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Actions of discrete groups on spheres
and real projective spaces

Gabriela Hinojosa∗ and Alberto Verjovsky∗∗

Abstract. In this paper, we first define discrete, smooth actions on S2n+1, whose
limit sets are Cantor sets wildly embedded in S2n+1 (Antoine’s necklaces). Secondly,
we define Schottky groups on real projective spaces of odd dimensions, P2n+1

R . We lift
these actions to (locally) projective actions on the sphere S2n+1 and consider the quotient
space of the domain of discontinuity by the group to obtain new examples of manifolds
with real projective structures.
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1 Introduction

M.L. Antoine is one of the great names in the classical study of wild embeddings.
A basic example of wild set is Antoine’s necklace, which may be described as
the intersection X = ∩Xi of compact sets . . . ⊂ Xk ⊂ . . . ⊂ X2 ⊂ X1 ⊂ X0.
The set X0 consists of a single unknotted solid torus in S3; the set X1 is the
union of four unknotted solid tori linked in Int(X0); each component A of X1

contains four solid tori of X2 linked in A just as the four components of X1

are linked in X0; etc. (like the solid tori in Fig. 1). The Cantor set X is
homeomorphic to the standard middle-thirds Cantor set X ′ ⊂ [0, 1] ⊂ S1 ⊂ S3.
But no homeomorphism h : S3 → S3 can take the wild Cantor set X into the
tame Cantor set X ′. This is easily seen from the fact that the simple closed curve
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J ⊂ ∂X0 represents a nontrivial element of 51(S3 − X) while 51(S3 − X ′) is
trivial. We say that the Cantor set X is wild (see Definition 2.4 below).

An example of a topological action on S3, whose limit set is a wild Can-
tor set has been constructed by Michael Freedman and Richard Skora ([2]).
This action is not quasiconformally conjugate to a uniformly quasiconformal
action since they have shown that the set of distortions of the quasiconformal
homeomorphisms of the action are unbounded (see [16] for the definitions of
quasiconformal mapping and quasiconformal distortion).

In this paper, we construct a real analytic action on S3 in the spirit of Schottky
groups, whose limit set is a wild Cantor set. This construction can be generalized
to all spheres of odd dimensions.

In the classical case, the Schottky groups are obtained by considering pairwise
disjoint (n − 1)-spheres S1, . . . , Sr in Sn (see [9]). Each sphere Si plays the role
of a mirror, i.e. it divides Sn in two diffeomorphic components, and there exists
an involution Ti of Sn interchanging these two components, namely the inversion
on Si .

In our case, roughly speaking, we construct a chain consisting of 4 double
links, each link being a closed solid torus, and we replace each link by two
disjoint “parallel” links (see Fig. 2). The boundaries of these solid tori are our
“mirrors”. Our “involutions” consist of conjugates by Möbius transformations
of maps 9λ : R2 ×R2 → R2 ×R2, λ ∈ R+, defined by 9λ(a, b) = (λb, λ−1a),
for a suitable λ (see Section 2).

In Section 3 we generalize the above construction to obtain wild Cantor sets
on S2n+1 as limit sets of discrete groups.

Schottky groups provide us with one of the most interesting families of con-
formal Kleinian groups. In section 4, we study the analogous construction for
groups acting by projective transformations on real projective spaces. These
actions can be lifted to the sphere S2n+1. Some of the groups 0̃ in our examples
act freely, properly discontinuously and co-compactly on an invariant open set
�0̃ ⊂ P2n+1

R . Moreover, since the action is by restriction of globally defined
projective transformations, the compact manifolds M0̃ := �0̃/0̃ have a pro-
jective structure. Manifolds with a projective structure are very interesting and
have been studied since the time of Felix Klein’s Earlangen program. Beautiful
examples and more historical references can be obtained in [3], [4], [5] and [15].

2 The Antoine’s Necklace as the limit set of a discrete group

Our purpose is to construct an action on S3 in the spirit of Schottky groups. We
will start constructing our “mirrors” and “involutions” on R4, to obtain a discrete
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group acting on S3, whose “limit set” is a Cantor set wildly embedded in S3.
Let 9̃λ : R2 ×R2 → R2 ×R2, λ ∈ R+ be defined by 9̃λ(a, b) = (λb, λ−1a).

Then, 9̃λ leaves invariant the set Êλ = {(a, b) : ||a||2 = λ2||b||2}. Clearly, Êλ
separates R4 − {(0, 0)} in two diffeomorphic connected components U and V
and these two components are interchanged by 9̃λ.

The intersection

Tλ = Êλ ∩ S3 =
{
(a, b) : ||a|| =

|λ|
√
λ2 + 1

and ||b|| =
1

√
λ2 + 1

}

is a torus. Let T̄λ = {(a, b) ∈ S3 : ||a||2 ≤ λ2||b||2}. This is a closed solid
torus such that ∂ T̄λ = Tλ. The set T̄λ is a closed tubular neighbourhood in
S3 of the circle T̄Sλ = {(0, b) ⊂ S3 : ||b|| = 1} which we call the soul of T̄λ.
We notice that we can choose λ such that the tubular neighbourhood can be made
very thin (i.e. consists of points very close to the soul). For this reason we call
λ the thickness of T̄λ.

Let consider the diffeomorphism of S3 given by:

9λ(a, b) =
(

λb
√
λ2b2 + λ−2a2

,
λ−1a

√
λ2b2 + λ−2a2

)
.

Let Möb(S3) denote the group of Möbius transformations of the 3-sphere
S3 = R3 ∪{∞}. Notice that applying Möbius transformations on S3, each circle
(the intersection of a plane in R4 with S3) on S3 can be the image of the soul of
a torus T̄λ. Thus, there exist f1, f2, f3, f4 ∈ Möb(S3) and λ1, λ2, λ3, λ4 ∈ R+

such that f1(T̄Sλ1
), f2(T̄Sλ2

), f3(T̄Sλ3
), f4(T̄Sλ4

) form a chain C̃1 consisting of 4
circles linked in S3 (see Fig. 1), and the corresponding linked solid tori fi (T̄λi ),
i = 1, . . . , 4 are pairwise disjoint.

Figure 1: The C̃1 consisting of 4 solid tori.

This selection of λ1, λ2, λ3, λ4 ∈ R+, can be done in such a way that we
can add a “parallel” circle to each fi (T̄Sλi

) (see Fig. 2), i.e. there exist f ′
1, f ′

2,
f ′
3, f ′

4 ∈ Möb(S3) such that f1(T̄Sλ1
), f2(T̄Sλ2

), f3(T̄Sλ3
), f4(T̄Sλ4

), f ′
1(T̄Sλ1

),
f ′
2(T̄Sλ2

), f ′
3(T̄Sλ3

), f ′
4(T̄Sλ4

) form a chain C1 consisting of 8 components, and the
corresponding solid tori fi (T̄λi ), f ′

i (T̄λi ), i = 1, . . . , 4, are pairwise disjoint.
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parallel solid torus
Added 

Figure 2: A parallel torus to each original one.

Consider each map Hi = fi ◦9λi ◦ f −1
i (H ′

i = f ′
i ◦9λi ◦ f ′−1

i ), i = 1, . . . , 4.
By construction, this map sends a copy of the exterior of fi (T̄λi ) ( f ′

i (T̄λi )) into
it. In particular, a copy of the other 7 solid tori is sent into it.

After doing this for each i , we obtain a new chain C2 consisting of 8 × 7 = 54
solid tori. If we apply again the maps Hi , H ′

i i = 1, . . . , 4, then we obtain a
new chain C3 consisting of 8 × 72 solid tori. So, in the kth-stage, we obtain the
chain Ck consisting of 8 × 7k−1. Continuing this process a countable number
of times we obtain a sequence . . . ⊂ Ck ⊂ . . . ⊂ C2 ⊂ C1 of compact sets.
Moreover, we may perform this procedure in such a way that the diameters of
the components of Ci tend to zero as i → ∞.

We notice that if we compose a large odd number of Hi ’s or H ′
i ’s we obtain

a transformation which is conjugate to a reflection on a torus which becomes of
very small diameter.

Let 0 be the group generated by Hi ’s and H ′
i ’s, i = 1, . . . , 4.

Let 0̃ be the subgroup of index two of 0 consisting of even words in Hi ’s and
H ′

i ’s, i = 1, . . . , 4.
The “ping-pong” Lemma of F. Klein ([6], Lemma II.24) implies that 0̃ is a

free group.

Definition 2.1. We define the limit set of 0, 3 := 3(0) to be the set of
accumulation points of the 0-orbit of the union f1(T̄λ1) ∪ . . . ∪ f4(T̄λ4)

∪ f ′
1(T̄λ1) ∪ . . . ∪ f ′

4(T̄λ4). Its complement � = �(0) := S3 − 3 is the do-
main of discontinuity.

Remark 2.2. We note that there is no general definition of a limit set of a
discrete group acting on a metric space. For a possible definition, see Kulkarni’s
definition in [8]. Our definition above is suitable for Schottky groups. We do
not know if our definition of limit set coincides with Kulkarni’s definition.
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By construction, the limit set 3(0) is given by

3(0) =
∞⋂

i=1

Ci

Lemma 2.3. The set 3(0) is a Cantor set.

Proof. Since each Ck is compact and Ck contains Ck+1 for each k, these sets
satisfy the finite intersection hypothesis and therefore their intersection is non-
empty. By construction, it follows that the components of the necklace are single
points. In fact, just in the case for standard Schottky groups (see [9]), we can
show it is a totally disconnected, compact, perfect metric space. Hence 3(0) is
homeomorphic to the Cantor set. �

Definition 2.4. A Cantor set K ⊂ Sn is tame if the homotopy groups 5i (Sn −
K ) = 0, for 0 ≤ i ≤ n − 2 and the group 5n−1(Sn − K ) is infinitely generated.
Otherwise, K is wild. If K is wild then there is no homeomorphism h : Sn → Sn

such that h(K ) lies in a smoothly embedded arc.

Lemma 2.5. The set 3(0) is wildly embedded in S3.

Proof. We will briefly describe the fundamental group of S3 −3(0). For more
details see [10]. Let V be a solid torus such that C1 ⊂ V . Then the inclusion
homomorphism 51(∂V ) → 51(V − C1) is injective. In particular, for each
component C1, j ( j = 1, . . . , 4) of C1 the inclusion ∂C1, j ⊂ C1, j − Int(C2)

induces injective fundamental group homomorphisms. Moreover, we also have
that the inclusion homomorphism 51(∂C1, j ) → 51(V − Int(C1)) is injective.

Consider the diagram of inclusion homomorphisms:

51(∂C1,1)
i1∗−−−→ 51(C1,1 − Int(C2))

i2∗



y j2∗



y

51(V − Int(C1))
j1∗−−−→ 51((V − Int(C1)) ∪ (C1,1 − Int(C2))

Van Kampen’s Theorem implies that if the maps i1∗ and i2∗ are injective, then
j1∗ and j2∗ are also injective. This implies that when we add one component of
C1 − Int(C2) to V − C1 the fundamental group is bigger, in other words, the
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fundamental group of V − C1 is a proper subgroup of the fundamental subgroup
of the union of V − C1 with the component (see the argument in pag. [10]).

This argument may be applied again and again to show that all these inclusion
homomorphisms are injective:

51(V − C1) → 51(V − C2) → 51(V − C3) → . . .

It is clear that these are inclusion of subgroups, i.e. the groups become larger
and larger. Similarly with S3 replacing V .

Thus, the fundamental group 51(S3 − 3(0)) is the direct limit of {51(S3 −
Ck), k = 1, 2, . . . ; fk, k = 1, 2, . . .)}, where fk : 51(S3 − Ck) → 51(S3 −
Ck+1) is the inclusion map (see Lemma 2.4.1 in [11]).

We have that, 51(S3 −3(0)) is infinite generated. This implies that 3(0) is
a wild Cantor set in S3. �

Let 0̃ be the subgroup of index two of 0, defined previously, then 0̃ acts freely
and properly discontinuously.

The previous discussion can be summarized in the following theorem.

Theorem 2.6. There exists a real analytic action of the free group F8,8 : F8 ×
S3 → S3, whose limit set 3(8) is a wild Cantor set. The action is proper, free,
discontinuous and co-compact on S3 −3(8).

Remark 2.7. Michael Freedman and Richard Skora [2] have constructed
strange discrete topological actions analogous to our construction, however our
construction is by real analytic diffeomorphisms of the sphere.

A fundamental domain for 0 is D = S3 − ∪4
i=1 Int( fi (T̄λi ) ∪ f ′

i (T̄λi )). The
quotient space �/0 is homeomorphic to D.

A fundamental domain for 0̃ is D ∪ H1(D). Since 0̃ acts freely, properly
and discontinuously on its domain of discontinuity and its fundamental domain
is compact, the quotient space �(0̃)/0̃ is a smooth compact manifold without
boundary M0̃. Since the action is by orientation-preserving diffeomorphisms,
M0̃ is orientable.

3 Discrete actions on higher dimensional spheres

The above construction can be generalized to odd dimensional spheres S2n+1, to
obtain a discrete, real analytic action on S2n+1, whose “limit set” is a Cantor set
wildly embedded in S2n+1.

Bull Braz Math Soc, Vol. 39, N. 2, 2008
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We define 9λ : Rn+1 × Rn+1 → Rn+1 × Rn+1, λ ∈ R+, as above, i.e.
9λ(a, b) = (λb, λ−1a). So, 9λ leaves invariant the set Êλ = {(a, b) : ||a||2 =
λ2||b||2}. Again, Êλ separatesR2n+2−{(0, 0)} in two diffeomorphic components
U and V and these two components are interchanged by 9λ.

The intersection Tλ = Êλ ∩ S2n+1 is homeomorphic to Sn × Sn . Let T̄λ ∼=
Sn ×Dn+1 ⊂ S2n+1 be a closed tubular neighborhood in S2n+1 of T̄Sλ = {(0, b) ⊂
S2n+1 : ||b|| = 1} such that ∂ T̄λ = Tλ. The n-sphere T̄Sλ is called the soul of
T̄λ. We notice that we can choose λ such that the tubular neighbourhood can be
made very thin (i.e. consists of points very close to the soul). For this reason, as
before, we call λ the thickness of T̄λ.

Let PC be the group of homeomorphisms of Sn generated by projective trans-
formations (action of GL(n +1,R) on rays starting at the origin) and conformal
transformations.

As in the previous section, we have that applying Möbius transformations
f1, . . . f4 on S2n+1, we can form a chain consisting of 4 linked components
fi (T̄λi ), i = 1, . . . , 4 which are pairwise disjoint. The selection of the scalar
numbers λ1, λ2, λ3, λ4 ∈ R+, can be done in such a way that we can set a parallel
component to each fi (T̄λi ) (see Fig. 2), obtaining a new chain C1 consisting of
8 components, fi (T̄λi ), f ′

i (T̄λi ) i = 1, . . . , 4, which are pairwise disjoint.
As above, there exists maps Hi , (H ′

i ) i = 1, . . . , 4 that send a copy of the exte-
rior of the corresponding fi (T̄λi ) ( f ′

i (T̄λi )) into it. Let 0 be the group generated
by Hi , H ′

i , i = 1, . . . , 4. Then 0 is a discrete subgroup of PC . Let3(0) be the
limit set (see definition 2.1).

Lemma 3.1. The set 3(0) is a Cantor set.

Proof. The proof is straightforward from Lemma 2.3. �

Lemma 3.2. The set 3(0) is wildly embedded on S2n+1.

Proof. (Compare proof of Lemma 2.5). The construction is essentially the
same as in dimension 3, therefore we will use the same notation for different
stages, e.g. C1, for the first stage, etc. We will briefly describe the nth-singular
homology group of 3(0). Let V be a solid torus such that C1 ⊂ V . Then the
inclusion homomorphism Hn(∂V ) → Hn(V −C1) is injective. In particular, for
each component C1, j ( j = 1, . . . , 4) of C1 the inclusion ∂C1, j ⊂ C1, j − Int(C2)

induces injective nth-singular homology group homomorphisms. Moreover, we
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also have that the inclusion homomorphism Hn(∂C1, j ) → Hn(V − Int(C1))

is injective.
By Mayer-Vietoris Theorem we have that the maps j1∗ and j2∗ are injective.

Hn(∂C1,1)
i1∗−−−→ Hn(C1,1 − Int(C2))

i2∗



y j2∗



y

Hn(V − Int(C1))
j1∗−−−→ Hn((V − Int(C1)) ∪ (C1,1 − Int(C2))

In other words, adding one component of C1 − Int(C2) to V − C1 has simply
enlarged the nth homology group.

This argument may be applied again and again to show that all these inclusion
homomorphisms are injective:

Hn(V − C1) → Hn(V − C2) → Hn(V − C3) → . . .

It is clear that these are inclusions of subgroups, i.e. the groups become larger
and larger. Similarly with S2n+1 replacing V .

Thus, the nth-singular homology group Hn(S2n+1 −3(0)) is the direct limit
of Hn(S2n+1 − Ck), k = 1, 2, . . . ; fk, k = 1, 2, . . .)} where fk : Hn(S2n+1 −
Ck) → Hn(S2n+1 − Ck+1) is the inclusion map (see [1]).

We have that Hn(S2n+1 −3(0)) is infinitely generated. By Hurewicz homo-
morphism, this implies that 5n(S2n+1 − 3(0)) is infinitely generated. Hence,
3(0) is a wild Cantor set in S2n+1. �

The previous discussion can be summarized in the following theorem.

Theorem 3.3. For any 2m ≥ 8 there exists a real analytic action of the free
group F2m ⊂ PC, 8 : F2m × S2n+1 → S2n+1, n ≥ 1, whose limit set 3(8) is
a wild Cantor set. The action is proper, free, discontinuous and co-compact on
S2n+1 −3(8).

The fundamental domain for 0 is D = S2n+1 − ∪4
i=1 Int( fi (T̄λi ) ∪ f ′

i (T̄λi )).
The quotient space �/0 is homeomorphic to D.

Let 0̃ be the subgroup of index two of 0 consisting of even words. Its funda-
mental domain is D ∪ H1(D). Since 0̃ acts freely, properly and discontinuously
on its domain of discontinuity and its fundamental domain is compact, then the
quotient space �(0̃)/0̃ is a smooth compact manifold without boundary M0̃.
Since the action is by orientation-preserving diffeomorphisms, M0̃ is orientable.
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4 Real projective Schottky groups on projective spaces and spheres

The purpose of this section is to construct Schottky groups on the (2n + 1)-real
projective space, P2n+1

R and (2n+1)-sphere, S2n+1. In the complex case, complex
Schottky groups on P2n+1 were constructed by Seade-Verjovsky (see [14]). It is
clear that their construction works perfectly well in the real case but for the sake
of completeness we present it explicitly in this paper. We remark that the proofs
of [14] still apply for the present case. However we believe it is important to
write explicitly the real case, since it is not presented in [14].

4.1 Real projective Schottky groups on projective spaces

As in the previous section, we will start by constructing our “mirrors” and
“involutions” in P2n+1

R .
Consider the subspaces of R2n+2 = Rn+1 × Rn+1 defined by L̂0 := {(a, 0) ∈

R2n+2} and M̂0 := {(0, b) ∈ R2n+2}. Let Ŝ be the involution of R2n+2 defined
by Ŝ(a, b) = (b, a). This interchanges L̂0 and M̂0.

Let 8 : R2n+2 → R be given by 8(a, b) = ||a||2 − ||b||2. Then, Ê Ŝ :=
8−1(0) = {(a, b)| ||a|| = ||b||} is invariant under multiplication by real num-
bers. Hence, it is an embedded cone in R2n+2 over Sn+1 × Sn+1, with vertex
at 0 ∈ R2n+2. Clearly, Ê Ŝ separates R2n+2 − {(0, 0)} in two diffeomorphic
connected components U and V , which contain respectively L̂0 − {(0, 0)} and
M̂0 − {(0, 0)}. These two components are interchanged by the involution Ŝ and
Ê Ŝ stays invariant. Notice that every linear subspace K̂ ⊂ R2n+2 of dimension
n + 2 containing L̂0 meets transversely Ê Ŝ and M̂0, since through every point
in Ê Ŝ there exists and affine line in K̂ which is transverse to Ê Ŝ . Therefore a
tubular neighborhood V of M̂0 − {(0, 0)} in P2n+1

R is obtained, whose normal
disc fibers are of the form K̂ ∩ V , with K̂ as above.

Let S be the linear projective involution of P2n+1
R defined by Ŝ. Then Ê Ŝ

projects to a codimension one submanifold of P2n+1
R, that we denote by ES . Thus

the submanifold ES is an invariant set of S. Moreover, it is a S2n+1-bundle over
Pn
R and it separates P2n+1

R in two connected components which are interchanged
by S and each one is diffeomorphic to a tubular neighborhood of the canonical
Pn
R in P2n+1

R.

Definition 4.1. We call ES the canonical mirror and S the canonical involution.

The previous discussion still applies to the following more general case.

Bull Braz Math Soc, Vol. 39, N. 2, 2008
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Lemma 4.2. Let λ be a positive real number and consider the involution

Ŝλ : R
n+1 × Rn+1 → Rn+1 × Rn+1,

given by Ŝλ(a, b) = (λb, λ−1a). Then Ŝλ also interchanges L̂0 and M̂0, and
the set

Êλ =
{
(a, b) : ||a||2 = λ2||b||2

}

satisfies, with respect to Ŝλ, the analogous properties of ÊŜ and Ŝ described in
the above discussion.

Again Ŝλ projects to a linear involution Sλ on P2n+1
R and Êλ projects to a

codimension one submanifold Eλ ofP2n+1
R . Thus Sλ and Eλ satisfy the analogous

properties of S and ES .
Observe that the manifold Eλ gets thinner as λ tends to ∞, and it approaches

the L0-axes. Consider now two arbitrary disjoint projective subspaces L and M
of dimension n in P2n+1

R, and the corresponding linear subspaces L̂ , M̂ of R2n+2.

So R2n+2 = L̂
⊕

M̂ and there is a linear automorphism Ĥ that sends L̂ to L̂0

and M̂ to M̂0. The automorphism T̂ = Ĥ−1 ◦ Ŝλ ◦ Ĥ , λ ∈ R+, is an involution
that defines an involution T = H−1 ◦ Sλ ◦ H of P2n+1

R that interchanges L and
M . Then we have that T has a mirror, i.e. an invariant set E = ET ⊂ P2n+1

R,

which separates P2n+1
R in two connected components which are interchanged by

T . Each component is diffeomorphic to a tubular neighborhood of the canonical
Pn
R ⊂ P2n+1

R. Moreover, given an arbitrary tubular neighborhood U of L , we can
choose T so that the corresponding mirror ET is contained in the interior of U .

We have that every linear projective involution T of P2n+1
R that interchanges

L and M is conjugate in P SL(2n + 2,R) to the canonical involution S. In fact,
let L̂ and M̂ be linear subspaces of R2n+2 as above. Let {l1, . . . , ln+1} be a basis
of L̂ . Then {l1, . . . , ln+1, T̂ (l1), . . . , T̂ (ln+1)} is a basis of R2n+2. The linear
transformation that sends the canonical basis of R2n+2 = Rn+1 ⊕

Rn+1 to this
basis induces a projective transformation which realizes the required conjugation.

Definition 4.3. We call mirrors in P2n+1
R to the images of ES under the action

of P SL(2n + 2,R). A mirror is the boundary of a tubular neighborhood of a
Pn
R in P2n+1

R, i.e. it is an S2n+1-bundle over Pn
R.

The above discussion gives us the following result.

Theorem 4.4. Let L := {(L1,M1), . . . , (Lr ,Mr )}, r > 1, be a set of r pairs
of projective subspaces of dimension n of P2n+1

R , all of them pairwise disjoint.
Then:
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1. There exist involutions T1, . . . , Tr of P2n+1
R , such that each Ti ,

i = 1, . . . , r , interchanges Li and Mi and the corresponding mirrors
ETi are all pairwise disjoint.

2. If we choose the T ′
i s in this way, then the subgroup of P SL(2n + 2,R)

that they generate is Kleinian.

3. Moreover, given a constant C > 0, we can choose the Ti ’s so that if
T := Tj1 ∙ ∙ ∙ Tjk is a reduced word of length k > 0 (i.e., j1 6= j2 6=
∙ ∙ ∙ 6= jk−1 6= jk), then T (Ni ) is a tubular neighborhood of the projective
subspace T (Li ) which becomes very thin as k increases: d(x, T (Li )) <

Cλk for all x ∈ T (Ni ), where Ni is the connected component of
P2n+1 − ETi that contains Li , for all i = 1, . . . , r .

Definition 4.5. A Kleinian group constructed as above will be called a
projective Schottky group.

Definition 4.6. Given a projective Schottky group 0, we define its limit set
3 := 3(0) to be the set of accumulation points of the 0-orbit of the union
L1 ∪ . . . ∪ Lr . Its complement � = �(0) := P2n+1

R − 3 is the region of
discontinuity.

The next results describe the domain of discontinuity and the limit set of real
projective Schottky groups.

Lemma 4.7. Let 0 be a projective Schottky group in P2n+1
R , generated by in-

volutions {T1, . . . , Tr }, n ≥ 1, r > 1. Let W = P2n+1
R −

⋃r
i=1 Int(Ni ), where

Int(Ni ) is the interior of the tubular neighborhood Ni . Then W is a compact fun-
damental domain for the action of 0 on �(0). The action on �(0) is properly
discontinuous and �(0) =

⋃
γ∈0 γ (W ).

Proof. The proof is straightforward from Theorem 2.2 in [14]. �

Theorem 4.8. Let 0 be a projective Schottky group in P2n+1
R , generated by

involutions {T1, . . . , Tr }, n ≥ 1, r > 1, as in Theorem 4.4. Let �(0) be the
region of discontinuity of 0 and let3(0) = P2n+1

R −�(0) be the limit set. Then,

1. If r > 2, then3(0) is a solenoid (lamination), homeomorphic to Pn
R×C,

whereC is a Cantor set,0 acts minimally on the set of projective subspaces
in 3(0) considered as a closed subset of the Grassmannian G2n+1,n.
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2. If r > 2, let 0̃ ⊂ 0 be the index two subgroup consisting of the elements
which are reduced words of even length. Then 0̃ acts freely on �(0).
The compact manifold with boundary W̃ = W ∪ T1(W ) is a fundamental
domain for the action of 0̃ on �(0). We also call 0̃ a projective Schottky
group.

3. Each element γ ∈ 0̃ leaves invariant two copies, P1 and P2, of Pn
R in

3(0). For every L ⊂ 3(0), γ i (L) converges to P1 (or to P2) as i → ∞
(or i → −∞).

Proof. The proof is straightforward from Theorem 2.2 in [14]. �

Remarks 4.9.

1. The limit set 3(0) is the intersection of nested sets. In fact, 3(0) =
∩∞

i=1γi (N j (i)), where {γi }∞i=1 is a sequence of distinct elements of 0 and
j : N → {1, . . . , r} is a function such that γi+1(N j (i+1)) ⊂ γi (N j (i)).

2. If r = 2, then 0 ∼= Z/2Z ∗Z/2Z, the infinite dihedral group, and3(0) is
the union of two disjoint projective subspaces L and M of dimension n.

Next, we will describe the quotients �(0)/0 and �(0)/0̃, where 0 and 0̃
are the above groups.

Proposition 4.10. Let L be a copy of the projective space Pn
R in P2n+1

R and let
x be a point in P2n+1

R − L. Let Kx ⊂ P2n+1
R be the unique copy of the projective

spacePn+1
R inP2n+1

R that contains L and x. Then Kx intersects transversely every
other copy of Pn

R embedded in P2n+1
R − L, and this intersection consists of one

single point. Thus, given two disjoint copies L and M of P2n+1
R in P2n+1

R , there
is a canonical projection map

π := πL : P2n+1
R − L → M,

which is a submersion. Each fiber φ−1(x) is diffeomorphic to Rn+1.

Proof. It is straightforward. �
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Theorem 4.11. Let 0 be a projective Schottky group as in Theorem 4.8, with
r > 2. Let 0̃ ⊂ 0 be the index two subgroup. Let W be the fundamental domain
of 0. Then,

1. The map ψ : W → Pn
R is a locally trivial differentiable fiber bundle with

fiber Sn+1 − Int(D1) ∪ ∙ ∙ ∙ ∪ Int(Dr ), where Int(Di ) is the interior of a
smooth closed n + 1-disc Di in Sn+1 and the Di ’s are pairwise disjoint.

2. The domain of discontinuity �(0) fibers differentiably over Pn
R with fiber

Sn+1 minus a Cantor set.

3. The space �(0)/0̃ is a compact manifold that fibers over Pn
R, with fiber

(Sn ×S1)# ∙ ∙ ∙ #(Sn ×S1), the connected sum of r − 1 copies of (Sn ×S1).

Proof. The proof is straightforward from Theorem 2.2 in [14]. �

Remark 4.12. The compact manifolds M0̃ := �0̃/0̃ have a projective struc-
ture, since the action is by restriction of globally defined projective transforma-
tions, see [3], [4], [5] and [15].

4.2 Real Projective Schottky Groups on Spheres

Let p : S2n+1 → P2n+1 be a two-fold covering map. Note that the group
P SL(2n + 2,R) can be lifted to the group ±SL(2n + 2,R). Then each n-
projective space Li is lifted to a n-sphere Si in S,2n+1 i = 1, . . . , r . Each
involution Ti can be lifted to an involution T̂i in S,2n+1 i = 1, . . . , r . Let 0̂
be the group generated by T̂i , i = 1, . . . , r . Then 0̂ is a discrete subgroup of
SL(2n + 1,R).

From the above and Theorem 4.8, we have the following result.

Corollary 4.13. Let S1, . . . Sr be n-spheres as above and let 0̂ be the corre-
sponding discrete subgroup. Then the linking number l(Si , Sj ) = 1 for i 6= j
and the limit set 3(0̂) is a solenoid, homeomorphic to Sn × C, where C is a
Cantor set.

Remark 4.14. In these examples, the Cantor set C is tame.

Next, we will describe the quotients �(0̂)/0̂ and �(0̂)/ ˜̂
0, where 0̂ is the

above group and ˜̂
0 ⊂ 0̂ is a subgroup consisting of even words, i.e. ˜̂

0 is the
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orientation-preserving index two subgroup of 0̂. From Theorem 4.11, we have
the following result.

Corollary 4.15. Let 0̂ be the lifting of a projective Schottky group 0 via the

covering map p : S2n+1 → P2n+1, with r > 2. Let ˜̂
0 ⊂ 0̂ be the index two

subgroup. Then,

1. The domain of discontinuity �(0̂) fibers differentiably over Sn with fiber
Sn+1 minus a Cantor set.

2. The space �(0̂)/ ˜̂
0 is a compact manifold that fibers over Sn, with fiber

(Sn ×S1)# ∙ ∙ ∙ #(Sn ×S1), the connected sum of r − 1 copies of (Sn ×S1).
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