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About the statistical uniform convergence
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Abstract. In this work we study the concept of statistical uniform convergence. We
generalize some results of uniform convergence in double sequences to the case of statis-
tical convergence. We also prove a basic matrix theorem with statistical convergence.
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1 Introduction

The concept of statistical convergence was introduced by Steinhaus [11] and by
Fast [5] in 1951.

Other works about the study of statistical convergence are [6], [7] and [9].
In [8] Kolk begins the study of the applications of the statistical convergence
to the Banach spaces. In [4] there are important results that relate the statis-
tical convergence to classical properties of Banach spaces. In [2], the weakly
unconditionally Cauchy series are characterized by the statistical convergence.

Let A be a set of natural numbers. Denote by | 4| the cardinal of A4 and if
n € N we denote A(n) = {i € 4:i < n}. The density of A4 is defined by
dt(A4) = lim, %|A(n)|, in case it exists.

In this work we denote by X a metric space with a metric d. Consider (x,),
a sequence in X. (x,), is said to be statistically convergent to some x € X, we
write st — lim,, x, = x, if for each ¢ > 0, dt({i eN:d(x;,x) < 8}) = 1.

A sequence (x,), of X is said to be statistically Cauchy if for each ¢ > 0 and
n € N there exists an integer m > n such that dt({i eN:dx;, x,) < 8}) =1.

Fridy [7] proved that a sequence (x,), is statistically convergent if and only if
it is statistically Cauchy.

Salat [10] proved that st — lim,, x, = x if and only if there exists 4 C N with
dt(A) =1 and lim,c4 x, = x.
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Let (x;;);,; be a double sequence in X. Itis said that (x;;); ; converges to xo (in
Pringsheim’s sense) if for each ¢ > 0 there exist p, ¢ € N such that d(x;;, xo) <
g,ifi > pand j > q. Itis said that (x;;); ; is Cauchy (in Pringsheim’s sense) if
for each & > 0 there exist p, g € N such that d(x,,, x;;)) <e,ifi > p, j > q.

If X is complete we have that a double sequence (x;;); ; is Cauchy if and only
if it is convergent. Observe that a double sequence (x;;); ; which is Cauchy is
not necessarily bounded.

Let A be a subset of N x N. It is said that the density of 4 is « € [0, 1] if
there exists the double limit

4
dty(A) = lim A2 DL _
p.q

rq
where A(p,q) ={G,j)ed:i<p,j=<q},(p,q) e NxN.

It is said that the double sequence (x;;); ; is statistically convergent to xq if
for each ¢ > 0 it is satisfied that dt, ({(i, J) 1 d(xij, x0) < 8}) = 1. A double
sequence (x;;); ; is said to be statistically Cauchy if for each ¢ > 0 there exist
p.q € Nsuchthatdi({(i, j) € Nx N: d(x;;, x,) < €}) = 1.

Moricz, in [9], proved that if X is complete then every double sequence (x;;);,
which is Cauchy is also convergent. He also proved that st — lim; ;(x;;) = xo
if and only if there exists 4 C N x N with d#,(4) = 1 and such that (x;;) ¢, j)e4
is convergent to xo (in Pringsheim’s sense).

If we use the completion C X of the metric space X we deduce that:

1) If (x;); is a statistically Cauchy sequence of X then there exists a subset
A C Nsuch that df(4) = 1 and (x;);e4 1s Cauchy.

i) If (x;;); ; is a statistically Cauchy double sequence then there exists 4 C
N x N with dt,(A4) = 1 and such that (x;;), jye4 is Cauchy.

In this work we introduce the following concepts:

We say that (x;;); ; is strongly statistically convergent to xo and we write
Sst — limx;; = xg if there exists K C N with d#(K) = 1 and such that
(xij) i, j)ek xk 18 convergent to xo.

We say that (x;;); ; is strongly statistically Cauchy if there exists K C N with
dt(K) = 1 and such that (x;;) j)ex xx 18 Cauchy.

This concept is more exigent than the double statistical limit of a sequence but
it will allow us obtain better results related to uniform convergence.

It is clear that if K C N and df(K) = 1 thendt,(K x K) = 1, so if (x;;);,;
is strongly statistically convergent (or strongly statistically Cauchy) then (x;;); ;
is statistically convergent (or statistically Cauchy).
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But the converse is not true as we see in the next example:

Consider Ny = {1,3,5,7,...}, N, = {1,2,3,5,6,7,9,...},...,
Ny = N\{m2*: m e N}. We have that dt(N;) = 1 — % if £k € N. Con-
sider 4 = {(i, j) : j € N;}. We have that dt,(A4) = 1. Suppose that there exists
K Cc Nwithdt(K) =1and K x K C A. Fixi € K, then for each j € K it
willbe (i, j) € K x K C A,s0 j € N; and K C N;, but this is a contradiction
because dt(N;) =1 — 2%

If we fix a vector x( in the metric space X and consider the double sequence
(x;;)i,; in X where
xo if(@,j)e A

Xij = .
0 otherwise

we have that (x;;); ; is statistically convergent to x¢ but it is false that (x;;); ; is
strongly statistically convergent to x. It is also easy to find examples of double
sequences that are statistically Cauchy whereas not strongly statistically Cauchy.

In this work we will obtain a double sequence result related to uniform con-
vergence. We can find it partially and without proofin [1] and here we will give
a simple proof of it.

Our purpose is to finish the work with a section where we will study double
sequences results for the statistical convergence.

2 Uniform convergence of double sequences

Theorem 1. Let (x;;); ; be a double sequence in a metric space X such that
lim; x;; = xj0, for each i and lim; x;; = xoj, for each j. Then the following
assumptions are equivalent:

1. lim; x;; = x;0, uniformly oni.

2. lim; x;; = xo;, uniformly on j.

3. (xij)i,j is Cauchy in Pringsheim’s sense.
In this situation we have that the sequences (x;0); and (xo;); are Cauchy and

in the completion CX of X it is satisfied that lim; x;o = lim; xo; = lim;; x;;,
ie., we have that llml 11m] Xij = hmj 11m, Xij = hm,j Xij-
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Proof. 1 = 2. Lete > 0. We have that there exists jy such that if p,q > jj
£ g
then d(x;p, xiq) < 1 for each 7, so we deduce that d(xo,, xo,) < —1f p, g > jo.
Fix p > jo. Since x;, ——> xo, we have that there exists i; such that if
I—> 00

i > i; then

d(xip, X0p) < SO

1
d(xij, x0;) < d(xij, Xip) +d(Xip, Xop) + d(xop, X0;) < &
if j > jo and i >ij.

For j € {1, ..., jo} there exists i, such that if i > i, then d(x;;, xo;) < e,
soifi > iy = max{iy, ip} itis d(x;;, xo;) < ¢ forevery j € N.

In the same manner we can see that 2 = 1.

It is easy to prove that 3 = 1 and we are going to see that 1 and 2 implies 3.

Let & > 0. We have that there exists jo such that if p, g > jo it is d(x;;, xiq)
< &/2 for each i and there also exists iy such that if p, g > ip itis d(x,;, x4;)
< g¢/2 for each ;.

Let N = max(ig, jo). If p > N and ¢ > N we have that d(xyy, x,,) <
d(Xnn, XpN) +d(xpn, Xpg) < €.

In the situation of 1, 2 and 3 we will prove that (x;¢); is Cauchy. Let ¢ > 0.
We have that there exists N such that if p,g > N then d(xyy, x,y) < %, SO
ifp,p'.q,q" = Nthend(xpy, xpy) < d(Xpq, Xnn) +d(Xny, Xpg) < €. So,
if ¢ — oo we deduce that d(x,,, x,50) < eif p,q, p" > Nandifg — oo
we deduce that d(x 0, x,0) < e if p, p' > N.

Let xo € CX be such that lim; x;o = xo. Let ¢ > 0. We now apply the same
argument as before to obtain that there exists N such that if p, g, p’ > N then
d(xpq, xp0) < &, s0if p’ —> oo we deduce that d(x,,, x0) < eif p,qg > N.

Analogously we prove that (x¢;); is Cauchy, so there exists yo € CX such
that lim; xo; = yo and in the same manner we can see that lim(x;;) = », so
Xo = Yo. 0

Remark 1. If X is a metric space and (x;;); ; is a double sequence such that
for each i, (x;;); ; is Cauchy and for each j, (x;;); ; is a Cauchy sequence, it is
satisfied that the following sentences are equivalent:

1) (x;;);,; in uniformly Cauchy oni.
ii) (x;;);,; is uniformly Cauchy on j.
iii) (x;;); ; is Cauchy in Pringsheim’s sense.

To prove this we only need to consider the completion C X of X.
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3 Uniform statistical convergence

Let (x;;);,; be a double sequence in X. Consider (x;¢);, a sequence in X. We say
that (x;;); ; is strongly uniformly statistical convergent (susc) to (x;o); if there
exists K C N with d#(K) = 1 such that for each & > 0, d¢({;j : d(x;;, x;0) <
¢ foreachi € K}) =1.

In [6], A. Freedman and J.J. Sember prove the following result:

Let {4; : i € I} be a countable collection of subsets of N such that
dt(A;) = 1 foreach i € I. Then there is a set A C N such that dt(4) = 1
and |A\A;| < oo foralli € I.

Theorem 2. Let X be a metric space and consider (x;;); ;, a double sequence
in X such that for each i, (x;;); ;, is statistical convergent and for each j, (x;;);,;,
is statistical convergent. Then the following assumptions are equivalent:

1. Foreachi, (x;;); j, is susc.
2. Foreach j, (x;j);,;, is susc.

3. The double sequence (x;;); ; is strongly statistically Cauchy.

Proof. Let us first prove that 1 implies 2. Let K C N be with d#(K) = 1 and
such that if ¢ > 0 then d7({j : d(x;;, x;0) < € foreachi € K}) = 1.

If j € Nwedefine K; = {n € N: d(x;,, xj0) < 1/j foreachi € K}.

An analysis similar to that used by Salat [10] is the following one: Let v; € K.
There exists v, € K, with v, > v; such thatif n > v, and n € K, then

| K2 (n)]

n

z1-2, where K>(n)={i € K>:i <n}.

We obtain by induction the sequence v; < v, < ... such thatif n > v; then

Kl 1

n J
Observe that K1 D K> D ... D K; D ... and we define

KO = (1,vl)U((vl,vz)ﬂKl)U...U((vj,vj+1)ﬂKj)U...

It follows easily that d#(K() = 1 and lim ¢k, X;; = X;o uniformly ini € K.

For each j there exists B; C N with d#(B;) = 1 and lim;_,  x;; = xo;.

Applying [6] we deduce that there exists B C N with d7(B) = 1 and such
that |[B\B;| < oo if j € N. If 4 = K N Ky N B we have that d¢(4) = 1 and
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for each i, (x;;)(, j)eax4 18 uniformly convergent to x;o if i € A, so for each
J» (Xij) (i, jreaxa 1s uniformly convergent to xo; if j € A. Also it is satisfied
that (xij)([,j)eAxA is Cauchy.

Then 1 = 2 and 1 = 3 are proved.

We can see that 2 = 1 as we have seen that | = 2. An easy computation
shows that 3 = 1. ]

Remark 2. Under the same hypotheses of the last theorem we deduce that
there exists xo € C X suchthatst —lim; x;o = st—1lim; xo; = Sst—limx;; = xo,
i.e., we have that st — lim; st —lim; x;; = st —lim; s¢ —lim; x;; = Sst —lim x;;.

Definition 1. Let (x;;); ; be a double sequence in X and (x;¢); a sequence. We
say that (x;;); ; is uniformly statistically convergent to (x;¢); if for each ¢ > 0
it is satisfied that dtz({(i, J) d(xij, xi0) < s}) =1.

If (xo;), is a sequence in X we say that (x;;); ; is uniformly statistically con-
vergent to (xo;); if for each & > 0 it is satisfied that dtz({(i, J) i d(xij, xp) <
e}) = 1.

Theorem 3. Let X be a metric space and consider (x;;); ;, a double sequence
in X such that for each i itis st —lim; x;; = x;0 and for each j itis st —lim; x;; =
xo;. Then the following assumptions are equivalent:

1. (x;;)i,; is uniformly statistically convergent to (x;);, for each i and (x;o);
is statistically convergent to xg

2. (xij)i,;j is uniformly statistically convergent to (xo;) ; for each j and (xo;)
is statistically convergent to xg

3. st — limi,j(x,»j) = X

Proof. We first prove that 1 implies 3. We can proceed analogously to the
work of Moricz in [9]. Let (n,), be a sequence of natural numbers such that
2n, < ney ifr € Nand 1/(pg){G, j) 1 i = p,j = qandd(x;;, xj0) >
27"} < 1/(2¥) if p, g > n,. Define the double sequence (@ij)i,; as follows:

If min(i, j) < nyitisa;; = x;;. If p, g satisfy thatn, <i <n, ,n, <j <
Ngi1 it is
xij if dxiy, x0) < Smeos
Q=
xio if d(xij, x0) > S s
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Consider K = {(i, j) : xij = a;;}. Asin [9] we can prove that df,(K) = 1
and for (x;;) j)ek it is satisfied that if we consider ¢ > 0 there exists ny such
thatif i > ng, j > no and (7, j) € K then d(x;;, x;0) < &.

We have, by hypothesis, that there exists K’ C N with df(K’) = 1 and
lim; e xj0 = Xo.

Let Ko ={(i, j) € K : i € K'}. Itis easy to check that df,(K() = 1.

Finally we have that, for ¢ > 0, there exists n( such that if (i, j) € Ko, > ng
and j > ng thend (x;;, x;0) < 5 andd(xio, Xo) < 5,80d(x;;, x0) < €ifi, j > ng
and (7, j) € Ko.

Then st — lim(x;;) = xo.

Let us prove that 3 implies 1. The equivalence between 3 and 2 would be
proved analogously.

We have that there exists ng such thatif 7, j > no, (i, j) € K thend(x;;, xo) <
g/2. Consider H = {i e N: dt({j : (i, j) € K}) # 0}.

It is easy to check that dt(H) = 1 and if Ko = {(i,j) € K ,i € H} itis
satisfied that dt,(K() = 1.

Fix i € H withi > no. We have that d(x;;,xo) < &/2 if j > no with
(i, j) € Kog. If j —> oo we deduce that d(x;o, xg) < &/2 if i > iy. So, if
(i,j) € Kopandi > ng, j > ng itis d(x;;, xj0) < d(xi;,x0) + d(xj0, %) < &.
Then (x;;);,; is uniformly statistically convergent to (x;o);. ]

Remark 3.

a) Observe that with the same hypotheses of the last theorem it is satisfied
that st — lim; (st — llmj xij) =St — 1imj(st — lim; xij) =St — limi,j Xij-

b) We do not know whether the last theorem remains true if in 1 we do not
consider the hypothesis (x;o); is statistically convergent to xy and in 2 we
do not consider (xg;); is statistically convergent to xy.

4 The Basic Matrix Theorem for the statistical convergence

In this section we denote by X a normed space.
In [3] and [12] it is proved the well known Antosik-Swartz Basic Matrix
Theorem, which states:
Let (x;;);,; be a double sequence in a normed space X such that:
1) hrnl Xij = Xj l_f] e N.

i1) If B is an infinite subset of N then there exists an infinite subset C C B
such that the sequence (Z jecXi /)i is Cauchy.
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Then it is satisfied that lim; x;; = x; uniformly in j € N.

The following theorem is a version of this one but with statistical convergence.
If Y, x; is a series in X and C is an infinite subset of N we say that the
statistical summation of ) ,_ x; is xo, and we write st — ). _~ x; = xo, if

st — lim x; | = xo.
o ¥ on)-x

Theorem 4. Let X be a normed space and consider (x;;); ; a double sequence
in X that satisfies:

1) st —lim; x;; = 0 for eachi.
1) (x;;); is a statistically Cauchy sequence for each j.

iii) For each infinite subset B C N there exists an infinite subset C C B such
that the sequence (st — ZjeC x,-j)i is Cauchy.

Then the double sequence (x;;); ;is strongly uniformly statistically Cauchy.

Proof. From [6] we deduce that there exists 4 C N with d#(4) = 1 and such
that lim;eyx;; =0 if i € 4 and (x;;);eq is Cauchyif j € 4.

If we prove that (x; ;)ic4 1s uniformly Cauchy in j € N it will be proved
the theorem.

On the contrary there exists € > 0 such that for each i € A4 there exists k > i,
k € Aand j € 4 such that ||x;; — x| > €.

In the rest of the proof the natural numbers considered belong to A.

For i; = 1 there exists k1 > i; and j; such that |[x; ; — x| > €.

On the other hand there exists /; > j; such that

lxi,j — Xk 1l < it j>1.

e
3.2
Since (x;;);,; 1s Cauchy if j € {1, ...,[;}, we have that there exists p; > i,
£ .
such that if p, g > p1then Y, ¢ lIxp — x4l < 3 ifCc{l,....,L,}NA.
For i, > p; there exist k, > i, and j, such that ||x;,;, — Xk, || > &.

It is clear that j, > [, and there exists /; > j, such that

& 3 . .
||xi1j—xk.j||<ﬁ and ||xizj—xkzj||<ﬁ it j>h.

Bull Braz Math Soc, Vol. 39, N. 2, 2008



ABOUT THE STATISTICAL UNIFORM CONVERGENCE 181

Inductively we obtain the following sequences in A4:

h<k<ih<hkh<...<i <k <...

Nhi<h<p<h<...<j <l <...
If > 1 we have that:
D) X iec Xy —xiill < 5ife C ooy et} N A
) [|x;, j, — Xk, |l > €.
1) 1%, 0 — X jps | < 3797 ifA > 1.

If B =1{,...,Jr...} there exists C C B infinite such that the sequence
(st — > jec Xij), .y is Cauchy. So there exists nq such that if » > n then

St — in"j — St — ZX/{,,J'

&
=5
jeC jeC

but lf] = jr+h then ||xirjr+h = Xk join || < 32—r+h

Since st — ) ;¢
st — Z_jeC (xi,j — xk,j) exists too but since Z_jeC x;,; — Xk, ;1 < oo it is easy
to deduce that .- (xi,; — xx,;) exists and is the same as st — > jec (xi,,—

x;,; exists and st — Zjecxk, ; exists we have that

xkr_,-), but if » > ny we have that

D= i) ‘

Z (X, j = Xk j) + (X, — X, j,)

jeC JEU1sdr—1}
2¢e &
+ Xi.ji—Xp )| =€e—— ==,
' Z ( ir] ki]) — 3 3
J€Ur+1.-}
and this is a contradiction. OJ
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