a positive divisor supported at
one point P0 having 2 Weierstrass points Qi with Weierstrass directions towards
P0, and having a Weierstrass point P with a Weierstrass direction towards one
of the points Qi as in

P
W

−→ Qi
W

−→ P0 (8)

form an algebraic variety of dimension 1.

Proof. The infinite Weierstrass point Qi , towards which a finite Weierstrass
point has a Weierstrass direction, may be taken, up to isomorphism, to be Q1 =
(1 : 0 : 0), and then one can use the above proposition. The equation ca2 + b3 +
b2a = 0 clearly defines a subvariety of dimension 1. �

Corollary 5.3. The three curves Ca,1,a with a3 +a +1 = 0 are the only curves
of genus 3 having the canonical theta characteristic represented by a positive
divisor supported at one point P0 having 2 Weierstrass points Qi and Q j with
Weierstrass directions towards P0 and having two Weierstrass points Pi and Pj

with Weierstrass directions towards different points Qi and Q j as in

Pi
W

−→ Qi
W

−→ P0 and Pj
W

−→ Q j
W

−→ P0.
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Proof. Again without loss of generality one may assume Qi = Q1 = (1 : 0 : 0)

and Q j = Q2 = (0 : 1 : 0). The analysis for the first infinite point Q1 having
Weierstrass directions towards it carries over to Q2, mutatis mutandis, to yield
the condition ac2 + b3 + b2c = 0. Together with the normalization b = 1,
the two resulting equations yield

(a + c)(ac + 1) = 0,

but ac = 1 implies ca2 + b3 + b2a = 1 6= 0. The only possibility of having a
common solution of the two equations is a = c, and this yields a3 +a +1= 0.�

One can ask if a longer chain than (8) is possible. This is answered in the
following result.

Proposition 5.4. There are exactly 9 curves Ca,b,c having a configuration like

P
W

−→ Pλ
W

−→ Q1
W

−→ P0.

These curves are Cλ−3,1,λ3(1+λ3) for λ a root of

h1(λ) = λ9 + λ8 + λ7 + λ6 + λ4 + λ2 + 1.

Proof. In the proof of Proposition 5 it was seen that the Weierstrass points
having Weierstrass directions towards Q1 are given by Pλ = (λ : aλ : 1). The
pencil of lines through Pλ consists of the line y = ax and the lines with equations
y = (a + γ

λ
)x + γ . Substitution of this last equation in the equation (5) of the

curve yields the polynomial

∑

i

ci x
i =

[
λ6(1 + λ3)γ 3 + λ7γ 2 + λ5γ + λ3 + 1

]
x3 +

[
λ + λ4 + λ8γ 2

]
x2

+
[
λ8(1 + λ3)γ 3 + λ2(1 + λ3)

]
x + λ5γ.

The point Pλ has a Weierstrass direction towards it if and only if this polynomial

is a cube; the conditions
c2

c3
=

c1

c2
=

c0

c1
now yield

c2
2 + c1c3 = λ7(1 + λ6)γ 6 + λ8(1 + λ3)γ 5 + λ6γ 4

+ λ2(1 + λ3)γ 2 + (1 + λ3)γ = 0

c2
1 + c0c2 = λ12(1 + λ6)γ 6 + λ9γ 3 + λ2(1 + λ3)γ + (1 + λ6) = 0.
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Considered as polynomials in γ these two conditions have a common root if
and only if their Sylvester resultant

R1 = (1 + λ)7(λ2 + λ + 1)7(λ6 + λ3 + 1)(λ9 + λ8 + λ7 + λ6 + λ4 + λ2 + 1)

(λ18 + λ17 + λ15 + λ11 + λ10 + λ9 + λ8 + λ7 + λ6 + λ2 + 1)

vanishes. The value of λ determines the curve Ca,1, 1+a
a2

using a = λ−3, while

γ determines the tangent at Pλ in the above curve. It turns out that λ3 6= 1,
for otherwise c = 0, which is a condition outside our moduli hypothesis. This
observation leaves the first two factors of R1 out of consideration.

With the same procedure x can be eliminated using the form of the tangent
x = βy + λ + β

λ2 , which taken into the equation (5) yields an equation in y that
will be a cube exactly when two conditions on β and λ are met. The Sylvester
resultant of this two conditions is

R2 = (1 + λ)6(λ2 + λ + 1)6(λ9 + λ8 + λ7 + λ6 + λ4 + λ2 + 1)

(λ18 + λ17 + λ15 + λ11 + λ10 + λ9 + λ8 + λ7 + λ6 + λ2 + 1)

As a consequence a Weierstrass direction towards Pλ occurs only in roots of

h1(λ) = λ9 + λ8 + λ7 + λ6 + λ4 + λ2 + 1 or

h2(λ) = λ18 + λ17 + λ15 + λ11 + λ10 + λ9 + λ8 + λ7 + λ6 + λ2 + 1.

Both h1(λ) and h2(λ) are irreducible over F2, but while h1(λ) is irreducible also
over F4 = F2[α], with α2 + α + 1 = 0. The following factorization of h2(λ)

holds
h2(λ) = h1(αλ)h1(α

2λ).

Thus if h1(λ) = 0 then all three points Pλ = (λ : aλ : 1), Pαλ = (αλ : aαλ : 1)

and Pα2λ = (α2λ : aα2λ : 1) have in Cλ−3,1,λ3(1+λ3) Weierstrass directions to-
wards them.

While each root of h1(λ) = 0 accounts for 3 different Weierstrass points
Pλ, Pαλ and Pα2λ, each having a Weierstrass direction towards it, different such
triples occur at different curves, as no 2 roots of h1(λ) have the same cube: this
is seen because if λ1 and λ2 were distinct roots of h1(λ) with λ3

1 = λ3
2 then

λ1 = αλ2, and λ = λ2 would be a common root of h1(λ) and of h1(αλ), and
the following would hold:

0 = h1(λ) + h1(αλ)

= αλ8 + α2λ7 + α2λ4 + αλ2

= αλ2(λ + 1)(λ + α)(λ + α2)(λ3 + αλ2 + 1).
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As λ 6= 0 and λ3 6= 1 the first four factors in this equation are not genuine values
of λ. For the last one has just to observe that

h1(λ) = (λ3 + αλ2 + 1)(α2λ2 + α2λ5 + λ6) + 1 + αλ2,

to see that λ cannot simultaneously be a root of h1(λ) and of λ3 +αλ2 +1 without
being one of λ3 + 1. �
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