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Inverse semigroups and combinatorial C*-algebras

Ruy Exel*

Abstract. We describe a special class of representations of an inverse semigroup S on
Hilbert’s space which we term tight. These representations are supported on a subset of
the spectrum of the idempotent semilattice of S, called the tight spectrum, which is in
turn shown to be precisely the closure of the space of ultra-filters, once filters are identi-
fied with semicharacters in a natural way. These representations are moreover shown to
correspond to representations of the C*-algebra of the groupoid of germs for the action of
S on its tight spectrum. We then treat the case of certain inverse semigroups constructed
from semigroupoids, generalizing and inspired by inverse semigroups constructed from
ordinary and higher rank graphs. The tight representations of this inverse semigroup
are in one-to-one correspondence with representations of the semigroupoid, and con-
sequently the semigroupoid algebra is given a groupoid model. The groupoid which
arises from this construction is shown to be the same as the boundary path groupoid of
Farthing, Muhly and Yeend, at least in the singly aligned, sourceless case.
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1 Introduction

By a combinatorial C*-algebra we loosely mean any C*-algebra which is con-
structed from a combinatorial object. Among these we include the Cuntz-Krieger
algebras built out of 0–1 matrices, first studied in the finite case in [6], and quickly
recognized to pertain to the realm of Combinatorics by Enomoto and Watatani
[7]. Cuntz-Krieger algebras were subsequently generalized to row-finite matri-
ces in [19], and to general infinite matrices in [12]. Another important class
of combinatorial C*-algebras, closely related to the early work of Cuntz and
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Krieger, is formed by the graph C*-algebras [2, 3, 14, 15, 18, 25, 29, 30, 35],
including the case of higher rank graphs introduced by Kumjian and Pask in
[16], and given its final form by Farthing, Muhly and Yeend in [13]. See also
[17, 22, 23, 28]. The monograph [27] is an excellent source of well organized
information and references.

Attempting to understand all of these algebras from a single perspective, I have
been interested in the notion of semigroupoid C*-algebras [10], which includes
the Cuntz-Krieger algebras and the higher rank graph C*-algebras in the general
infinite case, provided some technical complications are not present including,
but not limited to, sources.

The most efficient strategy to study combinatorial C*-algebras has been the
construction of a dynamical system which intermediates between Combinatorics
and Algebra. In the case of [12], the dynamical system took the form of a partial
action of a free group on a topological space, but more often it is represented
by an étale, or r -discrete groupoid. In fact, even in the case of [12], the partial
action may be encoded by a groupoid [1], [32]. It therefore seemed natural to
me that semigroupoid C*-algebras could also be given groupoid models. But,
unfortunately, the similarity between the terms semigroupoid and groupoid has
not made the task any easier.

The vast majority of combinatorial C*-algebras may be defined following a
standard pattern: the combinatorial object chosen is used to suggest a list of
relations, written in the language of C*-algebras, and then one considers the
universal C*-algebra generated by partial isometries satisfying such relations.

Partial isometries can behave quite badly from an algebraic point of view, and
in particular the product of two such elements needs not be a partial isometry.
Should the most general and wild partial isometries be involved in combinatorial
algebras, the study of the latter would probably be impossible. Fortunately,
though, the partial isometries one usually faces are, without exception, of a
tamer nature in the sense that they always generate a *-semigroup consisting
exclusively of partial isometries or, equivalently, an inverse semigroup.

In two recent works, namely [25] and [13], this inverse semigroup has been
used in an essential way, bridging the combinatorial input object and the
groupoid.

Combinatorial
Object

......................................................................................... .......
..... Inverse
Semigroup

........
........
........
........
........
........
........
........
........
.................
............ Groupoid ............................................................ .........

... Combinatorial
C*-algebra

Diagram 1.1

Bull Braz Math Soc, Vol. 39, N. 2, 2008



“main” — 2008/5/29 — 11:50 — page 193 — #3

INVERSE SEMIGROUPS AND COMBINATORIAL C*-ALGEBRAS 193

In both [25] and in [13] the relevant inverse semigroup is made to act on a
topological space by means of partial homeomorphisms. The groupoid of germs
for this action then turns out to be the appropriate groupoid. However, the above
diagram does not describe this strategy quite correctly because the topological
space where the inverse semigroup acts is a space of paths whose description
requires that one looks back at the combinatorial object.

Attempting to adopt this strategy, I stumbled on the fact that it is very difficult
to guess the appropriate path space in the case of a semigroupoid. Moreover,
earlier experience with partial actions of groups suggested that the path space
should be intrinsic to the inverse semigroup.

Searching the literature one indeed finds intrinsic dynamical systems asso-
ciated to a given inverse semigroup S, such as the natural action of S on the
semicharacter space of its idempotent semilattice [24, Proposition 4.3.2]. But,
unfortunately, the groupoid of germs for this action turns out not to be the correct
one. For example, if one starts with the most basic of all combinatorial algebras,
namely the Cuntz algebra On , the appropriate combinatorial object is an n × n
matrix of zeros and ones, which in this case consists only of ones, and the in-
verse semigroup is the Cuntz inverse semigroup, as defined by Renault in [31,
III.2.2]. But the groupoid of germs constructed from the above intrinsic action
is not the Cuntz groupoid because its C*-algebra is the Toeplitz extension of On

[5, Proposition 3.1], rather than On itself. See also [31, III.2.8.i].
If E = E(S) is the idempotent semilattice of an inverse semigroup S, one says

that a nonzero map
φ : E → {0, 1}

is a semicharacter if φ(xy) = φ(x)φ(y), for all x and y in E . The set of all
semicharacters, denoted Ê , is called the semicharacter space of E , and it is a
locally compact topological space under the topology of pointwise convergence.
The intrinsic action we referred to above is a certain very natural action of
S on Ê .

If S contains a zero element 0, a quite common situation which can otherwise
be easily arranged, then 0 is in E but the above popular definition of semicharacter
strangely does not require that φ(0) = 0. In fact the space of all semicharacters
is too big, and this is partly the reason why Ê does not yield the correct groupoid
in most cases. This is also clearly indicated by the need to reduce the universal
groupoid in [25].

One of the main points of this work is that this reduction can be performed in
a way that is entirely intrinsic to S, and does not require any more information
from the combinatorial object which gave rise to S. In other words, the diagram
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above can be made to work exactly as indicated.
If φ is a semicharacter of a semilattice E then the set

ξ = ξφ = {e ∈ E : φ(e) = 1},

which incidentally characterizes φ, is a filter in the sense that it contains e f ,
whenever e and f are in ξ , and moreover f > e ∈ ξ implies that f ∈ ξ . In
case S contains 0, and one chooses to add to the definition of semicharacters the
sensible requirement that φ(0) should be equal to zero then, in addition to the
above properties of ξ , one gets 0 /∈ ξ . We then take these simple properties as
the definition of a filter.

With the exception of Kellendonk’s topological groupoid [20, 9.2], most au-
thors have not paid too much attention to the fact that ultra-filters form an im-
portant class of filters, and that these are present in abundance, thanks to Zorn’s
Lemma. Kellendonk’s treatment is however not precisely what we need, perhaps
because of the reliance on sequences with only countably many terms.

It then makes sense to pay attention to the set Ê∞ formed by all semicharacters
φ for which ξφ is an ultra-filter. Our apology of ultra-filters notwithstanding, Ê∞

is not always tractable by the methods of Topology not least because it may fail
to be closed in Ê . But in what follows we will try to convince the reader that the
closure of Ê∞ within Ê , which we denote by Êtight, is the right space to look at.

This explains several instances in the literature where finite paths shared the
stage with infinite paths. Not attempting to compile a comprehensive list, we
may cite as examples, in chronological order:

• The description of the spectrum of the Cuntz–Krieger relations for arbi-
trary 0–1 matrices given at the end of [12, Section 5]. See also [12, 7.3].

• Paterson’s description of the unit space of the path groupoid of a graph
[25, Proposition 3]. See also [25, Proposition 4].

• The closed invariant space ∂3 within the space of all finite and infinite
paths in a higher rank graph3, constructed by Farthing, Muhly and Yeend
in [13, Definition 5.10]. See also [13, Theorem 6.3].

To fully explain the connection between the groupoid of germs for the natural
action of S on Êtight and the above works would make this paper even longer
than it already is, so we have opted instead to restrict attention to semigroupoid
C*-algebras. On the one hand these include most of the combinatorial algebras
mentioned so far, but on the other hand we have made significant restrictions in
order to fend off well known technical complications.
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While we do not compromise on infiniteness, we assume that our semigroupoid
has no springs, and admits least common multiples. These hypotheses corre-
spond, in the case of a higher rank graph 3, to the absence of sources, and to
the fact that 3 is singly aligned. Besides allowing for technical simplifications,
the existence of least common multiples evokes important connections to Arith-
metics, and has an important geometrical interpretation in higher rank graphs.

When 3 is a semigroupoid satisfying all of the these favourable hypotheses,
we construct an inverse semigroup S(3), and then prove in Theorem (18.4) that
the semigroupoid C*-algebra is isomorphic to the C*-algebra for the groupoid
of germs for the natural action of S(3) on Êtight, exactly following the strategy
outlined in Diagram 1.1.

Although we have not invested all of the necessary energy to study the inverse
semigroup constructed from a general higher rank graph, as in [13], we conjecture
that the groupoid there denoted by G3|∂3 is the same as the groupoid Gtight of
Theorem (13.3) below, or at least our findings seem to give strong indications
that this is so. Should this be confirmed, the assertion made in the introduction
of [13] that their groupoid is fairly far removed from the universal groupoid of
S3 might need rectification.

The first part of this work, comprising Sections (3)–(10) is based on Renault’s
Thesis [31] and Paterson’s book [24], and should be considered as a survey of the
technical methods we use in the subsequent sections, beginning with a careful
study of non-Hausdorff étale groupoids and their C*-algebras. We also discuss
actions of inverse semigroups on topological spaces and describe the associated
groupoid of germs in detail. Sieben’s theory of crossed products by inverse
semigroups [33] is included.

We have made a special effort to assume as few hypotheses as possible, and
this was of course facilitated by our focus on étale groupoids. We hope this can
be used as a guide to the beginner who is primarily interested in the étale case
and hence needs not spend much energy on Haar systems.

As a result of our economy of assumptions we have found generalizations of
some known results, most notably Theorem (9.9) below, which shows that the
C*-algebra of an étale groupoid is a crossed product in Sieben’s sense, even in
the non-Hausdorff case, with much less stringent hypotheses than the additivity
assumption of [24, Theorem 3.3.1] or the fullness condition of [26, 8.1]. We also
present a minor improvement on [24, Proposition 3.3.3], by removing the need
for condition (ii) of [24, Definition 3.3.1]. This is presented in Proposition (9.7)
below.

Even though we do most of our work based on non-Hausdorff groupoids, we
have found an interesting sufficient condition for the groupoid of germs to be
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Hausdorff, related to the order structure of inverse semigroups. We show in
Theorem (6.2) that if the inverse semigroup S is a semilattice with respect to its
natural order

s 6 t ⇐⇒ s = ts∗s,

then every action of S on a locally compact Hausdorff space, for which the
domains of the corresponding partial homeomorphisms are clopen, one has that
the associated groupoid of germs is Hausdorff.

A special class of semigroups possessing the above mentioned property (see
(6.4)) is formed by the E∗-unitary inverse semigroups, sometimes also called
0-E-unitary, which was defined by Szendrei [34] and has been intensely studied
in the semigroup literature. See, for example, [20, Section 9]. Kellendonk’s
topological groupoid is Hausdorff when S is E∗-unitary [20, 9.2.6], and the
related class of E-unitary inverse semigroups have also been shown to provide
Hausdorff groupoids [24, Corollary 4.3.2].

It is with section (11) that our original work takes off, where we develop
the crucial notion of tight representations of a semilattice in a Boolean algebra
(11.6). Strangely enough, it is in the realm of these very elementary mathematical
constructs that we have found the most important ingredient of this paper. The
concept of tight representations may be considered a refinement of an idea which
has been dormant in the literature for many years, namely condition (1.3) in [12].

In the following section we study representations of a semilattice into the
Boolean algebra {0, 1}, and its relation to filters and ultra-filters. The central
result, Theorem (12.9), is that the space of tight characters is precisely the closure
of the set of characters associated to ultra-filters. We also show in (12.11) that
tight characters on the idempotent semilattice of an inverse semigroup S are
preserved under the natural action of S, thus giving rise to the action of S on
Êtight, the dynamical system which occupies our central stage.

In the short section (13) we consider tight Hilbert space representations of
a given inverse semigroup S and show in (13.3) that they are in one-to-one
correspondence to the representations of C∗(Gtight), whereGtight is the groupoid
of germs associated to the natural action of S on the tight part of the spectrum of
its idempotent semilattice. Perhaps this result could be interpreted as saying that
the C*-algebra generated by the range of a universal tight representation of S,
which is isomorphic to C∗(Gtight) by the result mentioned above, is an important
alternative to the classical C*-algebra of an inverse semigroup studied, e.g. in
[24, 2.1]. We also believe this addresses the concern expressed by Renault in
[31, III.2.8.i].

From section (14) onwards we start our study of the C*-algebra of a semi-
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groupoid 3 and, as in [25] and [13], the first step is to construct an inverse
semigroup, which we denote by S(3). This could be thought of as traversing
the leftmost arrow of Diagram 1.1.

In sections (15)–(17) we show that tight representations of S(3) correspond to
certain representations of3, which by abuse of language we also call tight. This
step is crucial because the definition of the semigroupoid C*-algebra naturally
emphasizes the semigroupoid, rather than its associated inverse semigroup, so
one needs to be able to determine tightness by looking at 3 only.

In the following section we essentially piece together the results so far obtained
to arrive at another main result, namely Theorem (18.4), where we show that the
semigroupoid C*-algebra is isomorphic to the groupoid C*-algebra of Gtight,
where Gtight is the groupoid of germs associated to the natural action of S on the
tight part of the spectrum of its idempotent semilattice.

Our approach has an aesthetical advantage over [25] or [13] in the sense that
our groupoid is constructed based on a very simple idea which can be conveyed
in a single sentence, namely that one needs to focus on the set of ultra-filters, and
necessarily also on the filters in its boundary. The disadvantage is that it leads to
a very abstract picture of our groupoid and one may argue that a more concrete
description is desirable.

We believe this concern may be addressed in the most general situation, and
a dynamical system much like the one studied in [12] will certainly emerge,
although, rather than a partial action of a group, it will be an action of an inverse
semigroup. Given the widespread interest in combinatorial objects taking the
form of a category, we instead specialize in section (19) to categorical semi-
groupoids, as defined in (19.1). This notion captures an essential property of
categories which greatly simplifies the study of S(3), and hence also of Gtight.
In Proposition (19.12) we then give a simple characterization of tight characters,
resembling very much the description of boundary paths of [13].

In the closing section we focus directly on higher rank graphs and some effort
is spent to determine which such objects lead to a semigroupoid admitting least
common multiples. Not surprisingly only singly aligned higher rank graphs pass
the test, in which case we may apply our machinery, arriving at a groupoid model
of its C*-algebra.

The literature is rich in very interesting examples of inverse semigroups, such
as certain inverse semigroups associated to tilings [20, 9.5], and we believe it
might be a very fulfilling task to explore some of these from the point of view of
tight representations.

We would like to thank Aidam Sims for bringing to our attention many relevant
references on the subject of Higher Rank Graphs.
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2 A quick motivation

Let us now briefly discuss the example of the Cuntz inverse semigroup [5], [31,
III.2.2], since it is one of the main motivations for this work. The reader is invited
to keep this example in mind throughout.

To avoid unnecessary complications we will restrict ourselves to the case
n = 2.

Consider the semigroup S consisting of an identity 1, a zero element 0, and all
the words in four letters, namely p1, p2, q1, q2, subject to the relations q j pi =
δi, j .

It is shown in [5, 1.3] that every element of S may be uniquely written as

pi1 . . . pik q jl . . . p j1,

where k, l > 0, and i1, . . . , ik, j1, . . . , jl ∈ {1, 2}. It turns out that S is an inverse
semigroup with 1∗ = 1, 0∗ = 0, and p∗

i = qi .
Given a nondegenerated representation σ of S on a Hilbert space H , vanishing

on 0, put Si = σ(pi ). It is then elementary to prove that the Si satisfy

S∗
i S j = δi, j ,

which means that the Si are isometries on H with pairwise orthogonal ranges.
Conversely, given any two isometries on H with pairwise orthogonal ranges one
may prove that there is a unique representation σ of S such that σ(pi ) = Si . In
other words the representations of S are in one-to-one correspondence with the
pairs of isometries having orthogonal ranges.

If the reader is acquainted with the Cuntz algebra O2 he or she will likely
wonder under which conditions on σ does the relation

S1S∗
1 + S2S∗

2 = 1 (†)

also holds. After fiddling a bit whith this question one will realize that the
occurence of the plus sign above is not quite in accordance with the language of
semigroups (in which one only has the multiplication operation). In other words
it is not immediately clear how to state (†) in the language of semigroups.

In order to approach this problem first notice that the idempotent semillatice
E(S) consists of 0, 1, and the idempotents

ei1,...,ik := pi1 . . . pik qik . . . qi1,

where i1, . . . , ik ∈ {1, 2}. Clearly 1 is the largest element of E(S), while 0 is
the smallest.
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Next observe that any nonzero idempotent f intersects either e1 or e2, in
the sense that either f e1 or f e2 is nonzero. The set of idempotents {e1, e2} is
therefore what we shall call a cover for E(S). One could try to indicate this fact
by saying that

e1 ∨ e2 = 1,

except that semillatices are only equipped with a meet operation “∧”, rather than
a join operation “∨” as we seem to be in need of. However any (meet)-semilattice
of projections on a Hilbert space is contained in a Boolean algebra of projections,
in which a join operation is fortunately available, namely

p ∨ q = p + q − pq.

Given a representation σ of S on a Hilbert space, one might therefore impose
the condition that

σ(e1) ∨ σ(e2) = 1,

which is tantamount to (†). Representations of S obeying this conditions will
therefore be in one-to-one correspondence with representations of the Cuntz
algebra O2.

The conclusion is therefore that the missing link between the representation
theory of S and the Cuntz algebras lies in the order structure of the semillatice
E(S) in relation to Boolean algebras of projections on Hilbert’s space.

3 Étale groupoids

In this section we will review the basic facts about étale groupoids which will
be needed in the sequel. We follow more or less closely two of the most basic
references in the subject, namely [31] and [24]. We will moreover strive to
assume as few axioms and hypotheses as possible.

We assume the reader is familiar with the notion of groupoids (in the purely
algebraic sense) and in particular with its basic notations: a groupoid is usually
denoted by G, its unit space by G(0), and the set of composable pairs by G(2).
Finally the source and range maps are denoted by d and r, respectively.

Given our interests, we go straight to the definition of étale groupoids without
attempting to first define general locally compact groupoids. We nevertheless
begin by recalling from [31, I.2.1] that a topological groupoid is a groupoid with
a (not necessarily Hausdorff) topology with respect to which both the multipli-
cation and the inversion are continuous.
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Definition 3.1. [31, I.2.8] An étale (sometimes also called r-discrete) groupoid
is a topological groupoid G, whose unit space G(0) is locally compact and Haus-
dorff in the relative topology, and such that the range map r : G → G(0) is a
local homeomorphism.

From now on we will assume that we are given an étale groupoid G.

It is well known that d(x) = r(x−1), for every x in G, and hence d is a local
homeomorphism as well. Like any local homeomorphism, d and r are open
maps.

Proposition 3.2. G(0) is an open subset of G.

Proof. Let x0 ∈ G(0). By assumption there is an open subset A ofG containing
x0, and an open subset B of G(0) containing r(x0), such that r(A) = B, and r|A

is a homeomorphism onto B. Set B ′ = A ∩ B, and notice that

x0 = r(x0) ∈ A ∩ B = B ′.

Given that A is open in G we see that B ′ is open in B, hence A′ := r−1(B ′) ∩ A
is open in A, and moreover r is a homeomorphism from A′ to B ′.

We next claim that B ′ ⊆ A′. In order to prove it let x ∈ B ′. So x ∈ B ⊆ G(0),
and hence x = r(x). This implies that x ∈ r−1(B ′), and we already know that
x ∈ A, so x ∈ r−1(B ′) ∩ A = A′.

We conclude that r is a bijective map from A′ to B ′, which restricts to a
surjective map (namely the identity) on the subset B ′ ⊆ A′. This implies that
B ′ = A′, and since A′ is open in G, so is B ′. The conclusion then follows from
the fact that

x0 ∈ B ′ ⊆ G(0). ut

Definition 3.3. An open subset U ⊆ G is said to be a slice1 if the restrictions of
d and r to U are injective.

Since d and r are local homeomorphisms, for every slice U one has that d and
r are homeomorphisms from U onto d(U ) and r(U ), respectively. For the same
reason d(U ) and r(U ) are open subsets of G(0), and hence also open in G. It is
obvious that every open subset of a slice is also a slice.

Proposition 3.4. G(0) is a slice.
1Slices are sometimes referred to as open G-sets. Some authors use the notation Gop for the set of
all slices.
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Proof. By (3.2) G(0) is open in G. Since r and d coincide with the identity on
G(0), they are injective. ut

We next present a crucial property of slices, sometimes used as the definition
of étale groupoids [24, Definition 2.2.3]:

Proposition 3.5. The collection of all slices forms a basis for the topology of G.

Proof. Let V be an open subset of G and let x0 ∈ V . We must prove that there
exists a slice U such that x0 ∈ U ⊆ V .

Since r is a local homeomorphism there is an open subset A1 of G containing
x0, and an open subset B1 of G(0) containing r(x0), such that r(A1) = B1, and
r|A1 is a homeomorphism onto B1. Since d is also a local homeomorphism, we
may choose an open subset A2 of G containing x0, and an open subset B2 of G(0)

containing d(x0), such that d(A2) = B2, and d|A2 is a homeomorphism onto B2.
Therefore U := A1 ∩ A2 ∩ V is a slice containing x0, and contained in V . ut

If U is a slice then r(U ) is an open subset of the locally compact Hausdorff
space G(0), and hence r(U ) also possesses these properties. Since U is homeo-
morphic to r(U ) we have:

Proposition 3.6. Every slice is a locally compact Hausdorff space in the relative
topology.

If V is a subset of G which is open and Hausdorff, observe that the set of all
intersections V ∩ U , where U is a slice, forms a basis for the relative topology
of V by (3.5). Notice that V ∩ U is locally compact because it is an open subset
of the locally compact space U . From this it is easy to see that V itself is locally
compact. This proves:

Proposition 3.7. Every open Hausdorff subset of G is locally compact.

The following result is proved in Proposition (2.2.4) of [24], and although we
are not assuming the exact same set of hypotheses, the proof given there works
under our conditions:

Proposition 3.8. If U and V are slices then

(i) U−1 = {u−1 : u ∈ U } is a slice, and

(ii) U V = {uv : u ∈ U, v ∈ V, (u, v) ∈ G(2)} is a (possibly empty) slice.
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The theory of continuous functions on locally compact Hausdorff spaces has
many rich features which one wishes to retain in the study of non necessarily
Hausdorff groupoids. The definition of Cc(G), first used in [4], and also given
in [24], takes advantage of the abundance of Hausdorff subspaces of G.

Definition 3.9. We shall denote by C0
c (G) the set of all complex valued functions

f on G for which there exists a subset V ⊆ G, such that

(i) V is open and Hausdorff in the relative topology,

(ii) f vanishes outside V, and

(iii) the restriction of f to V is continuous and compactly supported2.

We finally define Cc(G) as the linear span of C0
c (G) within the space of all

complex valued functions on G.

We would like to stress that functions in Cc(G)might not be continuous relative
to the global topology of G.

Suppose that V is an open Hausdorff subset of G and let f ∈ Cc(V ). Consid-
ering f as a function on G by extending it to be zero outside V , it is immediate
that f ∈ C0

c (G), and hence also f ∈ Cc(G). This said we will henceforth view
Cc(V ) as a subset of Cc(G).

Proposition 3.10. Let C be a covering of G consisting of slices. Then Cc(G)
is linearly spanned by the collection of all subspaces of the form Cc(U ), where
U ∈ C.

Proof. Given f ∈ C0
c (G) pick V as in (3.9). Observe that V is locally compact

Hausdorff by (3.7), and that {U ∩ V : U ∈ C } is a covering for V . We may
then use a standard partition of unit argument to prove that f may be written as
a finite sum of functions fi ∈ Cc(V ∩ Ui ) ⊆ Cc(Ui ), where each Ui is a slice in
C. This concludes the proof. ut

We are now about to introduce the operations that will eventually lead to the
C*-algebra of G. Normally this is done by first introducing a Haar system on G.
In étale groupoids a Haar system is just a collection of counting measures, so the
whole issue becomes a lot simpler. So much so that we can get away without
even mentioning Haar systems.

2That is f |V ∈ Cc(V ), where the latter has the usual meaning.
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Proposition 3.11. Given f, g ∈ Cc(G) define, for every x ∈ G,

( f ? g)(x) =
∑

(y,z)∈G(2)

x=yz

f (y)g(z), and f ∗(x) = f (x−1).

Then

(i) f ?g and f ∗ are well defined complex functions on G belonging to Cc(G),

(ii) if f ∈ Cc(U ) and g ∈ Cc(V ), where U and V are slices, then f ? g ∈
Cc(U V ).

(iii) if f ∈ Cc(U ), where U is a slice, then f ∗ ∈ Cc(U−1).

Proof. The parts of the statement concerning f ∗ are trivial, so we leave them
as exercises. We begin by addressing the finiteness of the sum above. For this
we use (3.10) to write f =

∑n
i=1 fi , where each fi ∈ Cc(Ui ), and Ui is a slice.

If x = yz, and f (y)g(z) is nonzero, then fi (y) is nonzero for some i =
1, . . . , n, and hence y ∈ Ui . Observing that r(y) = r(x), and that there exists
at most one y ∈ Ui with that property, we see that there exists at most n pairs
(y, z) such that yz = x , and f (y) 6= 0. This proves that the above sum is finite,
and hence that f ? g is a well defined complex valued function on G.

Since “?” is clearly a bilinear operation, in order to prove that f ? g ∈ Cc(G),
one may again use (3.10) in order to assume that f ∈ Cc(U ) and g ∈ Cc(V ),
where U and V are slices. That is, it suffices to prove (ii), which we do next.

So let us be given f and g as in (ii). If ( f ? g)(x) 6= 0, then there exists at
least one pair (y, z) ∈ G(2), such that x = yz, y ∈ U , and z ∈ V , but since
r(y) = r(x), and d(z) = d(x), we necessarily have that

y = r−1
U r(x), and z = d−1

V d(x),

where we are denoting by rU the restriction of r to U , and by dV the restriction
of d to V . It is then easy to see that

( f ? g)(x) =

{
f
(
r−1

U r(x)
)

g
(
d−1

V d(x)
)
, if x ∈ U V ,

0 , otherwise.
(3.11.1)

In addition the above formula for f ? g proves that it is continuous on U V , so
we must only show that f ? g is compactly supported on U V . If A ⊆ U and
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B ⊆ V are the compact supports of f and g in U and V , respectively, we claim
that AB is compact. In fact, since G(0) is Hausdorff, we have that

G(2) = {(x, y) ∈ G × G : d(x) = r(y)}

is closed in G×G. So (A × B)∩G(2) is closed in A × B, and hence compact.
Since AB is the image of (A × B) ∩ G(2) under the continuous multiplication
operator, we conclude that AB is compact, as claimed. Observing that f ? g
vanishes outside AB, we deduce that f ? g ∈ Cc(U V ). ut

It is now routine to show that Cc(G) is an associative complex *-algebra with
the operations defined above.

We have already commented on the fact that Cc(V ) ⊆ Cc(G), for every open
Hausdorff subset V of G, and hence Cc(G

(0)) ⊆ Cc(G). A quick glance at
the definitions of the operations will convince the reader that Cc(G

(0)) is also a
*-subalgebra of Cc(G), the induced multiplication and adjoint operations corre-
sponding to the usual pointwise operations on Cc(G

(0)).

Proposition 3.12. Let U be a slice and let f ∈ Cc(U ). Then f ? f ∗ lies in
Cc(G

(0)).

Proof. Given that U is a slice, we have that UU−1 = r(U ). Moreover, by
(3.11.iii) we have that f ∗ ∈ Cc(U−1), and hence by (3.11.ii),

f ? f ∗ ∈ Cc(UU−1) ⊆ Cc
(
r(U )

)
⊆ Cc(G

(0)). ut

We would now like to discuss representations of Cc(G). So let H be a Hilbert
space and let

π : Cc(G) → B(H)

be a *-representation. Obviously the restriction of π to Cc(G
(0)) is a *-represent-

ation of the latter. Since Cc(G
(0)) is the union of C*-algebras3, π is necessarily

contractive with respect to the norm ‖ ∙ ‖∞ defined by

‖ f ‖∞ = sup
x∈G(0)

| f (x)|, ∀ f ∈ Cc(G
(0)).

Therefore, if U is a slice and f ∈ Cc(U ), we have

‖π( f )‖2 = ‖π( f )π( f )∗‖ = ‖π( f ? f ∗)‖ 6 ‖ f ? f ∗‖∞, (3.13)

3Namely the subalgebras of Cc(G
(0)) formed by all continuous functions that vanish outside a

fixed compact subset K ⊆ G(0).
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because f ? f ∗ ∈ Cc(G
(0)), by (3.12). Notice that for every x ∈ G(0) we have

( f ? f ∗)(x) =
∑

x=yz

f (y) f (z−1),

where any nonzero summand must correspond to a pair (y, z) such that d(y) =
r(z) = d(z−1), with both y, z−1 ∈ U . Since U is a slice this implies that y = z−1,
but since r(y) = r(x), we have that y = r−1

U

(
r(x)

)
, so, provided ( f ? f ∗)(x) is

nonzero one has that ( f ? f ∗)(x) = | f (r−1
U

(
r(x)

)
|2, therefore

‖ f ? f ∗‖∞ = sup
x∈G(0)

|( f ? f ∗)(x)| = sup
u∈U

| f (u)|2 = ‖ f ‖2
∞,

where we are also denoting by ‖ ∙ ‖∞ the sup norm on Cc(U ). Combining this
with (3.13) we have proven:

Proposition 3.14. If π is any *-representation of Cc(G) on a Hilbert space H
then for every slice U and for every f ∈ Cc(U ) one has that ‖π( f )‖ 6 ‖ f ‖∞.

By (3.10) any f ∈ Cc(G) may be written a finite fum f =
∑n

i=1 fi , where

fi ∈ Cc(Ui ), and Ui is a slice. So for every representation π of Cc(G) we have

‖π( f )‖ 6
n∑

i=1

‖π( fi )‖ 6
n∑

i=1

‖ fi‖∞, (3.15)

by (3.14). Regardless of its exact significance,4 the right-hand side of (3.15)
depends only on f and not on π . This means that

||| f ||| := sup
π

‖π( f )‖ < ∞, (3.16)

for all f ∈ Cc(G). It is then easy to see that ||| ∙ ||| is a C*-seminorm on Cc(G)
and hence its Hausdorff completion is a C*-algebra.

Definition 3.17. The C*-algebra of G, denoted C∗(G), is defined to be the
completion of Cc(G) under the norm ||| ∙ ||| defined above. We will moreover
denote by

i : Cc(G) → C∗(G) (3.17.1)

the natural inclusion given by the completion process, which is injective by [31,
4.2.i].

4It is related to the so called I -norm of f [31, II.1.3].
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Let us now study approximate units in C∗(G). For this recall that Cc(G
(0)) is

a subalgebra of Cc(G).

Proposition 3.18. Let {ui }i∈I be a bounded selfadjoint approximate unit for
Cc(G

(0)) relative to the norm ‖ ∙ ‖∞. Then {i(ui )}i∈I is an approximate unit for
C∗(G).

Proof. It is obviously enough to prove that {ui }i∈I is a bounded approximate
unit for Cc(G) relative to ||| ∙ |||. In view of (3.10) it in fact suffices to verify that
for every slice U and for every f ∈ Cc(U ) one has that

lim
i

||| f ? ui − f ||| = 0.

By (3.4) we have that G(0) is a slice, and it is easy to see that UG(0) = U , so by
(3.11) we have that f ? ui ∈ Cc(U ). Moreover, for every x ∈ U one has that

( f ? ui )(x) = f (x)ui (d(x)).

By (3.14) we conclude that

||| f ? ui − f ||| 6 sup
x∈U

∣
∣ f (x)ui (d(x))− f (x)

∣
∣,

which converges to zero because ui converges uniformly to 1 on every compact
subset of G(0), such as the image under d of the compact support of f . ut

4 Inverse semigroup actions

Recall that a semigroup S is said to be an inverse semigroup if for every s ∈ S,
there exists a unique s∗ ∈ S such that

ss∗s = s, and s∗ss∗ = s∗. (4.1)

It is well known that the correspondence s 7→ s∗ is then an involutive anti-
homomorphism. One usually denotes by E(S) the set of all idempotent elements
of S, such as s∗s, for every s ∈ S. For a thorough treatment of this subject the
reader is referred to [20], and [24].

We next recall the definition of one of the most important examples of inverse
semigroups:

Definition 4.2. If X is any set we denote by I(X) the inverse semigroup formed
by all bijections between subsets of X , under the operation given by composition
of functions in the largest domain in which the composition may be defined.
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The following is a crucial concept to be studied throughout the remaining of
this work.

Definition 4.3. Let S be an inverse semigroup and let X be a locally compact
Hausdorff topological space. An action ofS on X is a semigroup homomorphism

θ : S → I(X)

such that,

(i) for every s ∈ S one has that θs is continuous and its domain is open in X ,

(ii) the union of the domains of all the θs coincides with X .

Fix for the duration of this section an action θ of S on X .

Observe that if s ∈ S then from (4.1) we get

θsθs∗θs = θs , and θs∗θsθs∗ = θs∗,

which implies that θs∗ = θ−1
s .

Notice that the range of each θs coincides with the domain of θ−1
s = θs∗ , and

hence it is open as well. This also says that θ−1
s is continuous, so θs is necessarily

a homeomorphism onto its range.
In the absence of the property expressed in the last sentence of the above

definition one may replace X by the open subspace X0 formed by the union of
the domains of all the θs . It is then apparent that θ gives an action of S on X0

with all of the desired properties. In other words, the restriction imposed by that
requirement is not so severe.

It is well known that if e is an idempotent, that is, if e2 = e, then θe is the
identity map on its domain.

Notation 4.4. For every idempotent e ∈ E(S) we will denote5 by De the
domain (and range) of θe.

It is easy to see that θs and θs∗s share domains, and hence the domain of θs is
Ds∗s . Likewise the range of θs is given by Dss∗ . Thus θs is a homeomorphism
between the open sets

θs : Ds∗s → Dss∗ .

5Some authors adopt the notation Ds , even if s is not idempotent, to mean the range of θs , which
therefore coincides with our Dss∗ . We shall however not do so in order to avoid introducing an
unnecessary convention: one could alternatively choose to use Ds to denote the domain of θs .
Once one is accustomed to the idea that the source and range projections of a partial isometry u
are u∗u and uu∗, respectively, the notations Ds∗s and Dss∗ require no convention to convey the
idea of domain and range.
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If e and f are idempotents it is easy to conclude from the identity θeθ f = θe f ,
that De ∩ D f = Def . The next result appears in [33, 4.2].

Proposition 4.5. For each s ∈ S and e ∈ E(S) one has that

θs(De ∩ Ds∗s) = Dses∗ .

Proof. By the observation above we have

θs(De ∩ Ds∗s) = θs(Des∗s),

which coincides with the range of θsθes∗s = θses∗s . The conclusion then follows
from the following calculation:

ses∗s(ses∗s)∗ = ses∗s s∗ses∗ = ses∗. ut

Our next short term goal is to construct a groupoid of germs from θ . However,
given the examples of inverse semigroups that we have in mind, we would rather
not assume that θ is given in terms of a localization, as in [24, Theorem 3.3.2].
Nor do we want to assume that S is additive, as in [24, Corollary 3.3.2]. We also
want to avoid using the condition of fullness [26, 5.2], which is used to prove a
result [26, 8.1] similar to what we are looking for in the Hausdorff case.

Definition 4.6. [24, page 140] We will denote by � the subset of S × X given
by

� =
{
(s, x) ∈ S× X : x ∈ Ds∗s

}
,

and for every (s, x) and (t, y) in � we will say that (s, x) ∼ (t, y), if x = y,
and there exists an idempotent e in E(S) such that x ∈ De, and se = te. The
equivalence class of (s, x) will be called the germ of s at x , and will be denoted
by [s, x].

Given (s, x) and (t, y) in � such that (s, x) ∼ (t, y), and letting e be the
idempotent mentioned in (4.6), observe that

x ∈ De ∩ Ds∗s ∩ Dt∗t = Des∗st∗t .

If we set e0 = es∗st∗t , it then follows that se0 = te0. So, upon replacing e by
e0, we may always assume that the idempotent e in (4.6) satisfies e 6 s∗s, t∗t .

Proposition 4.7. Given (s, x) and (t, y) in � such that x = θt(y), one has that

(i) (st, y) ∈ �, and

(ii) the germ [st, y] depends only on the germs [s, x] and [t, y].
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Proof. Initially observe that

y = θt∗(x) ∈ θt∗(Ds∗s ∩ Dtt∗)
(4.5)
= Dt∗s∗st = D(st)∗st ,

so (st, y) indeed belongs to�. Next let (s ′, x) and (t ′, y) be elements of� such
that (s ′, x) ∼ (s, x) and (t ′, y) ∼ (t, y). Therefore there are idempotents e and
f such that x ∈ De, y ∈ D f , se = s ′e, and t f = t ′ f . We then have that

θt ′(y) = θt ′
(
θ f (y)

)
= θt ′ f (y) = θt f (y) = θt

(
θ f (y)

)
= θt(y) = x .

In other words, the fact that θt(y) = x does not depend on representatives. By
(i) it then follows that (s ′t ′, y) ∈ � and we will be finished once we prove that
(st, y) ∼ (s ′t ′, y). For this let d be the idempotent given by d = f t∗et , and we
claim that y ∈ Dd . To see this notice that since x ∈ De ∩ Dtt∗ , it follows that

y = θt∗(x) ∈ θt∗(De ∩ Dtt∗) = Dt∗et ,

and since y ∈ D f by assumption, we deduce that

y ∈ D f ∩ Dt∗et = D f t∗et = Dd .

This proves our claim. In addition we have

s ′t ′d = s ′t ′ f t∗et = s ′t f t∗et = s ′et f t∗t = set f t∗t = st f t∗et = std,

proving that (st, y) ∼ (s ′t ′, y), as required. ut

Let
G = �/∼

be the set of all germs, and put

G(2) =
{(

[s, x], [t, y]
)

∈ G × G : x = θt(y)
}
. (4.8)

For
(
[s, x], [t, y]

)
∈ G(2) define

[s, x] ∙ [t, y] = [st, y], (4.9)

and
[s, x]−1 =

[
s∗, θs(x)

]
. (4.10)

We leave it for the reader to prove:
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Proposition 4.11. G is a groupoid with the operations defined above, and the
unit space G(0) of G naturally identifies with X under the correspondence

[e, x] ∈ G(0) 7→ x ∈ X,

where e is any idempotent such that x ∈ De.

Although we are not providing a proof of the result above, we observe that the
last part of the statement depends upon the assumption made in the last sentence
of Definition (4.3).

The source6 map of G is clearly given for every [t, x] ∈ G by

d[t, x] = [t, x]−1[t, x] = [t∗, θt(x)] [t, x] = [t∗t, x].

Enforcing the identification referred to in (4.11) we will write

d[t, x] = x .

With respect to the range map, a similar reasoning gives

r[t, x] = θt(x).

We would now like to give G a topology. For this, given any s ∈ S, and any
open subset U ⊆ Ds∗s , let

2(s,U ) = {[s, x] ∈ G : x ∈ U }. (4.12)

Proposition 4.13. Let s and t be elements of S and let U and V be open sets
with U ⊆ Ds∗s , and V ⊆ Dt∗t . If [r, z] ∈ 2(s,U ) ∩2(t, V ) then there exists
an idempotent e and an open set W ⊆ D(re)∗re such that

[r, z] ∈ 2(re,W ) ⊆ 2(s,U ) ∩2(t, V ).

Proof. By assumption [r, z] = [s, x] = [t, y], for some x ∈ U and y ∈ V . But
this implies that z = x = y, so z ∈ U ∩ V . In addition there are idempotents e
and f such that z ∈ De, z ∈ D f , re = se, and r f = t f . Replacing e and f by
e f , we may assume without loss of generality that e = f , hence re = se = te.

6Given the several uses of the letter “s” in the setting of semigroups, we have decided to allow the
idea of “domain” to determine the letter to denote the source map, a convention that is not rare in
the literature.
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Set W = U ∩ V ∩ D(re)∗re. Since z ∈ Dr∗r ∩ De = Dr∗re = D(re)∗re, we see
that z ∈ W , and hence

[r, z] = [re, z] ∈ 2(re,W ).

In order to prove that 2(re,W ) ⊆ 2(s,U ) ∩ 2(t, V ), let [re, x] be a generic
element of 2(re,W ), so that x ∈ W . Noticing that x ∈ U , and that

[re, x] = [se, x] = [s, x],

we see that [re, x] ∈ 2(s,U ), and a similar reasoning gives [re, x] ∈2(t, V ). ut

By the result above we see that the collection of all 2(s,U ) forms the basis
of a topology on G. From now on G will be considered to be equipped with this
topology, and hence G is a topological space.

Proposition 4.14. With the above topology G is a topological groupoid.

Proof. Our task is to prove that the multiplication and inversion operations
on G are continuous. For this let [s, x] and [t, y] be elements of G such that(
[s, x], [t, y]

)
∈ G(2). Moreover suppose that the product of these elements lie

in a given open set W ⊆ G. Therefore, there exists some r ∈ S and an open set
V ⊆ Dr∗r , such that

[s, x][t, y] = [st, y] ∈ 2(r, V ) ⊆ W.

This implies that y ∈ V and that there exists some idempotent e such that y ∈ De,
and ste = re.

Setting U = V ∩ De ∩ Dt∗t , we will prove that the product of any pair of
elements

(
[s, x ′], [t, y′]

)
∈

(
2(s, Ds∗s)×2(t,U )

)
∩ G(2) (4.14.1)

lies in W . The product referred to is clearly given by [st, y′], and since y′ ∈
U ⊆ De, we have

[st, y′] = [r, y′] ∈ 2(r, V ) ⊆ W.

Observing that x ∈ Ds∗s , and y ∈ V ⊆ U , we see that the set appearing in
(4.14.1) is a neighborhood of

(
[s, x], [t, y]

)
in the relative topology of G(2). This

proves that multiplication is continuous.
With respect to inversion let s ∈ S and let U ⊆ Ds∗s be an open set. From the

definition of the inversion in (4.10) it is clear that

2(s,U )∗ = 2(s∗, θs(U )),

from which the continuity of the inversion follows immediately. ut
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We shall now begin to work towards proving that G is an étale groupoid.

Proposition 4.15. Given s ∈ S, let U ⊆ Ds∗s be an open set. Then the map

φ : x ∈ U 7→ [s, x] ∈ 2(s,U )

is a homeomorphism, where 2(s,U ) of course carries the topology induced
from G.

Proof. By the definition of the equivalence relation in (4.6) it is obvious that φ is
a bijective map. Let V ⊆ U be an open subset. Then clearly φ(V ) = 2(s, V ),
which is open in G, proving that φ is an open mapping. To prove that φ is
continuous at any given x ∈ U , let W be a neighborhood of φ(x) in2(s,U ), so
there exists some t ∈ S and an open set V ⊆ Dt∗t , such that

[s, x] = φ(x) ∈ 2(t, V ) ⊆ W ⊆ 2(s,U ).

Clearly this implies that x ∈ V ⊆ U ⊆ Ds∗s . In addition there exists some
idempotent e such that x ∈ De, and se = te. For every y ∈ De ∩ V observe that

φ(y) = [s, y] = [t, y] ∈ 2(t, V ) ⊆ W,

which means that φ(De ∩ V ) ⊆ W . Since De ∩ V is a neighborhood of x in U ,
we see that φ is continuous. ut

We have already seen that G(0), the unit space of G, corresponds to X . The
result above helps to complete that picture by showing that the correspondence
is topological:

Corollary 4.16. The identification of G(0) with X given by (4.11) is a homeo-
morphism.

Proof. Given [e, x] ∈ G(0) we have that De is an open subset of X containing x
and2(e, De) is an open subset of G(0) containing [e, x]. The result then follows
from the fact that

φ : y ∈ De 7→ [e, y] ∈ 2(e, De)

is a homeomorphism by (4.15). ut

Having assumed that X is locally compact and Hausdorff, it follows from the
above result that G(0) shares these properties. The source map on every basic
open set 2(s,U ) is a homeomorphism onto U because it is the inverse of the
map φ of (4.15). This implies that d is a local homeomorphism, and hence so is
r. This implies that:
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Proposition 4.17. The groupoid G = G(θ, S, X) constructed above, henceforth
called the groupoid of germs of the system (θ, S, X), is an étale groupoid.

The following identifies important slices in G.

Proposition 4.18. For every s ∈ S and every open subset U ⊆ Ds∗s , one has
that 2(s,U ) is a slice.

Proof. By definition of the topology on G we have that 2(s,U ) is open in
S. Recall that source map is given by d : [s, x] 7→ x, whose restriction to
2(s,U ) is the inverse of the map φ of (4.15), so it is injective. With respect to
the restriction of the range map r on 2(s,U ), notice that r = θs ◦ d, which is
injective. ut

5 Example: Action of the inverse semigroup of slices

The main goal of this section is to present an example of inverse semigroup
actions which is intrinsic to every étale groupoid. We therefore fix an étale
groupoid G from now on. Denote7 by S(G) the set of all slices in G. It is
well known [24, Proposition 2.2.4] that S(G) is an inverse semigroup under the
operations

U V =
{
uv : u ∈ U, v ∈ V, (u, v) ∈ G(2)

}
, and U ∗ =

{
u−1 : u ∈ U

}
,

for all slices U and V in S(G). The idempotent semilattice of S(G) is easily seen
to consist precisely of the open subsets of G(0).

Henceforth denoting by
X := G(0),

we wish to define an action θ of S(G) on X . Given a slice U we have already
mentioned that d(U ) and r(U ) are open subsets of X , and moreover that the
maps

dU : U → d(U ), and rU : U → d(U ),

obtained by restricting d and r, respectively, are homeomorphisms. Given x ∈
d(U ) we let

θU (x) = rU
(
d−1

U (x)
)
. (5.1)

Clearly θU is a homeomorphism from d(U ) to r(U ). It is interesting to observe
that θU (x) = y, if and only if there exists some u ∈ U such that d(u) = x

7As already observed some authors denote this set by Gop .
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and r(u) = y. Thus, if we view θU as a set of ordered pairs, according to the
technical definition of functions, we have

θU =
{(

d(u), r(u)
)

: u ∈ U
}
. (5.2)

We would like to show that θUθV = θU V , for all U, V ∈ S(G). Assuming that
θUθV (x) = z, or equivalently that (x, z) ∈ θUθV , there exists y ∈ X , such that
(y, z) ∈ θU and (x, y) ∈ θV , so we may pick u ∈ U and v ∈ V such that
d(v) = x , r(v) = y = d(u), and r(u) = z.

•
x

•
y

•
z

........
..........
..............
..................................................................................

v

........
..........
..............
..................................................................................

u
.................. .........
... .................. .........

...

Therefore we have that uv ∈ U V , and since

(x, z) =
(
d(v), r(u)

)
=

(
d(uv), r(uv)

)
∈ θU V ,

we see that θU V (x) = z. Conversely, if we are given that θU V (x) = z, there
exists some w ∈ U V such that d(w) = x , and r(w) = z. Writing w = uv, with
u ∈ U and v ∈ V , set y = r(v) = d(u). Then

(x, y) =
(
d(w), r(v)

)
=

(
d(v), r(v)

)
∈ θV ,

and similarly (y, z) =
(
d(u), r(u)

)
∈ θU , and we see that (x, z) ∈ θUθV , thus

proving that θUθV = θU V .
The last condition to be checked in order to prove that θ is an action is (4.3.ii),

but this is obvious because X = G(0) is a slice by (3.4), and θX is clearly the
identity map defined on the whole of X . With this we have proven:

Proposition 5.3. The correspondence U 7→ θU , defined by (5.1), gives an
action of S(G) on the unit space of G.

Given any *-subsemigroup8 S ⊆ S(G), one may restrict θ to S, thus obtaining
a semigroup homomorphism

θ |S : S → I(X)

which is an action of S on X , provided (4.3.ii) may be verified. The next result
gives sufficient conditions for the groupoid of germs for such an action to be
equal to G.

8A subsemigroup of an inverse semigroup is said to be a *-subsemigroup if it is closed under the
* operation, in which case it is clearly an inverse semigroup in itself.
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Proposition 5.4. Let G be an étale groupoid and let S be a *-subsemigroup of
S(G) such that

(i) G =
⋃

U∈S
U, and

(ii) for every U, V ∈ S, and every u ∈ U ∩ V , there exists W ∈ S, such that
u ∈ W ⊆ U ∩ V .

Then θ |S is an action of S on X = G(0), and the groupoid of germs for θ |S is
isomorphic to G.

Proof. Given x ∈ X , there exists some U ∈ S such that x ∈ U , by (i), and
so (x, x) =

(
d(x), r(x)

)
∈ θU , and in particular x is in the domain of U . This

proves (4.3.ii) and hence θ |S is indeed an action of S on X .
Let us temporarily denote the groupoid of germs for θ |S by H . Observe that

the domain of θU is d(U ), so H is given by

H =
{
[U, x] : U ∈ S, x ∈ d(U )

}
.

Given a germ [U, x] ∈ H we therefore have that there exists a unique u0 ∈ U
such that d(u0) = x , because d|U is injective.

We claim that u0 depends only on the germ [U, x]. For this suppose that
[U, x] = [V, x], for some V ∈ S, which means that there is an idempotent
E ∈ S such that x ∈ d(E) and U E = V E . As observed earlier, E is necessarily
a subspace of X and hence E = d(E). Applying the definition of the product
one gets

U E = {u ∈ U : d(u) ∈ E},

and since d(u0) = x ∈ d(E) = E , we conclude that u0 ∈ U E . Therefore also
u0 ∈ V E , and in particular u0 ∈ V . This is to say that the unique element v ∈ V ,
with d(v) = x , is u0, so the claim is proved. We may then set φ([U, x]) = u,
thus obtaining a well defined map

φ : H → G.

Employing the homeomorphisms dU = d|U : U → d(U ), for every slice U ,
one may concretely describe φ by

φ
(
[U, x]

)
= d−1

U (x). (5.4.1)

Another interesting characterization of φ is

φ
(
[U, x]

)
= u ⇐⇒ u ∈ U, and d(u) = x (5.4.2)
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for every U ∈ S, and every x ∈ d(U ). To see that φ is surjective let u ∈ G. We
may invoke (i) to find some U ∈ S such that u ∈ U , and hence [U, d(u)] is in
H and

φ
(
[U, d(u)]

)
= u. (5.4.3)

We will next prove that φ is injective, and for this we let [U1, x1] and [U2, x2]
be germs in H such that

φ
(
[U1, x1]

)
= φ

(
[U2, x2]

)
.

Denoting by w the common value of the terms above we have by (5.4.2) that

w ∈ Ui , and d(w) = xi , ∀ i = 1, 2.

In particular w ∈ U1 ∩ U2, so (ii) applies providing some W ∈ S such that
w ∈ W ⊆ U1 ∩ U2. The fact that W ⊆ Ui may be described in terms of the
semigroup structure of S(G) by saying that W = Ui W ∗W , (compare (6.1)),
which in particular implies that

U1W ∗W = U2W ∗W.

Moreover
x1 = x2 = d(w) ∈ d(W ) = d(W ∗W ),

thus proving that [U1, x1] = [U2, x2].
Let us now prove that φ is a homeomorphism. For this pick a germ [U, x] ∈ H

and recall from (4.18) that

2U := 2
(
U, d(U )

)
=

{
[U, y] : y ∈ d(U )

}

is a slice in H , which clearly contains [U, x]. The image of 2U under φ is
obviously U , and the restriction of φ to 2U is certainly continuous on 2U by
(5.4.1). On the other hand, for each u ∈ U , we have that

φ−1(u) = [U, d(u)],

by (5.4.3). Since φ−1 sends U into the slice 2U , in order to prove that φ−1 is
continuous on U , it is enough to prove that δ ◦ φ−1 is continuous, where we are
denoting by δ the source map for the groupoid H . That composition is clearly
given by

δ ◦ φ−1(u) = δ
(
[U, d(u)]

)
= d(u), ∀ u ∈ U,

which is well known to be continuous.
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It remains to prove that φ is an isomorphism of groupoids. For this let [U, x]
and [V, y] be germs is H and let u = φ([U, x]), and v = φ([V, y]), so that
u ∈ U , d(u) = x , v ∈ V , and d(v) = y, according to (5.4.2). It is useful to
remark that (

y, r(v)
)

=
(
d(v), r(v)

)
∈ θV ,

by (5.2), so θV (y) = r(v). By (4.8) we have that
(
[U, x][V, y]

)
∈ H (2) if and

only x = θV (y), which is equivalent to saying that d(u) = r(v), or that
(
φ
(
[U, x]

)
, φ

(
[V, y]

))
= (u, v) ∈ G(2).

This says that two elements in H may be multiplied if and only if their images
under φ in G may be multiplied. In this case we have by (4.9) that

[U, x][V, y] = [U V, y].

On the other hand, notice that uv ∈ U V , and that d(uv) = d(v) = y, so

φ
(
[U V, y]

)
= uv = φ

(
[U, x]

)
φ
(
[V, y]

)
,

thus proving that φ is a homomorphism of groupoids. ut

Conditions (5.4.i-ii) look very much like the definition of a topological base
for G. Therefore if S is a full *-subsemigroup of S(G), in the sense of [26, 5.2],
then S clearly satisfies (5.4.i-ii). However the latter conditions are clearly much
weaker than to require that S be a base for the topology of G. For example, if G
is a groupoid consisting only of units, that is, if G is a topological space, then G
itself is a slice and the singleton {G} is a *-subsemigroup of S(G) which is not
full, but satisfies (5.4.i-ii).

6 The Hausdorff property for the groupoid of germs

Quoting Paterson [24], the theory of non Hausdorff groupoids presented in sec-
tion (3), and employed throughout this paper, already has enough of the Hausdorff
property to allow for the efficient use of standard topological methods. However
should a groupoid be Hausdorff in the true sense of the word it is definitely good
to be aware of it.

It is not easy to determine conditions on an inverse semigroup S to ensure that
the groupoidG(θ, S, X) of (4.17) be Hausdorff for any action θ of S on any space
X , especially because even groups may present difficulties. However the actions
we are interested in have a special property which may be exploited in order to
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obtain such a characterization. In what follows we would like to describe this
result.

Recall e.g. from [20, 1.4.6] that an inverse semigroup S is naturally equipped
with a partial order defined by

s 6 t ⇐⇒ s = ts∗s, ∀ s, t ∈ S. (6.1)

Proposition 6.2. Suppose that S is an inverse semigroup which is a semilattice9

with respect to its natural order. Let θ be an action of S on a locally compact
Hausdorff space X, such that for each s ∈ S, the domain Ds∗s of θs is closed
(besides being open). Then G(θ, S, X) is Hausdorff.

Proof. Let [s, x] and [t, y] be two distinct elements of G(θ, S, X). We need
to find disjoint open subsets U and V of G(θ, S, X), such that [s, x] ∈ U , and
[t, y] ∈ V . If x 6= y this is quite easy: separate x and y within X using disjoint
open sets A, B ⊆ X , and take U = 2(s, A ∩ Ds∗s) and V = 2(t, B ∩ Dt∗t).

Let us then treat the less immediate case in which x = y. For this let u = s ∧ t
and notice that

su∗u = u = tu∗u,

and hence x /∈ Du∗u , or else [s, x] = [t, x], by (4.6). As we are assuming that
Du∗u is closed we deduce that V = X \ Du∗u is an open neighborhood of x in X .
Setting W = V ∩ Ds∗s ∩ Dt∗t , it is clear that

[s, x] ∈ 2(s,W ), and [t, x] ∈ 2(t,W ).

It therefore suffices to prove that2(s,W ) and2(t,W ) are disjoint sets. Arguing
by contradiction suppose that [r, z] ∈ 2(s,W )∩2(t,W ). It follows that [r, z] =
[s, z] = [t, z], and hence there are idempotents e and f such that z lies in De

and in D f , and moreover such that re = se, and r f = t f . By replacing e and f
with e f , we may assume that e = f , in which case re = se = te. Then

s(re)∗(re) = ser∗re = rer∗re = rr∗ree = re,

so re 6 s, and similarly re 6 t , so re 6 u. This implies that re = reu∗u,
whence r∗re = r∗reu∗u 6 u∗u, and therefore

z ∈ Dr∗r ∩ De = Dr∗re ⊆ Du∗u,

9Not to be confused with the semilattice of idempotents of S, this means that for every s, t ∈ S,
there is a maximum among the elements of S which are smaller than both s and t . Tradition
suggests that this element be denoted by s ∧ t . It is convenient to observe that if e and f are
idempotents in S then the product e f coincides with e∧ f . However if s and t are not idempotents
then the product st is not always the same as s ∧ t .
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which contradicts the fact that z ∈ W . ut

In view of this result it is interesting to find examples of inverse semigroups
which are semilattices. Recall that a zero in an inverse semigroup S is an element
0 ∈ S such that

0s = s0 = 0, ∀ s ∈ S.

An inverse semigroup S with zero is said to be E∗-unitary if for every e, s ∈ S,
one has that

0 6= e2 = e 6 s =⇒ s2 = s.

In other words, if an element dominates a nonzero idempotent then that element
itself is an idempotent. The E∗-unitary inverse semigroups have been intensely
studied in the semigroup literature. See, for example, [20, Section 9].

The following result resembles the fact that two analytic functions on a com-
mon connected domain, and agreeing on an open subset, must be equal.

Lemma 6.3. Let S be an E∗-unitary inverse semigroup and let s, t ∈ S be such
that s∗s = t∗t , and se = te, for some nonzero idempotent e 6 s∗s. Then s = t .

Proof. Notice that the idempotent f = ses∗ is nonzero because e = s∗ses∗s.
We have that

ts∗ f = ts∗ses∗ = t t∗tes∗ = tes∗ = ses∗ = f,

so f 6 ts∗, which implies that ts∗ is idempotent. In particular it follows that
ts∗ = (ts∗)∗ = st∗, so st∗ is idempotent as well. We next claim that ss∗ = t t∗.
In fact

t t∗ = t t∗t t∗ = ts∗st∗ = st∗ts∗ = ss∗ss∗ = ss∗.

Setting u = ts∗t , we have that

u∗u = t∗st∗ts∗t = t∗ss∗ss∗t = t∗ss∗t = t∗t t∗t = t∗t.

Therefore also u∗u = s∗s, while

t = t t∗t = tu∗u, and s = ss∗s = su∗u,

so it is enough to prove that tu∗ = su∗. We have

su∗ = st∗st∗ = st∗ = ts∗ = t t∗ts∗ = t t∗st∗ = tu∗. ut

The following result is probably well known to semigroup theorists:

Proposition 6.4. If S is an E∗-unitary inverse semigroup with zero, then S is a
semilattice with respect to its usual order.
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Proof. We must prove that s ∧ t exists for every s, t ∈ S. If there exists no
nonzero u ∈ S, such that u 6 s, t , it is clear that s ∧ t = 0. So suppose the
contrary and fix any such nonzero u. We then claim that

st∗t = ts∗s = t t∗s = ss∗t. (6.4.1)

Let f = s∗st∗t . Since u∗u 6 s∗s, and u∗u 6 t∗t , we have that u∗u 6 f .
Setting

s̃ = s f , and t̃ = t f,

notice that s̃ and t̃ share initial projections because

s̃∗s̃ = f s∗s f = f = f t∗t f = t̃∗ t̃ .

Also notice that

s̃u∗u = s f u∗u = su∗u = u = tu∗u = t f u∗u = t̃u∗u.

Employing (6.3) we then deduce that s̃ = t̃ . So

st∗t = ss∗st∗t = s f = s̃ = t̃ = t f = ts∗s.

This shows the equality between the first and second terms in (6.4.1). Since
0 6= u∗ 6 s∗, t∗, we may apply the above argument to s∗, t∗, u∗ in order to prove
that s∗t t∗ = t∗ss∗, which implies that t t∗s = ss∗t , so the third and fourth terms
in (6.4.1) agree.

The fact that u 6 s, t implies that su∗u = u = tu∗u. Left multiplying this
by t∗ we have that

t∗su∗u = t∗tu∗u = u∗u,

so t∗s is idempotent by the fact that S is E∗-unitary. Applying the same reason-
ing to s∗, t∗ and u∗, we have that ts∗ is idempotent as well. Thus both t∗s and
ts∗ are selfadjoint, and hence

st∗t = ts∗t = t t∗s,

proving the equality between the first and third terms in (6.4.1), hence concluding
the proof of our claim. We shall next prove that the element m(s, t) := st∗t ,
satisfies

u 6 m(s, t) 6 s, t.

It is obvious that m(s, t) 6 s, t . Recalling that u∗u 6 f , notice that

u = su∗u = s f u∗u = ss∗st∗tu∗u = st∗tu∗u = m(s, t)u∗u,

so u 6 m(s, t). Therefore m(s, t) is the infimum of s and t . ut
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7 Pre-grading structure of C∗(G)

In this section we return to our earlier standing hypotheses, namely that θ is an
action of the inverse semigroup S on the locally compact Hausdorff space X .
We will again be dealing with the groupoid of germs of the system (θ, S, X),
denoted here simply by G.

Our aim is to show that C∗(G) admits a pre-grading over S, as explained
below:

Definition 7.1. Let A be any C*-algebra and let S be an inverse semigroup. A
pre-grading10 of A over S is a family of closed linear subspaces {As}s∈S of A,
such that for every s, t ∈ S on has that

(i) As At ⊆ Ast ,

(ii) A∗
s = As∗ ,

(iii) if s 6 t (see (6.1)), then As ⊆ At ,

(iv) A is the closed linear span of the union of all As .

The pre-grading is said to be full if in addition As At is dense in Ast .

We begin by introducing some terminology:

Notations 7.2.

(i) For each s ∈ S and each f ∈ C0(Ds∗s) we will denote by αs( f ) the
element of C0(Dss∗) given by

αs( f )
x

= f
(
θs∗(x)

)
, ∀ x ∈ Dss∗ .

(ii) Given s ∈ Swe will use the shorthand notation2s for the slice2(s, Ds∗s).

(iii) The restriction of the source and range maps to 2s will be denoted by ds

and rs , respectively.

(iv) If f is any complex valued function on Ds∗s we will denote the composi-
tion f ◦ ds by δs f . This is by definition a function on 2s which we shall
also view as a function on G by extending it to be zero outside 2s .

(v) If f is any complex valued function on Dss∗ we will denote the compo-
sition f ◦ rs by f δs , with the same convention making f δs a function
supported on 2s .

10We use the term pre-grading to suggest that we are not requiring any sort of linear independence
of the subspaces As , as is usually required for gradings over groups.
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Since2s is a slice we have that ds is a homeomorphism, with domain2s , onto
d(2s) = Ds∗s . The inverse of ds is then given by

d−1
s : x ∈ Ds∗s 7→ [s, x] ∈ 2s .

Compare (4.15).
It is important not to mistake δs f by f ◦d, since the latter does not necessarily

vanish outside2s . Also notice that because ds is a homeomorphism one has that
δs f ∈ Cc

(
2s

)
if and only if f ∈ Cc(Ds∗s). In this case we obviously have that

δs f ∈ Cc(G). Similar observations apply to f δs .
The reader will be able to tell between the notations of (7.2.iv) and (7.2.v)

by taking note of which side of f does δs appear. The following is intended to
conciliate these points of view.

Proposition 7.3. Given f ∈ Cc(Ds∗s) one has that δs f = αs( f )δs .

Proof. Clearly both δs f and αs( f )δs are functions supported on 2s . Thus,
given any x ∈ Ds∗s we have

(αs( f )δs)([s, x]) = αs( f )
(
r([s, x])

)
= αs( f )

(
θs(x)

)
= f (θs∗(θs(x)))

= f (x) = f
(
d([s, x])

)
= (δs f )([s, x]).

ut

The two notations are therefore completely interchangeable. We shall how-
ever prefer to use δs f , perhaps because our notation for [s, x] already favours
sources over ranges. After all when one speaks of the “germ of a function f at a
point x”, the emphasis is on the point x in the domain of f , rather that the point
f (x) in the range of f .

Proposition 7.4. If s, t ∈ S then

(i) 2s2t = 2st ,

(ii) 2−1
s = 2s∗ .

Proof. Given [st, y] ∈ 2st we have that y ∈ D(st)∗st . By (4.5) if follows that

D(st)∗st = Dt∗s∗st = θt∗(Ds∗s ∩ Dtt∗).

Therefore, there exists x ∈ Ds∗s ∩ Dtt∗ such that y = θt∗(x) and hence x = θt(y).
After verifying that y ∈ Dt∗t we then conclude that

(
[s, x], [t, y]

)
∈ (2s ×2t) ∩ G(2),

and hence [st, y] = [s, x] [t, y] ∈ 2s2t . This proves that 2st ⊆ 2s2t . The
converse inclusion is trivial, so (i) is proved. The proof of (ii) follows by ins-
pection. ut
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Proposition 7.5. Given s, t ∈ S, let f ∈ Cc(Ds∗s), and g ∈ Cc(Dt∗t). Then

(i) (δs f ) ? (δt g) = δst h, where h = αt∗( f αt(g)),

(ii) (δs f )∗ = δs∗ αs( f̄ ).

On the other hand, if f ∈ Cc(Dss∗), and g ∈ Cc(Dtt∗), then

(iii) ( f δs) ? (gδt) = hδst , where h = αs(αs∗( f )g),

(iv) ( f δs)
∗ = αs∗( f̄ )δs∗ .

Proof. Since δs f ∈ Cc(2s) and δt g ∈ Cc(2t) we have by (3.11.ii) that

(δs f ) ? (δt g) ∈ Cc(2s2t)
(7.4)
= Cc(2st).

Given [st, y] ∈ 2st recall from the proof of (7.4) that [st, y] = [s, x] [t, y],
where x = θt(y). Therefore

(δs f ) ? (δt g)([st, y]) = (δs f )([s, x]) (δt g)([t, y]) = f (x)g(y)

= f
(
θt(y)

)
g(y) = h(y),

where the last equality is to be taken as the definition of h. It is tempting to
write h = αt∗( f )g, except that we are reserving the expression αt∗( f ), defined
in (7.2.i), for functions f ∈ Cc(Dtt∗), and all we know about f is that it lies
in Cc(Ds∗s). The reader will find that the expression given in the statement is
an alternative way to describe h which respects the domains of αt and αt∗ , the
fundamental point being that αt(g) is in Cc(Dtt∗), and the latter is an ideal in the
space of continuous functions. This proves (i).

With respect to (ii), for every γ ∈ G we have that

(δs f )∗(γ ) = (δs f )(γ−1),

so the support of (δs f )∗ is contained in 2−1
s = 2s∗ . Given [s∗, x] ∈ 2s∗ we

than compute

(δs f )∗([s∗, x]) = (δs f )([s∗, x]−1) = (δs f )([s, θs∗(x)]) = f (θs∗(x))

= αs( f̄ )(x) =
(
δs∗ αs( f̄ )

)
([s∗, x]).

Points (iii) and (iv) follow respectively from (i) and (ii), with the aid of (7.3). ut
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The expression for h in (7.5.iii) is a fundamental formula underlying the al-
gebrization of partially defined maps. It’s first appearance in the literature dates
back at least to [8, 3.4], and may be found also in [33, Section 5] and in [9,
Section 2], the latter being its twisted version.

Proposition 7.6. If s, t ∈ S are such that s 6 t , then

(i) Ds∗s ⊆ Dt∗t ,

(ii) for every f ∈ Cc(Ds∗s) one has that δs f = δt f ,

(iii) for every f ∈ Cc(Dss∗) one has that f δs = f δt ,

(iv) 2s ⊆ 2t ,

(v) Cc(2s) ⊆ Cc(2t).

Proof. Given that s = ts∗s we have

Ds∗s = D(ts∗s)∗ts∗s = Ds∗st∗t = Ds∗s ∩ Dt∗t ,

from where (i) follows. To prove (iv) let [s, x] ∈ 2s , so we have that x ∈ Ds∗s ⊆
Dt∗t and hence [t, x] belongs to 2t . In addition, setting e = s∗s, the fact that
x ∈ De, and se = te implies that

[s, x] = [t, x] ∈ 2t , (7.6.1)

proving (iv), and consequently also proving (v).
To prove (ii) let f ∈ Cc(Ds∗s), so also f ∈ Cc(Dt∗t) by (i). Using (v) we

may view both δs f and δt f as elements of Cc(2t). Given [t, x] ∈ 2t , where
x ∈ Dt∗t , we either have that x /∈ Ds∗s , in which case [t, x] /∈ 2s and hence,
recalling that δs f is supported in 2s , we have

δs f ([t, x]) = 0 = f (x) = δt f ([t, x]).

On the other hand, if x ∈ Ds∗s , we have that

δt f ([t, x]) = f (x) = δs f ([s, x])
7.6.1
= δs f ([t, x]).

This concludes the proof of (ii), and (iii) follows as well in view of (7.3). ut

In what follows we give the result promised at the beginning of this section:

Proposition 7.7. Let i : Cc(G) → C∗(G) be the natural map defined in (3.17.1).
For each s ∈ S, let As denote the closure of i

(
Cc(2s)

)
within C∗(G). Then the

collection {As}s∈S is a full pre-grading of C∗(G).

Bull Braz Math Soc, Vol. 39, N. 2, 2008



“main” — 2008/5/29 — 11:50 — page 225 — #35

INVERSE SEMIGROUPS AND COMBINATORIAL C*-ALGEBRAS 225

Proof. It is obvious that {2s}s∈S is a covering of G, so (7.1.iv) follows imme-
diately from (3.10) and the fact that i(Cc(G)) is dense in C∗(G).

Given that ds is a homeomorphism it is clear that Cc(2s) consists precisely
of the elements of the form δs f , where f runs in Cc(Ds∗s). Therefore (7.1.i–ii)
follow respectively from (7.5.i–ii). The third axiom of pre-gradings is an obvious
consequence of (7.6.v), so we are left with proving that our pre-grading is full.
For this let s, t ∈ S and pick any element in Cc(2st), which is necessarily of
the form δst h, where h ∈ Cc(D(st)∗st). Recall e.g. from the proof of (7.4.i) that
D(st)∗st = θt∗(Ds∗s ∩ Dtt∗), so

αt(h) = h ◦ θt∗ ∈ Cc(Ds∗s ∩ Dtt∗).

We may then write αt(h) = f k, where both f and k are in Cc(Ds∗s ∩ Dtt∗).
Observing that

k ∈ Cc(Ds∗s ∩ Dtt∗) ⊆ Cc(Dtt∗) = Cc
(
θt(Dt∗t)

)
,

the function g = k ◦ θt = αt∗(k) lies in Cc(Dt∗t), and hence δt g ∈ Cc(2t).
In addition we have that δs f ∈ 2s , so

Cc(2s)Cc(2t) 3 (δs f ) ? (δt g) = δst

(
αt∗

(
f αt(g)

))
= δst

(
αt∗( f k)

)
= δst h.

This shows that Cc(2st) ⊆ Cc(2s)Cc(2t), from where one sees that our pre-
grading is in fact full. ut

8 Universal property of C∗(G)

As before we fix an action θ of an inverse semigroup S on a locally compact
Hausdorff topological space X . We will assume in addition that S is countable
and that X is second countable,11 due to the use of measure theory methods. We
shall retain the notation G for the groupoid of germs of the system (θ, S, X).

Recall from (7.2.i) that for s ∈ S we denote by αs the isomorphism from
Cc(Ds∗s) to Cc(Dss∗) given by αs( f ) = f ◦ θs∗ .

Definition 8.1. A covariant representation of the system (θ, S, X) on a Hilbert
space H is a pair (π, σ ), where π is a nondegenerate *-representation of C0(X)
on H , and σ : S → B(H) satisfies

11In case of absolute necessity one may perhaps dispense with the second countability assumption at
the expense of working with the σ -algebra of Baire (instead of Borel) measurable sets, assuming
in addition that every De is Baire measurable.
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(i) σst = σsσt ,

(ii) σs∗ = σ ∗
s ,

(iii) π(αs( f )) = σsπ( f )σs∗ ,

(iv) π
(
C0(De)

)
H = σe(H),

for every s, t ∈ S, f ∈ C0(Ds∗s), and e ∈ E(S).

From now on we fix a covariant representation (π, σ ) of (θ, S, X) on H .

We will write π̃ for the canonical weakly continuous extension of π to the
algebra B(X) of all bounded Borel measurable functions on X . It is well known
that for each open subset U ⊆ X , one has that the range of π̃(1U ) coincides
with π

(
C0(U )

)
H , where 1U ∈ B(X) denotes the characteristic function of U .

Therefore (8.1.iv) may be expressed by saying that

σe = π̃(1De), ∀ e ∈ E(S). (8.2)

In particular it follows that

σeπ( f ) = π( f )σe, ∀ f ∈ C0(X). (8.3)

Our next main goal will be to show that there exists a *-representation σ ×π :
Cc(G) → B(H), such that for every s ∈ S, and f ∈ Cc(Ds∗s), one has that
(σ × π)(δs f ) = σsπ( f ).

Lemma 8.4. Let J be a finite subset of S and suppose that for each s ∈ J we are
given fs ∈ Cc(Ds∗s) such that

∑
s∈J δs fs = 0, in Cc(G). Then

∑
s∈J σsπ( fs) =

0, in B(H).

Proof. Fix, for the time being, two elements ξ, η ∈ H . For each s ∈ S, let
μs = μs,ξ,η be the finite Borel measure on 2s given by

μs(A) =
〈
σsπ̃(1d(A))ξ, η

〉
,

for every Borel measurable A ⊆ 2s , where 1d(A) stands for the characteristic
function on d(A).

Since d is a homeomorphism from2s to Ds∗s , one has that d(A) is a measurable
subset of Ds∗s , and hence also of X . Therefore 1d(A) ∈ B(X), so that π̃(1d(A))
is well defined. That μs is indeed a countably additive measure follows from the
corresponding well known property of π̃ .
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If B ⊆ Ds∗s is a measurable set, let A = d−1
s (B), so that A is a measurable

subset of 2s and B = d(A). Notice that

δs1B = 1B ◦ ds = 1A,

so
∫

2s

δs1B dμs =
∫

2s

1A dμs = μs(A) =
〈
σsπ̃(1d(A))ξ, η

〉
=

〈
σsπ̃(1B))ξ, η

〉
,

from where one easily deduces that
∫

2s

δs f dμs =
〈
σsπ̃( f )ξ, η

〉
, ∀ f ∈ B(X). (8.4.1)

We next claim that for every s, t ∈ S, and every measurable set A ⊆ 2s ∩ 2t ,
one has that

μs(A) = μt(A). (8.4.2)

In order to prove it observe that B := d(A) = ds(A) = dt(A) is a Borel subset
of Ds∗s ∩ Dt∗t and

A =
{
[s, x] : x ∈ B

}
=

{
[t, x] : x ∈ B

}
.

For every x ∈ B we moreover have that [s, x] = [t, x], so there exists e ∈ E(S)
such that x ∈ De, and se = te. It therefore follows that

B ⊆
⋃

e∈E(S)
se=te

De.

Since we are assuming that S is countable, so is E(S) and we may decompose B
as a disjoint union of measurable subsets {Bn}n∈N, such that each Bn is a subset
of some Den , and sen = ten . Obviously A is then the disjoint union of the sets

An = d−1
s (Bn) = d−1

t (Bn).

Notice that for each n ∈ N we have

σsπ̃(1d(An)
) = σsπ̃(1Bn ) = σsπ̃(1Den

1Bn )

= σsπ̃(1Den
)π̃(1Bn )

(8.2)
= σsσen π̃(1Bn ) = σsen π̃(1Bn ),

and similarly for t . Since sen = ten we have that

σsπ̃(1d(An)
) = σt π̃(1d(An)

),
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whence μs(An) = μt(An). The countable additivity of μs and μt then take care
of (8.4.2).

Let M be the measurable subset of G given by M =
⋃

s∈J2s , where J is as in
the statement. It is an easy exercise in measure theory to prove that there exists
a measure μ on M such that μ(A) = μs(A), for every s ∈ J , and A ⊆ 2s . We
then have that

〈 ∑

s∈J

σsπ( fs)ξ, η
〉
(8.4.1)
=

∑

s∈J

∫

2s

δs fs dμs =
∑

s∈J

∫

M
δs fs dμ

=
∫

M

∑

s∈J

δs fs dμ = 0.

Since ξ and η are arbitrary we conclude that
∑

s∈J
σsπ( fs) = 0, as stated. ut

We thus arrive at the main result of this section.

Theorem 8.5. Let S be a countable inverse semigroup, let θ be an action of S
on the second countable locally compact Hausdorff space X, and let G be the
corresponding groupoid of germs (4.17). Given any covariant representation
(π, σ ) of (θ, S, X) on a Hilbert space H there exists a unique *-representation
σ × π of C∗(G) on H such that

(σ × π)
(
i(δs f )

)
= σsπ( f ), and (σ × π)

(
i(gδs)

)
= π(g)σs,

for every s ∈ S, every f ∈ Cc(Ds∗s), and every g ∈ Cc(Dss∗), where i : Cc(G) →
C∗(G) is the canonical map.

Proof. Given any f ∈ Cc(G) use (4.18) and (3.10) to write

f =
n∑

k=1

δsk fk,

where s1, . . . , sn ∈ S, and fk ∈ Cc(Ds∗
k sk ), for all k = 1, . . . , n. Define

(σ × π)( f ) =
n∑

k=1

σskπ( fk).

That σ × π is well defined is a consequence of (8.4). It is obviously also linear,
and we claim that it is a *-homomorphism. In order to prove the preservation of
multiplication, we may use linearity to reduce our task to proving only that

(σ × π)(δs f ? δt g) = (σ × π)(δs f ) (σ × π)(δt g),
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for every f ∈ Cc(Ds∗s) and g ∈ Cc(Dt∗t). By (7.5.i) the left-hand side equals

(σ × π)
(
δstαt∗

(
f αt (g)

))
= σstπ

(
αt∗

(
f αt (g)

))
= σstσt∗π

(
f αt (g)

)
σt

= σstσt∗π( f )π
(
αt (g)

)
σt = σsσtσt∗π( f )σtπ(g)σt∗σt

(8.3)
= σsπ( f )σtσt∗σtσt∗σtπ(g) = σsπ( f )σtπ(g)

= (σ × π)(δs f ) (σ × π)(δt g).

Our claim will then be proved once we show that

(σ × π)
(
(δs f )∗

)
=

(
(σ × π)(δs f )

)∗
.

By (7.5.ii) the left-hand side equals

(σ × π)
(
δs∗ αs( f̄ )

)
= σs∗π

(
αs( f̄ )

)
= σs∗σsπ( f̄ )σs∗ = π( f̄ )σs∗σsσs∗

= π( f )∗σs∗ =
(
σsπ( f )

)∗
=

(
(σ × π)(δs f )

)∗
.

This proves our claim. By (3.16) we then conclude that

‖(σ × π)( f )‖ 6 ||| f |||, ∀ f ∈ Cc(G),

which implies that σ × π factors through i , producing a *-representation of
C∗(G), by abuse of language also denoted by σ × π , clearly satisfying the first
identity in the statement.

In order to prove the second identity let s ∈ S and g ∈ Cc(Dss∗). Set f =
αs∗(g), so that g = αs( f ), and f ∈ Cc(Ds∗s). Therefore

gδs = αs( f )δs
(7.3)
= δs f,

so

(σ × π)
(
i(gδs)

)
= (σ × π)

(
i(δs f )

)
= σsπ( f ) = σsσ

∗
s σsπ( f )

(8.3)
= σsπ( f )σ ∗

s σs = π
(
αs( f )

)
σs = π(g)σs .

ut

9 Inverse semigroup crossed products

The main goal of this section is to show that, in the context of the previous
section, C∗(G) is naturally isomorphic to the inverse semigroup crossed product
C0(X)oα S.

In the first part of this section we shall therefore briefly review the theory
of inverse semigroup crossed products based on [33] and [24], not only for the
convenience of the reader, but also because we will present a few improvements.
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Definition 9.1. An action of an inverse semigroup12 S on a C*-algebra A is a
semigroup homomorphism

α : S → I(A),

(see (4.2) for a definition of I(A)) such that

(i) for every s ∈ S, the domain (and hence also the range) of αs is a closed
two sided ideal of A, and αs is a *-homomorphism,

(ii) the linear span of the union of the domains of all the αs is dense in A.

As in the case of actions on locally compact spaces, defined in (4.3), for every
e ∈ E(S), we denote by Je the domain of αe. For each s ∈ S one therefore has
that αs is a *-isomorphism from Jss∗ to Jss∗ . See also footnote (5).

Given an action of S on a locally compact space X in the sense of (4.3), it is
easy to produce an action of S on A = C0(X), this time in the sense of (9.1):
observing that Je := C0(De) is an ideal in C0(X), for each s ∈ S, one takes
αs : Js∗s → Jss∗ to be given by (7.2.i). To check that (9.1.ii) holds one uses
(4.3.ii) and the Stone–Weierstrass Theorem.

From now on we fix an action of S on a C*-algebra A.

One then considers the linear space

L =
⊕

s∈S

Jss∗ . (9.2)

If e is an idempotent notice that Je appears in the above direct sum as many times
as there are elements s ∈ S with ss∗ = e.

Any element x in L is of the form x = (as)s∈S, where as ∈ Jss∗ , and as = 0
for all but finitely many s. Given s ∈ S and a ∈ Jss∗ , we shall denote by aδs

the element of L which is identically zero except for its sth component which is
equal to a. Any element of L , say x = (as)s∈S, is therefore given by

x =
∑

s∈S

asδs, (9.3)

12Sieben assumes that S is unital [33, 4.1] and that αe is the identity map on A. Attempting to
avoid units Paterson instead assumes that the family of the domains of the αs forms an upward
directed chain [24, Definition 3.3.1.ii]. These assumptions are designed to be used in proving
the equivalence between covariant representations of the system and *-representations of the
covariance algebra. See [33, 5.6] and [24, Proposition 3.3.3]. As we will see below there is a way
to get around this problem without assuming either of this extra conditions.
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where the sum has finitely many nonzero terms. Based on [8] and [21], Sieben
defines a *-algebra structure on L according to which

(aδs)(bδt) = αs
(
αs∗(a)b

)
δts , and (aδs)

∗ = αs∗(a∗)δs∗,

for every s, t ∈ S, a ∈ Jss∗ , and b ∈ Jtt∗ .
The crossed product Aoα L is then defined (see below) as a certain completion

of L . However, contrary to what happens with similar constructions, one does
not expect L to survive the completion process intact: if e and f are idempotents
and a ∈ Je ∩ J f , so that aδe and aδ f are elements of L , the construction is such
that aδe − aδ f = 0, when passing to the crossed product.

Let us now review the construction of the crossed product. Sieben first defines
[33, 4.5] a covariant representation of the system (α, S, A) on a Hilbert space
H (up to the fact that our S needs not have a unit) precisely as in (8.1), except
that C0(X) is replaced by A, and C0(De) is replaced by Je. Risking being a bit
monotonous the definition is:

Definition 9.4. A covariant representation of the system (α, S, A) on a Hilbert
space H is a pair (π, σ ), where π is a nondegenerate *-representation of A on
H , and σ : S → B(H) satisfies

(i) σst = σsσt ,

(ii) σs∗ = σ ∗
s ,

(iii) π(αs(a)) = σsπ(a)σs∗ ,

(iv) π
(
Je

)
H = σe(H),

for every s, t ∈ S, a ∈ Jss∗ , and e ∈ E(S).

It is then easy to see [33, 5.3] that for every covariant representation (π, σ )
the formula

(π × σ)

(
∑

s∈S

asδs

)

=
∑

s∈S

π(as)σs

defines a nondegenerate *-representation of L on H .
If e, f ∈ E(S) are such that e 6 f (meaning that e f = e), then αeα f = αe,

which gives Je ⊆ J f . If moreover and a ∈ Je we may speak of two different
elements of L , namely aδe and aδ f . Moreover notice that

(π × σ)(aδe) = π(a)σ (e) = π(a)σ (e f ) = π(a)σ (e)σ ( f )

= π(a)σ ( f ) = (π × σ)(aδ f ),

Bull Braz Math Soc, Vol. 39, N. 2, 2008



“main” — 2008/5/29 — 11:50 — page 232 — #42

232 R. EXEL

where our use of the identity π(a)σ (e) = π(a) is justified by (9.4.iv).
Restricting one’s attention to representations of L which behave as π × σ in

the above respect is an important insight due to Paterson.

Definition 9.5. [24, 3.87] A *-homomorphism φ from L into another *-algebra
will be called admissible if for every e, f ∈ E(S), with e 6 f , and every a ∈
Je, one has that φ(aδe) = φ(aδ f ).

Following Sieben [33, 5.6], Patterson [24, Proposition 3.3.3] proves that every
admissible nondegenerate *-representation5 of L on a Hilbert space H is given
as above for a covariant representation (π, σ ) of (α, S, A). Under the assumption
that S is unital the construction of the first component of the covariant representa-
tion, namely π , is a breeze: for every a in A one simply defines π(a) = 5(aδ1).
Paterson avoids units by requiring that the Je be upward directed. However it is
possible to get around this problem with bare hands:

Lemma 9.6. Given an admissible nondegenerate *-representation 5 of L on
a Hilbert space H, there exists a *-representation π of A on H such that

π(a) = 5(aδe), ∀ e ∈ E(S), ∀ a ∈ Je.

Proof. We first claim that for every s ∈ S, e ∈ E(S), and a ∈ Je ∩ Jss∗ one
has that

5(aδes) = 5(aδs). (9.6.1)

Since Jes(es)∗ = Jess∗ = Je ∩ Jss∗, both elements appearing as arguments to 5
in (9.6.1) are indeed in L . We have

(aδes − aδs)(aδes − aδs)
∗ = (aδes − aδs)

(
αs∗e(a

∗)δs∗e − αs∗(a∗)δs∗
)

= −aa∗δss∗e + aa∗δss∗,

so admissibility implies that 5(aδes − aδs)5(aδes − aδs)
∗ = 0, from which

(9.6.1) follows. Let
A0 =

∑

e∈E(S)

Je,

so that A0 is a dense *-subalgebra of A. Given a in A0, write it as a finite sum
a =

∑

e∈E(S)
ae, with ae ∈ Je, and define

π(a) =
∑

e∈E(S)

5(aeδe).
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We claim that π(a) does not depend on the choice of the ae’s. Proving this claim
is tantamount to proving that when a vanishes, so does the right-hand side above.
Since 5 is nondegenerate it is in fact enough to prove that

∑

e∈E(S)

5(aeδe)5(bδs) = 0,

for every s ∈ S and b ∈ Jss∗ . The left-hand side above equals

∑

e∈E(S)

5
(
(aeδe)(bδs)

)
=

∑

e∈E(S)

5(aebδes)
(9.6.1)
=

∑

e∈E(S)

5(aebδs)

= 5
( ∑

e∈E(S)

aebδs

)
= 5(abδs) = 0.

This proves that π is a well defined map on A0. To prove that π is a *-
representation let e, f ∈ E(S), a ∈ Je, and b ∈ J f . Then

π(a)π(b) = 5(aδe)5(bδ f ) = 5(abδe f ) = π(ab).

We leave it for the reader the easy proof that π preserves the star operation.
Summarizing, π is a *-representation of the dense subalgebra A0 ⊆ A on H .
Any finite sum of ideals among the Je gives a closed *-subalgebra of A. This
implies that π is norm-decreasing on A0 and hence extends to a *-representation
of A, which clearly satisfies the required conditions. ut

Inserting the result above into Sieben’s proof of [33, 5.6], or Paterson’s proof
of [24, Proposition 3.3.3], we arrive at the following:

Proposition 9.7. Let S be a (not necessarily unital) inverse semigroup and let α
be an action of S on a C*-algebra A. Then the association

(π, σ ) 7−→ 5 = π × σ

is a one-to-one correspondence between covariant representations (π, σ ) of
(α, S, A) and admissible nondegenerate *-representations 5 of L.

Recall from [33, 5.4] that the crossed product of A by S relative to the action
α, denoted A oα S, is defined to be the Hausdorff completion of L in the norm

|||x ||| = sup
5

‖5(x)‖,
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where the supremum is taken over all representations of L of the form5 = π×σ
(equivalently over all admissible nondegenerate representations). As such, it is
evident that to the classes of objects put in correspondence by (9.7), one can add
the nondegenerate *-representations of A oα S.

This concludes our review of inverse semigroup crossed products, so we will
now return to considering actions of inverse semigroups on topological spaces.

Theorem 9.8. Let S be a countable inverse semigroup, let X be a second
countable locally compact Hausdorff space, and let θ be an action of S on X
in the sense of (4.3). Denoting by G the groupoid of germs of (θ, S, X) one has
that C∗(G) is isomorphic to C0(X) oα S, where α is the action of S on C0(X)
given by (7.2.i).

Proof. Choose a faithful nondegenerate *-representation

9 : C0(X)oα S → B(H),

where H is a Hilbert space. That representation, once composed with the natural
map

j : L → C0(X)oα S,

yields a *-representation 5 = 9 ◦ j , of L on H which is clearly admissible
and nondegenerate. By (9.7) there exists a covariant representation (π, σ ) of(
α, S,C0(X)

)
on H such that

5( f δs) = π( f )σs,

for every s ∈ S, and f ∈ Jss∗ = C0(Dss∗). Invoking (8.5) we deduce that there
exists a *-representation 8 = π × σ of C∗(G) on H such that

8
(
i( f δs)

)
= π( f )σs = 5( f δs) = 9

(
j ( f δs)

)
,

for every s ∈ S, and every f ∈ Cc(Dss∗).
Observe that the notation “ f δs” means different things here: an element of L

as in (9.3), or an element of Cc(G) as in (7.2.v). However the context should
suffice to distinguish between these uses.

It follows that 8 maps C∗(G) into the image of C0(X) oα S through 9 in
B(H), and since 9 is faithful we can produce a *-homomorphism

φ : C∗(G) → C0(X)oα S,
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such that

φ
(
i( f δs)

)
= j ( f δs), ∀ s ∈ S, ∀ f ∈ C0(Ds∗s).

Leaving this aside for a moment consider the map

γ :
∑

s∈S

fsδs ∈ L 7−→
∑

s∈S

fsδs ∈ Cc(G),

where again the double meaning of fsδs should bring no confusion. Using
(7.5.iii–iv) it is immediate that γ is a *-homomorphism, and by (7.6.iii) one
sees that it is admissible. Therefore the composition i ◦ γ extends to give a
*-homomorphism

ψ : C0(X)oα S → C∗(G),

satisfying

ψ( j ( f δs)) = i( f δs), ∀ s ∈ S, ∀ f ∈ C0(Ds∗s).

This proves that ψ and φ are each other’s inverse, and hence isomorphisms. ut

We may use our methods to obtain the following generalization of [24, Theo-
rem 3.3.1] and [26, 8.1].

Proposition 9.8. LetG be a étale groupoid with second countable unit space and
let S be a countable13 *-subsemigroup of S(G) satisfying (5.4.i–ii). Let moreover
θ be the restriction to S of the action of S(G) on G(0) given by (5.2), and denote
by α the induced action of S on C0(G

(0)), as in (7.2.i). Then

C∗(G) ' C0(G
(0))oα S.

Proof. Let H be the groupoid of germs for the given action of S on G(0).
Applying (9.8) we conclude that

C∗(H ) ' C0(G
(0))oα S,

but we also have that
H ' G,

by (5.4), so the statement follows. ut

13If such an S exists then G itself is second countable.
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10 Action on the spectrum

As before we will let S be an inverse semigroup, but we will no longer postulate
the existence of actions of S on exogenous topological spaces. Instead we will
construct actions on spaces which are intrinsic to S. These spaces will actually be
constructed from the idempotent semilattice of S, which we will denoted simply
by E .

Definition 10.1. Let E be any semilattice. A semicharacter of E is a nonzero
map

φ : E → {0, 1},

such that φ(e f ) = φ(e)φ( f ), for all e, f ∈ E . The set of all semicharacters
equipped with the topology of pointwise convergence (equivalently the relative
topology from the product space {0, 1}E ) is called the spectrum of E and is
denoted Ê .

It is easy to see that Ê is a locally compact Hausdorff topological space.

Definition 10.2. For every e ∈ E we will denote by De the subset of Ê formed
by all semicharacters φ such that φ(e) = 1.

Given that the correspondence φ 7→ φ(e) is continuous in the topology of
pointwise convergence, we see that De is a clopen subset of Ê .

Notice that Ê may fail to be compact since there may exist a net of semichar-
acters converging pointwise to the identically zero map (which is not a character
by definition). No such net may exist inside De because its semicharacters take
the value 1 at e. So De is actually closed in {0, 1}E , hence compact.

Proposition 10.3. Let s ∈ S and φ ∈ Ds∗s .

(i) The map θs(φ) : e ∈ E 7→ φ(s∗es) ∈ {0, 1} is a semicharacter in Dss∗ .

(ii) The map θs : φ ∈ Ds∗s 7→ θs(φ) ∈ Dss∗ is a homeomorphism.

(iii) The map θ : s ∈ S 7→ θs ∈ I(Ê) is a semigroup homomorphism.

(iv) θ is an action of S on Ê, as defined in (4.3).

Proof. For e, f ∈ E we have

θs(φ)(e f ) = φ(s∗e f s) = φ(s∗ess∗ f s) = φ(s∗es)φ(s∗ f s)

= θs(φ)(e) θs(φ)( f ),
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so θs(φ) is multiplicative. In addition

θs(φ)(ss∗) = φ(s∗ss∗s) = φ(s∗s) = 1,

so θs(φ) ∈ Dss∗ . For every net {φi }i converging to φ in Ds∗s , and for every
e ∈ E , one has that

lim
i
θs(φi )(e) = lim

i
φi (s

∗es) = φ(s∗es) = θs(φ)(e),

so we see that {θs(φi )}i converges to θs(φ), proving that θs is continuous. We
next claim that θs is bijective and θ−1

s = θs∗ . In fact, for all φ ∈ Ds∗s and all
e ∈ E , we have

θs∗
(
θs(φ)

)
(e) = θs(φ)(ses∗) = φ(s∗ses∗s) = φ(s∗s)φ(e)φ(s∗s) = φ(e),

so θs∗ ◦ θs is the identity on Ds∗s . By exchanging s and s∗ we have that θs ◦ θs∗

is also the identity on Dss∗ , verifying our claim, and also giving

θs∗ = θ−1
s .

This proves also that θ−1
s is continuous, so θs is a homeomorphism as required

by (ii).
Before we tackle (iii) observe that for every e, f ∈ E one has that De ∩ D f =

Def . In addition we claim that

θs(Ds∗s ∩ De) = Dses∗ . (10.3.1)

In fact, a semicharacter φ lies in the set displayed on the left-hand side above if
and only if

θ−1
s (φ) ∈ Ds∗s ∩ De = Ds∗se ⇐⇒ θs∗(φ)(s∗se) = 1

⇐⇒ φ(ss∗ses∗) = 1

⇐⇒ φ(ses∗) = 1

⇐⇒ φ ∈ Dses∗ .

In particular, given s, t ∈ S, the domain of θt ◦ θs is given by

θ−1
s (Dss∗ ∩ Dt∗t) = θs∗(Dss∗ ∩ Dt∗t) = Ds∗t∗ts = D(ts)∗ts,

which is precisely the domain of θts . Moreover for every φ ∈ D(ts)∗ts , and every
e ∈ E , we have

θs
(
θt(φ)

)
(e) = θt(φ)(s

∗es) = φ(t∗s∗est) = θst(φ)(e),

proving that θs ◦ θt = θst , and (iii) follows. To prove (iv) it is now enough to
check (4.3.ii). For this it suffices to observe that if φ ∈ Ê then φ is nonzero by
definition, and hence there exists e ∈ E such that φ(e) = 1. Thus φ lies in the
domain of any θs for which s∗s = e, for example s = e. ut
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Definition 10.4. Let H be a Hilbert space. A map σ : S → B(H) will be called
a representation of S on H if for every s, t ∈ S one has

(i) σst = σsσt ,

(ii) σs∗ = σ ∗
s .

We have already encountered such objects when we studied covariant represen-
tations, as defined in (8.1). The difference is that here there is no representation
π of C0(X) to go along with σ .

For every e ∈ E , denote by 1e the characteristic function of De ⊆ Ê . A
concrete description of 1e may be given e.g. by

1e(φ) = φ(e), ∀φ ∈ Ê . (10.5)

Since De is clopen we have that 1e is continuous. Moreover De is compact so
1e ∈ Cc(Ê) ⊆ C0(Ê).

Proposition 10.6. Let σ be a representation of S on a Hilbert space H. Then
there exists a unique *-representation πσ of C0(Ê) on H such that πσ (1e) = σe,
for every e ∈ E. In addition the pair (πσ , σ ) is a covariant representation of the
system (θ, S, Ê)

Proof. The Stone–Weierstrass theorem readily implies that the set of all 1e’s
span a dense subalgebra of C0(Ê), from where uniqueness follows. To prove
existence, let A be the closed *-subalgebra of B(H) generated by {σe : e ∈ E}.
It is immediate that A is commutative, so let us denote the spectrum of A by Â.
Given ψ ∈ Â, observe that the map

φ : e ∈ E 7→ ψ(σe) ∈ {0, 1}

is a semicharacter of E (it is nonzero because ψ is nonzero). This allows us to
define a map

j : ψ ∈ Â 7−→ φ = ψ ◦ σ ∈ Ê,

which is obviously continuous and injective. If we temporarily (and hereti-
cally) alter the definition of both Â and Ê by dropping the requirement that
characters (in the case of Â) and semicharacters (in the case of Ê) be nonzero,
then the map j above will satisfy j (0) = 0. This means that, returning to the
usual (and sacrosanct) notion of spectrum, j is a proper map. It follows that

πσ : f ∈ C0(Ê) 7−→ f ◦ j ∈ C0( Â) = A
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is a well defined surjective *-homomorphism. Since A ⊆ B(H), we may view
πσ as a representation of A on H . Let us next prove that

πσ (1e) = σe. (10.6.1)

To prove it observe that for every ψ ∈ Â we have

ψ(πσ (1e)) = π̂σ (1e)(ψ) = 1e( j (ψ)) = 1e(ψ ◦ σ) = (ψ ◦ σ)(e) = ψ(σe),

proving (10.6.1). In order to prove (8.1.iii) let s ∈ S and f ∈ C0(Ê). Since the
algebra generated by the 1e is dense in C0(Ê), we may assume that f = 1e, for
some e ∈ E . Denoting by αs( f ) = f ◦ θs∗, for f ∈ C0(Ds∗s), as in (7.2.i),
notice that αs(1e) = 1e ◦ θs∗ is the characteristic function of

{
φ ∈ Ê : θs∗(φ) ∈ De

}
=

{
φ ∈ Ê : φ(s∗es) = 1

}
= Ds∗es,

that is, αs(1e) = 1s∗es . Therefore

σsπσ (1e)σs∗
(10.6.1)

= σsσeσs∗ = σses∗ = πσ (1s∗es) = πσ (αs(1e)).

Addressing (8.1.iv) notice that the compacity of De implies that C0(De) =
C(De) is a unital algebra with unit 1e. It follows that

πσ
(
C0(De)

)
(H) = πσ (1e)(H)

(10.6.1)
= σe(H),

and the proof is complete. ut

We do not want to be restricted to studying only the action of S on Ê . In fact
the most interesting intrinsic actions take place on subsets of Ê . But of course
only invariant subsets matter.

Definition 10.7. We say that a subset X ⊆ Ê is invariant if for every s ∈ S one
has that

θs(Ds∗s ∩ X) ⊆ X.

In that case, for every e ∈ E we denote

DX
e = De ∩ X,

and for every s ∈ S we let

θ X
s : DX

s∗s → DX
ss∗

Bull Braz Math Soc, Vol. 39, N. 2, 2008



“main” — 2008/5/29 — 11:50 — page 240 — #50

240 R. EXEL

be given by restricting θs .

It is then elementary to prove that the correspondence

θ X : s ∈ S 7→ I(X) (10.8)

is an action of S on X .
These actions, for suitably chosen subsets X ⊆ Ê , will dominate our attention

throughout this work. It is therefore interesting that we can sometimes guarantee
that its groupoid of germs is Hausdorff:

Corollary 10.9. Let S be an inverse semigroup which is a semilattice with
respect to its natural order (such as an E∗-unitary inverse semigroup). If E
denotes the idempotent semilattice of S, and if X ⊆ Ê is a closed invariant
subspace, then the groupoid of germs for the action θ X of S on X, as defined in
(10.7), is a Hausdorff groupoid.

Proof. As pointed out shortly after (10.5), we have that De is a compact subset
of Ê , for every e ∈ E . Hence DX

e = De ∩ X is closed. The statement then
follows from (6.2). ut

The following result shows that invariant subsets may be found underlying
Hilbert space representations of S.

Proposition 10.10. Given a representation σ of S on a Hilbert space H, write
the kernel of πσ as C0(U ), where U is an open subset of Ê . Then X := Ê \ U
is a closed invariant subset.

Proof. Given s ∈ S and φ ∈ Ds∗s ∩ X , suppose by contradiction that θs(φ) /∈
X . Then θs(φ) ∈ U ∩ Dss∗ , and by Urysohn’s Theorem, there exists

f ∈ C0(U ∩ Dss∗)

such that f (θs(φ)) = 1. Then

0 = σs∗πσ ( f )σs = πσ
(
αs∗( f )

)
,

which implies that αs∗( f ) ∈ C0(U ). Since

αs∗( f )(φ) = f
(
θs(φ)

)
= 1,

we conclude that φ ∈ U , but we have taken φ in X . This is a contradiction and
hence X is indeed invariant. ut
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Definition 10.11. Let σ be a representation of S on a Hilbert space H . We will
say that σ is supported on a given subset X ⊆ Ê if the representation πσ of
(10.6) vanishes on C0(Ê \ X).

Fix for the time being a closed invariant set X ⊆ Ê and let

GX = G(θ X , S, X), (10.12)

be the groupoid of germs associated to the system (θ X , S, X). Observe that for
every e ∈ E one has that DX

e (defined in (10.7)) is a compact open subset of
X . Denoting by 1X

e the characteristic function of DX
e ⊆ X , we then have that

1X
e ∈ Cc(X). Employing the notation introduced in (7.2.v) we see that for every

s ∈ S,
1X

ss∗δs ∈ Cc(2s) ⊆ Cc(G
X ),

where 2s was defined in (7.2.ii).

Proposition 10.13. Let X ⊆ Ê be a closed invariant set. Then the correspon-
dence

σ X : s ∈ S 7→ i
(
1X

ss∗δs
)

∈ C∗(GX ),

(recall that i was defined in (3.17.1)) is a representation of S (where we imag-
ine C∗(G) as an operator algebra via any faithful *-representation) which is
supported on X. In fact, the set U referred to in (10.10) is precisely equal to
Ê \ X.

Proof. For simplicity in this proof we will occasionally drop the superscripts
“X”, as it will cause no confusion. We will moreover identify Cc(G

X ) with
its copy within C∗(GX ), hence dropping “i” as well. For s, t ∈ S we have by
(7.5.iii)

σsσt = (1ss∗δs) ? (1t t∗δt) = αs
(
αs∗(1ss∗)1t t∗

)
δst = αs(1s∗s1t t∗)δst = 1st (st)∗δst ,

where the last step follows easily from (10.3.1). This proves (10.4.i), and (10.4.ii)
may easily be proved with the aid of (7.5.iv). Thus σ X is indeed a representation
of S in C∗(GX ), but we must still identify the set U of (10.10). The relevant
representation of C0(Ê) should really be denoted πσ X , but we will simply denote
it by π . By (10.6.1) we have

π(1e) = σe = 1X
e δe. (†)

Identifying the unit space of GX with X as in (4.16), and hence identifying
C0(X) as a subalgebra of C∗(GX ), we may write (†) as

π(1e) = 1X
e = 1e|X ,
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so we conclude that π( f ) = f |X , for all f ∈ C0(Ê). The kernel of π is therefore
seen to be C0(Ê \ X). ut

The above representation is universal in the following sense:

Theorem 10.14. LetS be a countable inverse semigroup and let σ : S → B(H)
be a representation which is supported on a closed invariant subset X ⊆ Ê . Then
there exists a *-representation ρ of C∗(GX ) on H such that ρ

(
i(1X

ss∗δs)
)

= σs ,
for all s ∈ S, and hence the diagram

S
σ

σ X

B(H)

ρ

C∗(GX )

commutes.

Proof. Let πσ be as in (10.6). Since πσ vanishes on C0(Ê \ X) we may factor
πσ through C0(X) obtaining a representation π of C0(X) on H such that the
diagram

C0(Ê)
πσ B(H)

π

C0(X)

commutes, where the southeast arrow is given by restriction. We then claim that
(π, σ ) is a covariant representation of the system (θ X , S, X). In order to prove
it let f ∈ C0(X) and choose g ∈ C0(Ê) whose restriction to X gives f . Then
for every s ∈ S we have

σsπ( f )σs∗ = σsπσ (g)σs∗ = πσ
(
αs(g)

)
= π

(
αs(g)|X

)

= π
(
αX

s (g|X )
)

= π
(
αX

s ( f )
)

where we are denoting by αX the action of S on C0(X) associated to θ X , as in
(7.2.i). This proves (8.1.iii). To check (8.1.iv) observe that for every e ∈ E we
have

π
(
C0(D

X
e )

)
H = π(1X

e )(H) = πσ (1e)(H) = σe(H),

concluding the proof that (π, u) is covariant.
We next wish to apply Theorem (8.5) to this covariant representation, so we

must address the countability restrictions: since E is countable, the product space
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{0, 1}E is metrizable and hence second countable. We are then given the green
light to apply the said Theorem and hence there exists a *-representation ρ of
C∗(GX ) on H such that

ρ
(
i( f δs)

)
= π( f )σs,

for every s ∈ S, and every f ∈ Cc(Dss∗). We then conclude that

ρ(σ X
s ) = ρ

(
i(1X

ss∗δs)
)

= π(1X
ss∗)σs

= πσ (1ss∗)σs
(10.6.1)

= σss∗σs = σss∗s = σs .
ut

The following is a main result:

Corollary 10.15. Let S be a countable inverse semigroup and let X be a closed
invariant subset of Ê . Then there is a one-to-one correspondence between rep-
resentations σ of S supported on X and representations ρ of the C*-algebra of
the groupoid of germs for the action θ X of S on X. If σ and ρ correspond to
each other then

ρ
(
i(1X

ss∗δs)
)

= σs,

for all s ∈ S.

Proof. Follows immediately from (10.13) and (10.14). ut

One should notice that any representation of S is supported on Ê , so we obtain
the following version of [24, Theorem 4.4.1]:

Corollary 10.16. If S is a countable inverse semigroup then there is a one-
to-one correspondence between representations of S and representations of the
C*-algebra of the groupoid of germs for the natural action θ of S on Ê.

11 Representations of semilattices

We have intentionally postponed until now a very delicate and subtle conceptual
problem. If S contains a zero element 0, and σ is a Hilbert space representation
of S, is it not natural to expect that σ0 = 0? However, including our development
so far, most treatments of inverse semigroups completely ignore this issue. In
fact some of the better known examples of inverse semigroup representations,
such as Wordingham’s Theorem [24, Theorem 2.2.2], do send zero to a nonzero
element!

The problem with zero is but the tip of an iceberg which we will now explore.
The issue apparently only concerns the idempotent semilattice of S.
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So we will now fix an abstract semilattice14 E , which will always be as-
sumed to contain a smallest element 0.

Definition 11.1. Given a partially ordered set X with smallest element 0, we
shall say that two elements x and y in X intersect, in symbols x e y, if there
is a nonzero z ∈ X such that z 6 x, y. Otherwise we will say that x and y are
disjoint, in symbols x ⊥ y.

If E is a semilattice it is easy to see that x and y intersect if and only if
x ∧ y 6= 0.

Definition 11.2. Let E be a semilattice and let B = (B, 0, 1,∧,∨,¬ ) be a
Boolean algebra. By a representation of E in B we mean a map β : E → B,

such that

(i) β(0) = 0, and

(ii) β(x ∧ y) = β(x) ∧ β(y), for every x, y ∈ E .

Recall that a Boolean algebra B is also a semilattice under the standard order
relation given by

x 6 y ⇐⇒ x = x ∧ y, ∀ x, y ∈ B.

Fix for the time being a representation β of a semilattice E in a Boolean
algebra B. For every x, y ∈ E , such that x 6 y, one has that x = x ∧ y, and
hence

β(x) = β(x ∧ y) = β(x) ∧ β(y),

which means that β(x) 6 β(y). In other words, β preserves the respective order
relations. On the other hand if x, y ∈ E are such that x ⊥ y, one has that
β(x) ⊥ β(y), which may also be expressed in B by saying that

β(x) 6 ¬β(y).

More generally, if X and Y are finite subsets of E , and one is given an element
z ∈ E such that z 6 x for every x ∈ X , and z ⊥ y for every y ∈ Y , it follows
that

β(z) 6
∧

x∈X

β(x) ∧
∧

y∈Y

¬β(y). (11.3)

14A semilattice is by definition a partially ordered set E such that for every x, y ∈ E , there exists a
maximum among the elements which are smaller than x and y. Such an element is said to be the
infimum of x and y, and is denoted x ∧ y.
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The set of all such z’s will acquire an increasing importance, so we make the
following:

Definition 11.4. Given finite subsets X, Y ⊆ E , we shall denote by E X,Y the
subset of E given by

E X,Y =
{
z ∈ E : z 6 x, ∀x ∈ X, and z ⊥ y, ∀y ∈ Y

}
.

Notice that if X is nonempty and xmin =
∧

x∈X x , one may replace X in
(11.4) by the singleton {xmin}, without altering E X,Y . However there does not
seem to be a similar way to replace Y by a smaller set.

Definition 11.5. Given any subset F of the semilattice E , we shall say that a
subset Z ⊆ F is a cover for F , if for every nonzero x ∈ F , there exists z ∈ Z
such that z e x . If y ∈ E and Z is a cover for F = {x ∈ E : x 6 y}, we will say
that Z is a cover for y.

The notion of covers is relevant to the introduction of the following central
concept (compare [12, 1.3]):

Definition 11.6. Let β be a representation of the semilattice E in the Boolean
algebra B. We shall say that β is tight if for every finite subsets X, Y ⊆ E , and
for every finite cover Z for E X,Y , one has that

∨

z∈Z

β(z) >
∧

x∈X

β(x) ∧
∧

y∈Y

¬β(y).

Notice that the reverse inequality “6” always holds by (11.3). Thus, when β
is tight, we actually get an equality above. We should also remark that in the
absence of any finite cover Z for any E X,Y , every representation is considered
to be tight by default.

It should be stressed that the definition above is meant to include situations
in which X , Y , or Z are empty, and in fact this will often be employed in the
sequel. It might therefore be convenient to reinforce the convention according
to which the supremum of the empty subset of a Boolean algebra is zero, and
that its infimum is 1.

For example, if X = Y = ∅, then E X,Y = E , and hence a cover Z for
E X,Y must contain quite a lot of elements. If a representation β is tight then the
supremum of β(z) over such a cover is required to coincide with 1. This may
be considered as a nondegeneracy condition for tight representations (applicable
only when E admits a finite cover).

In certain cases the verification of tightness may be simplified by assuming
that X 6= ∅:
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Lemma 11.7. Let β : E → B be a representation of the semilattice E in the
Boolean algebra B and suppose that β is known to satisfy the tightness condition
(11.6) only when X is nonempty. If moreover

(i) E contains a finite set X such that
∨

x∈X β(x) = 1, or

(ii) E does not admit any finite cover,

then β satisfies (11.6) in full, i.e., β is tight.

Proof. Our task is therefore to prove the tightness condition even when X = ∅.
So, let Y ⊆ E be a finite set and let Z be a finite cover for E∅,Y . Notice that for
every u ∈ E , either u e y, for some y ∈ Y , or u ∈ E∅,Y , in which case u e z,
for some z ∈ Z . Therefore Y ∪ Z is a finite cover for E . Under hypothesis (ii)
this is impossible, meaning that there are no finite covers for E∅,Y , so there is
nothing to be done. We therefore assume (i), and we must show that

∨

z∈Z

β(z) >
∧

y∈Y

¬β(y). (11.7.1)

Let X be as in (i). We claim that for each x ∈ X , the set x ∧ Z := {x ∧ z : z ∈ Z}
is a cover for E {x},Y . In fact, given a nonzero

w ∈ E {x},Y ⊆ E∅,Y ,

there exists some z ∈ Z such that z e w. Since w 6 x , we have

w ∧ x ∧ z = w ∧ z 6= 0,

so w e (x ∧ z), concluding the proof of our claim. By hypothesis β satisfies the
tightness condition with respect to the cover x ∧ Z for E {x},Y , and hence

∨

z∈Z

β(x ∧ z) > β(x) ∧
∧

y∈Y

¬β(y). (11.7.2)

We therefore have
∨

z∈Z

β(z)
(i)
=

∨

z∈Z

( ∨

x∈X

β(x)
)

∧ β(z) =
∨

x∈X

∨

z∈Z

β(x ∧ z)
(11.7.2)
>

∨

x∈X

(
β(x) ∧

∧

y∈Y

¬β(y)
)

=
( ∨

x∈X

β(x)
)

∧
∧

y∈Y

¬β(y) =
∧

y∈Y

¬β(y),

proving (11.7.1). ut

Bull Braz Math Soc, Vol. 39, N. 2, 2008



“main” — 2008/5/29 — 11:50 — page 247 — #57

INVERSE SEMIGROUPS AND COMBINATORIAL C*-ALGEBRAS 247

The following alternative characterization of tightness is apparently even
weaker than the above:

Proposition 11.8. Let β be a representation of the semilattice E in the Boolean
algebra B, satisfying either (i) or (ii) of (11.7). Then β is tight if and only if
for every x ∈ E and for every finite cover Z for x, one has that

∨

z∈Z

β(z) > β(x).

Proof. The only if part is immediate since {u ∈ E : u 6 x} = E {x},∅. To prove
the converse implication let X, Y ⊆ E be finite subsets and let Z be a cover for
E X,Y . Using (11.7) we may assume that X is nonempty, so let xmin =

∧
x∈X x .

We claim that Y ∪ Z is a cover for E {xmin},∅. In order to prove it pick u 6 xmin.
Then clearly u 6 x , for every x ∈ X .

Suppose first that u /∈ E X,Y . Then u necessarily fails to be disjoint from some
y ∈ Y , meaning that x e y, and thus proving that u intersects some element of
Y ∪ Z . On the other hand, if u ∈ E X,Y , then our assumption guarantees that
there exists some element z in Z , and hence also in Y ∪ Z , which intersects x .
This proves our claim, and so the hypothesis gives

β(xmin) 6
∨

u∈Y∪Z

β(u),

and hence also

β(xmin) ∧
( ∧

y∈Y

¬β(y)
)
6

( ∨

u∈Y∪Z

β(u)
)

∧
( ∧

y∈Y

¬β(y)
)

=
∨

u∈Y∪Z

(
β(u) ∧

∧

y∈Y

¬β(y)
)
.

Referring to the term β(u) ∧
∧

y∈Y ¬β(y), appearing above, notice that it is
zero for every u ∈ Y . In case u ∈ Z , then because Z ⊆ E X,Y , we see that
β(u) 6 ¬β(y), for all y ∈ Y , and hence the alluded term coincides with
β(u). The right-hand side of the expression displayed above thus becomes
simply

∨
u∈Z β(u), and since β(xmin) =

∧
x∈X β(x), the left-hand side is

( ∧

x∈X

β(x)
)

∧
( ∧

y∈Y

¬β(y)
)
. ut

When E happens to be a Boolean algebra there is a very elementary charac-
terization of tight representations:
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Proposition 11.9. Suppose that E is a semilattice admitting the structure of a
Boolean algebra which induces the same order relation as that of E, and let
β : E → B be a representation of E in some Boolean algebra B. Then β is
tight if and only if it is a Boolean algebra homomorphism.

Proof. Supposing that β is tight, notice that {1} is a cover for E∅,{0}, so

β(1) = ¬β(0) = ¬ 0 = 1.

Given x ∈ E notice that {¬ x} is a cover for E∅,{x}, therefore

β(¬ x) = ¬β(x).

Since x ∨ y = ¬ (¬ x ∧ ¬ y), for all x, y ∈ E , we may easily prove that
β(x ∨ y) = β(x) ∨ β(y). Thus β is a Boolean algebra homomorphism, as
required.

In order to prove the converse implication let X, Y ⊆ E be finite sets and let
Z be a finite cover for E X,Y . Let

z0 =
∨

z∈Z

z, x0 =
∧

x∈X

x , and ȳ0 =
∧

y∈Y

¬ y.

It is obvious that z0 6 x0 ∧ ȳ0, and we claim that in fact z0 = x0 ∧ ȳ0. We will
prove it by checking that

¬ z0 ∧ x0 ∧ ȳ0 = 0.

Let u = ¬ z0 ∧ x0 ∧ ȳ0, and notice that the fact that u 6 x0 ∧ ȳ0 implies that
u ∈ E X,Y . Arguing by contradiction, and hence supposing that u is nonzero, we
deduce that u e z, for some z ∈ Z , but this contradicts the fact that u 6 ¬ z0.
This proves our claim so, assuming that β is a Boolean algebra homomorphism,
we have

∨

z∈Z

β(z) = β
( ∨

z∈Z

z
)

= β(z0) = β(x0 ∧ ȳ0) =
∧

x∈X

β(x) ∧
∧

y∈Y

¬β(y),

showing that β is tight. ut

Not all semilattices admit tight injective representations. In order to study this
issue in detail it is convenient to introduce the following:

Definition 11.10. Let E be a semilattice and let x, y ∈ E be such that y 6 x .
We shall say that y is dense in x if there is no nonzero z ∈ E such that z ⊥ y
and z 6 x . Equivalently, if E {x},{y} = {0}.
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Obviously each x ∈ E is dense in itself but it is conceivable that some y 6= x is
dense in x . For a concrete example notice that in the semilattice E = {0, 1/2, 1},
where 0 6 1/2 6 1, one has that 1/2 is dense in 1.

In the general case, whenever y is dense in x we have that E {x},{y} = {0}, and
hence the empty set is a cover for E {x},{y}. Therefore for every tight representa-
tion β of E one has that

0 = β(x) ∧ ¬β(y),

which means that β(x) 6 β(y). Since the opposite inequality also holds, we
have that β(x) = β(y). Thus no tight representation of E can possibly separate
x and y. The reader is referred to [11] for a thorough study of this and related
problems. For future reference we record this conclusion in the next:

Proposition 11.11. If y 6 x are elements in the semilattice E, such that y is
dense in x, then β(y) = β(x) for every tight representation β of E.

We will have a lot more to say about tight representations in the following
sections.

12 Filters and characters

As in the previous section we fix a semilattice E with smallest element 0.
A fundamental tool for the study of tight representations of E is the notion
of filters, which we shall discuss in this section.

Definition 12.1. Let X be any partially ordered set with minimum element 0.
A filter in X is a nonempty subset ξ ⊆ X , such that

(i) 0 /∈ ξ ,

(ii) if x ∈ ξ and y > x , then y ∈ ξ ,

(iii) if x, y ∈ ξ , there exists z ∈ ξ , such that x, y > z.

An ultra-filter is a filter which is not properly contained in any filter.

Given a partially ordered set X and any nonzero element x ∈ X , it is elementary
to prove that

ξ = {y ∈ X : y > x}

is a filter containing x . By Zorn’s Lemma there exists an ultra-filter containing
ξ , thus every nonzero element in X belongs to some ultra-filter.
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When E is a semilattice, given the existence of x ∧ y for every x, y ∈ E ,
condition (12.1.iii) may be replaced by

x, y ∈ ξ ⇒ x ∧ y ∈ ξ. (12.2)

The following is an important fact about filters in semilattices which also
benefits from the existence of x ∧ y.

Lemma 12.3. Let E be a semilattice and let ξ be a filter in E. Then ξ is an
ultra-filter if and only if ξ contains every element y ∈ E such that y e x, for
every x ∈ ξ .

Proof. In order to prove the “if” part let η be a filter such that ξ ⊆ η. Given
y ∈ η one has that for every x ∈ ξ , both y and x lie in η, and hence (12.2) implies
that y ∧ x ∈ η, so y ∧ x 6= 0, and hence y e x . By hypothesis y ∈ ξ , proving
that η = ξ , and hence that ξ is an ultra-filter.

Conversely let ξ be an ultra-filter and suppose that y ∈ E is such that y e x ,
for every x ∈ ξ . Defining

η =
{
u ∈ E : u > y ∧ x, for some x ∈ ξ

}
,

we claim that η is a filter. By hypothesis 0 /∈ η. Also if u1, u2 ∈ η, choose for
every i = 1, 2 some xi ∈ ξ such that ui > y ∧ xi . Then

u1 ∧ u2 > (y ∧ x1) ∧ (y ∧ x2) = y ∧ (x1 ∧ x2),

so u ∈ η. Given that (12.1.ii) is obvious we see that η is indeed a filter, as
claimed. Noticing that ξ ⊆ η we have that η = ξ , because ξ is an ultra-filter.
Since y ∈ η, we deduce that y ∈ ξ . ut

The study of representations of our semilattice E in the most elementary
Boolean algebra of all, namely {0, 1}, leads us to the following specialization of
the notion of semicharacters:

Definition 12.4. By a character of E we shall mean any nonzero representation
of E in the Boolean algebra {0, 1}. The set of all characters will be denoted
by Ê0.

Thus, a character is nothing but a semicharacter which vanishes at 0. Perhaps
the widespread use of the term semicharacter is motivated by the fact that it
shares prefix with the term semilattice. If this is really the case then our choice
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of the term character may not be such a good idea but alas, we cannot think of
a better term.

It is easy to see that Ê0 is a closed subset of Ê , and hence that Ê0 is locally
compact.

Given a character φ, observe that

ξφ =
{

x ∈ E : φ(x) = 1
}
, (12.5)

is a filter in E (it is nonempty because φ is assumed not to be identically zero).
Conversely, given a filter ξ , define for every x ∈ E ,

φξ (x) =

{
1, if x ∈ ξ,

0, otherwise.
(12.6)

It is then easy to see that φξ is a character. Therefore we see that (12.5) and
(12.6) give one-to-one correspondences between Ê0 and the set of all filters.

Proposition 12.7. If ξ is an ultra-filter then φξ is a tight representation of E in
{0, 1}.

Proof. Let X, Y ⊂ E be finite subsets and let Z be a cover for E X,Y . In order
to prove that ∨

z∈Z

φ(z) >
∏

x∈X

φ(x)
∏

y∈Y

(1 − φ(y)),

it is enough to show that if the right-hand side equals 1, then so do the left-hand
side. This is to say that if x ∈ ξ for every x ∈ X , and y /∈ ξ for every y ∈ Y ,
then there is some z ∈ Z , such that z ∈ ξ .

By (12.3), for each y ∈ Y there exists some xy ∈ ξ such that y ⊥ xy .
Supposing by contradiction that Z ∩ ξ = ∅, then for every z ∈ Z there exists,
again by (12.3), some xz ∈ ξ , such that z ⊥ xz . Set

w =
∧

x∈X
x ∧

∧

y∈Y
xy ∧

∧

z∈Z
xz.

Sincew ∈ ξ we have thatw 6= 0. Obviouslyw 6 x for every x ∈ X , andw ⊥ y
for every y ∈ Y , and hence w ∈ E X,Y . Since Z is a cover there exists some
z1 ∈ Z such that w e z1. However, since w 6 xz1 ⊥ z1, we have that w ⊥ z1,
a contradiction. ut
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Definition 12.8. We shall denote by Ê∞ the set of all characters φ ∈ Ê0 such that
ξφ is an ultra-filter. Also we will denote by Êtight the set of all tight characters.

Employing the terminology just introduced we may rephrase (12.7) by saying
that Ê∞ ⊆ Êtight. The following main result further describes the relationship
between Ê∞ and Êtight.

Theorem 12.9. Let E be a semilattice with smallest element 0, and let Ê∞

and Êtight be as defined in (12.8). Then the closure of Ê∞ in Ê0 coincides with
Êtight.

Proof. Since the condition for any given φ in Ê0 to belong to Êtight is given by
equations it is easy to prove that Êtight is closed within Ê0, and since Ê∞ ⊆ Êtight
by (12.7), we deduce that

Ê∞ ⊆ Êtight.

To prove the reverse inclusion let us be given φ ∈ Êtight. We must therefore
show that φ can be arbitrarily approximated by elements from Ê∞. Let U
be a neighborhood of φ within Ê0. By definition of the product topology, U
contains a neighborhood of φ of the form

V = VX,Y =
{
ψ ∈ Ê0 : ψ(x) = 1, for all x ∈ X, and

ψ(y) = 0, for all y ∈ Y
}
,

where X and Y are finite subsets of E . We next claim that E X,Y 6= {0}. In order
to prove this suppose the contrary, and hence Z = ∅ is a cover for E X,Y . Since
φ is tight we conclude that

0 =
∨

z∈Z

φ(z) =
∏

x∈X

φ(x)
∏

y∈Y

(1 − φ(y)).

However, sinceφ is supposed to be in V , we have thatφ(x) = 1 for all x ∈ X , and
φ(y) = 0 for all y ∈ Y , which means that the right-hand side of the expression
displayed above equals 1. This is a contradiction and hence our claim is proved.

We are therefore allowed to choose a nonzero z ∈ E X,Y , and further to pick
an ultra-filter ξ such that z ∈ ξ . Observe that φξ ∈ Ê∞, and the proof will be
concluded once we show that φξ ∈ U .

For every x ∈ X and y ∈ Y , we have that z 6 x and z ⊥ y, hence x ∈ ξ and
y /∈ ξ . This entails φξ (x) = 1 and φξ (y) = 0, so φξ ∈ V ⊆ U , as required. ut
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Before we close this section let us discuss the issue of tight filters in the
idempotent semilattice of an inverse semigroup. We specifically want to prove
that the correspondence described by (10.3.ii) preserves tight characters. For
this we need an auxiliary result:

Lemma 12.10. Let S be an inverse semigroup with zero and let E be the
idempotent semilattice of S. Given finite subsets X and Y of E, with X non-
empty, let Z be a finite cover for E X,Y . Then for every s ∈ S one has that s Zs∗

is a cover for Es Xs∗,sY s∗
.

Proof. Let w be a nonzero element of E such that w 6 sxs∗ for every x ∈ X ,
and w ⊥ sys∗ for every y ∈ Y . Then

(s∗ws)y = s∗wss∗sy = s∗wsys∗s = 0,

so s∗ws ⊥ y, for every y ∈ Y . For every x ∈ X we have that

(s∗ws)x = s∗wss∗sx = s∗wsxs∗s = s∗ws,

so s∗ws 6 x . This shows that s∗ws ∈ E X,Y , and we claim that s∗ws 6= 0.
For this choose x ∈ X (allowed because X is nonempty) and observe that w 6
sxs∗ 6 ss∗. So

0 6= w = ss∗wss∗,

which implies our claim. By hypothesis there exists some z ∈ Z such that
s∗ws e z. Noticing that

0 6= (s∗ws)z = s∗wss∗sz = s∗wszs∗s,

we deduce that wszs∗ 6= 0, so w e szs∗. ut

The promised preservation of tightness is in order:

Proposition 12.8. Let S be an inverse semigroup with zero and let E be the
idempotent semilattice of S. Given s ∈ S and a tight character φ on E such that
φ(s∗s) = 1, one has that the character θs(φ) defined in (10.3.ii) is also tight.

Proof. In view of the requirement that X be nonempty in (12.10) we will use
(11.7) for the characterization of tight characters. We may do so for θs(φ) because
θs(φ)(ss∗) = 1.
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So let X and Y be finite subsets of E , with X nonempty, and let Z be a cover
for E X,Y . Then

∨

z∈Z

θs(φ)(z) =
∨

z∈Z

φ(s∗zs) =
∨

z′∈s∗ Zs

φ(z′)

=
∏

x ′∈s∗ Xs

φ(x ′)
∏

y′∈s∗Y s

1 − φ(y′)

=
∏

x∈X

φ(s∗xs)
∏

y∈Y

1 − φ(s∗ys)

=
∏

x∈X

θs(φ)(x)
∏

y∈Y

1 − θs(φ)(y),

where we have used (12.10) and the hypothesis that φ is tight in walking through
the third equal sign above. This concludes the proof. ut

If the content of this work is to be subsumed in a single idea, than that idea is
that the most natural intrinsic action of S on a topological space is the restriction
of the action θ to Êtight, as defined by (10.8). In the following sections we hope
to convince the reader of its relevance.

13 Tight representations of inverse semigroups

Throughout this section we will fix an inverse semigroup S with 0. Suppose
we are given a representation σ of S on a Hilbert space H and denote by A
the closed unital *-subalgebra of B(H) generated by the identity operator and
{σe : e ∈ E(S)}. Since A is abelian we see that the set

BA = {e ∈ A : e2 = e}

is a Boolean algebra relative to the operations

e ∧ f = e f, e ∨ f = e + f − e f , and ¬ e = 1 − e,

for all e, f ∈ BA. Provided we assume that σ0 = 0, it is clear that the restriction
of σ to E(S) is a representation of E(S) in BA, in the sense of Definition (11.2).

Definition 13.1. A representation σ of S on a Hilbert space H is said to be tight
if the restriction of σ to E(S) is a tight representation of E(S) in the Boolean
algebra BA, in the sense of (11.6).

Notice that, at the very least, tight representations are required to satisfy σ0 = 0.
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Theorem 13.2. A representation σ of S on a Hilbert space H is tight if and
only if it is supported in Êtight.

Proof. Let πσ be the *-representation of C0(Ê) on H given by (10.6), and
write Ker(πu) = C0(U ), for a suitable open subset U ⊆ Ê . Fix finite subsets
X, Y ⊆ E and a finite cover Z for E(S)X,Y . The condition for tightness of σ
is that ∨

z∈Z

σz =
∏

x∈X

σx

∏

y∈Y

(1 − σy), (†)

which, in view of (10.6.1), is equivalent to

∨

z∈Z

πσ (1z) =
∏

x∈X

πσ (1x)
∏

y∈Y

(
1 − πσ (1y)

)
,

or to ∨

z∈Z

1z −
∏

x∈X

1x

∏

y∈Y

(1 − 1y) ∈ C0(U ).

If f = fX,Y,Z is the function on the left-hand side of the expression displayed
above then to say that f ∈ C0(U ) means that f (φ) = 0, for every φ /∈ U .

Using (10.5) notice that for every φ ∈ Ê , to say that f (φ) = 0, is the same as
saying that ∨

z∈Z

φ(z) =
∏

x∈X

φ(x)
∏

y∈Y

(1 − φ(y)). (‡)

Summarizing, σ is tight if and only if for every X , Y and Z , as above, one has
that (‡) holds for every φ ∈ Ê \ U . But this is precisely expressing that

Ê \ U ⊆ Êtight,

which is equivalent to Ê \ Êtight ⊆ U , or to saying that πσ vanishes on C0(Ê \
Êtight). The last condition means, by definition, that σ is supported in Êtight. ut

The following result largely subsumes our main point so far:

Theorem 13.3 Let S be a countable inverse semigroup with zero and let Gtight
be the groupoid of germs associated to the restriction of the action θ of (10.3.iv)
to the closed invariant space Êtight ⊆ Ê . Then there is a one-to-one correspon-
dence between tight Hilbert space representations of S and *-representations of
C∗(Gtight). An explicit form of this correspondence is given by the formula at
the end of (10.15).
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Proof. Follows immediately from (10.15) and (13.2). ut

14 The inverse semigroup associated to a semigroupoid

With this section we start to discuss an application of our methods to semi-
groupoid C*-algebras, as defined in [10]. Our task here will be to construct an
inverse semigroup S(3) from a given semigroupoid 3.

We begin by recalling a few basic concepts from the theory of semigroupoids.
See [10] for more details. A semigroupoid is a triple (3,3(2), ∙ ) such that3 is
a set, 3(2) is a subset of 3×3, and

∙ : 3(2) → 3

is an operation which is associative in the following sense: if f, g, h ∈ 3 are
such that either

• ( f, g) ∈ 3(2) and (g, h) ∈ 3(2), or

• ( f, g) ∈ 3(2) and ( f g, h) ∈ 3(2), or

• (g, h) ∈ 3(2) and ( f, gh) ∈ 3(2),

then all of ( f, g), (g, h), ( f g, h) and ( f, gh) lie in 3(2), and

( f g)h = f (gh).

Moreover, for every f ∈ 3, we will let

3 f =
{
g ∈ 3 : ( f, g) ∈ 3(2)

}
.

From now on we fix a semigroupoid 3.

If f, g ∈ 3 we will say that f divides g, or that g is a multiple of f , in symbols
f | g, if either

• f = g, or

• there exists h ∈ 3 such that f h = g.

We recall from [10] that division is reflexive, transitive and invariant under
multiplication on the left.

A useful artifice is to introduce a unit for 3, that is, pick some element in the
universe outside 3, call it 1, set 3̃ = 3 ∪̇ {1}, and for every f ∈ 3̃ put

1 f = f 1 = f.
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Then, whenever f | g, regardless of whether f = g or not, there always exists
x ∈ 3̃ such that g = f x .

We will find it useful to extend the definition of 3 f , for f ∈ 3̃, by putting

31 = 3.

Nonetheless, even if f 1 is a meaningful product for every f ∈ 3, we will not
include 1 in 3 f . In the few occasions that we need to refer to the set of all
elements x in 3̃ for which f x makes sense we shall use 3 f ∪ {1}.

It is interesting to notice that, as a consequence of the associative axiom, for
every f ∈ 3̃, and g ∈ 3 f , one has

3 f g = 3g. (14.1)

Note that condition above does not allow for g = 1, since 1 is never in 3 f .
Besides, if g = 1 then the above equality will most likely fail. It is also easy to
see that if g ∈ 3, and h ∈ 3g ∪ {1}, then

g ∈ 3 f ⇐⇒ gh ∈ 3 f , (14.2)

for every f ∈ 3̃.
Recall from [10, Section 3] that a spring is an element f ∈ 3 such that

3 f = ∅.

If f is a spring one is therefore not allowed to right-multiply it by any element,
that is, f g is never a legal multiplication, unless g = 1. In some key places
below we will suppose that 3 has no springs.

We should be aware that 3̃ is not a semigroupoid. Otherwise, since f 1 and
1g are meaningful products, the associativity axiom would imply that ( f 1)g is
also a meaningful product, but this is clearly not always the case. Nevertheless
it is interesting to understand precisely which one of the three clauses of the
associativity property is responsible for this problem. As already observed, the
first clause does fail irremediably when g = 1. However it is easy to see that
all other clauses do generalize to 3̃. This is quite useful, since when we are
developing a computation, having arrived at an expression of the form ( f g)h,
and therefore having already checked that all products involved are meaningful,
we most often want to proceed by writing

. . . = ( f g)h = f (gh),
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and this is fortunately meaningful and correct for all f, g, h ∈ 3̃, because it does
not rely on the delicate first clause of associativity.

Given f, g ∈ 3, we say that f and g intersect if they admit a common multiple,
that is, an element m ∈ 3 such that f | m and g | m. Otherwise we will say that
f and g are disjoint. We will write

f e g (14.3)

when f and g intersect, and
f ⊥ g (14.4)

when f and g are disjoint. Incidentally this notation employs the same symbols
“e” and “⊥”, defined in (11.1) in connection to semilattices, with different
(although deeply related) meanings, and we will rely on the context to determine
the correct interpretation of our notation. Employing the unitization 3̃ notice
that f e g if and only if there are x, y ∈ 3̃ such that f x = gy.

Definition 14.5. We shall say that an element f ∈ 3̃ is monic if for every
g, h ∈ 3̃ we have

f g = f h ⇒ g = h.

Observe that the above includes the implication f g = f ⇒ g = 1. Ob-
viously 1 is monic. Moreover notice that if 3 has a right identity, that is, an
element e such that f e = f , for all f ∈ 3, then there are no monic elements
since f e = f , but e 6= 1.

Definition 14.6. Let f, g ∈ 3 be such that f e g. We shall say that an element
m ∈ 3 is a least common multiple of f and g, if m is a common multiple of f
and g and for every other common multiple h, one has that m | h.

From now on we shall assume the following:

Standing Hypothesis 14.7. 3 is a semigroupoid in which every element is
monic, and moreover every intersecting pair of elements admits a least common
multiple.

Observe that if f, g, h ∈ 3̃ then

f | g and g | f ⇒ f = g. (14.8)

In fact, writing f = gx , and g = f y, for x, y ∈ 3̃, we deduce that

g = f y = (gx)y = g(xy),
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which implies that xy = 1, but this can only happen if x = y = 1, and hence
f = g.

If f and g are intersecting elements in 3 and if m1 and m2 are both least
common multiples of f and g, then m1 | m2 and m2 | m1, so m1 = m2 by (14.8).
Therefore there is exactly one least common multiple for f and g, which we
denote as

lcm( f, g).

We next relate the notion of least common multiples to the categorical notion
of pull-backs.

Proposition 14.9. Let f and g be intersecting elements in3, and write lcm( f, g)
= f p = gq. Then (p, q) is the unique pair of elements in 3̃ such that

(i) f p = gq, and

(ii) for every other pair of elements p′, q ′ ∈ 3̃ such that f p′ = gq ′, there
exists a unique r ∈ 3̃ such that p′ = pr, and q ′ = qr.

•

•

•

••
........
........
........
........
........
........
........
........
................
............

p

................................................................................ .......
.....

f

................................................................................ .......
.....

q

........
........
........
........
........
........
........
........
................
............

g

........................................................................ .........
...
r..............

..............
..............
..............
..............
..............
..............
..............
..............
...............
............

p′

............................................................................................................................................. .........
...q′

Proof. We initially notice that the occurrence of black dots in our diagram is
not intended to give the idea of source or range, as we are not assuming that our
semigroupoid is a category.

Given (p′, q ′) as in (ii) notice that m ′ := f p′ is a common multiple of f and
g. Therefore m | m ′, so there exists r ∈ 3̃ such that m ′ = mr . It follows that

f p′ = m ′ = mr = f pr.

Since f is monic we deduce that p′ = pr , and a similar reasoning gives q ′ = qr .
The uniqueness of r follows from the fact that p is monic. Next let us address
the uniqueness of (p, q), by assuming that (p1, q1) and (p2, q2) are two pairs
satisfying (i) and (ii).

Applying (ii) twice we conclude that there are r and s in 3̃ such that p2 = p1r ,
and q2 = q1r on the one hand, and p1 = p2s, and q1 = q2s, on the other. Since

p1 = p2s = p1rs,
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we deduce that rs = 1, whence r = s = 1 and uniqueness follows. ut

We will now begin the actual construction of the inverse semigroup S(3). The
first step is to consider a certain collection of subsets of 3:

Definition 14.10. We shall let Q denote the collection of all subsets of 3 of the
form

QF =
⋂

f ∈F
3 f ,

where F is a nonempty finite subset of 3. By default the empty set will also be
included in Q.

Since we have prohibited 1 to be in any 3 f , no member of Q is allowed to
contain 1. In addition we have prohibited 1 to be in the set F above (recall
that F ⊆ 3), so 31 is never involved in the intersection of sets making up QF ,
above. Therefore3 is only a member of Q if there exists some f ∈ 3 for which
3 f = 3, which is not always the case, and rarely true in the examples we wish
to consider.

It is noteworthy that Q is closed under intersections and hence it is a semilattice
with smallest element ∅. As already noticed it may or may not contain a largest
element.

The underlying set of the inverse semigroup we wish to construct may already
be introduced:

Definition 14.11. We will let S(3) denote the set

S(3) =
{
( f, A, g) ∈ 3̃× Q × 3̃ : A ⊆ 3 f ∩3g

}
.

We will tacitly assume that all elements of S(3) of the form ( f, A, g), with
A = ∅, are identified with each other, forming an equivalence class which we
will call zero and denote by 0.

Apart from the identification referred to above, no other identifications will be
implicitly or explicitly made.

We will now work towards defining the multiplication operation on S(3). The
following rudimentary notation will be extremely useful:

Definition 14.12. Given f ∈ 3̃ and A ∈ Q we shall let

f −1(A) =
{
g ∈ 3 f : f g ∈ A

}
.

The true meaning of f −1(A) is revealed next:

Proposition 14.13. Given A ∈ Q one has
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(i) 1−1(A) = A,

(ii) if f ∈ A, then f −1(A) = 3 f ,

(iii) if f ∈ 3 \ A, then f −1(A) = ∅.

Proof. Skipping the obvious first statement write A =
⋂

h∈H3
h , where H ⊆ 3

is a finite subset. We begin by proving (iii) by contradiction. So, supposing that
f ∈ 3 and f −1(A) is nonempty pick g ∈ f −1(A). Then f g ∈ A, which means
that (h, f g) ∈ 3(2) for all h ∈ H . By the associativity property (and the fact
that f 6= 1) we deduce that (h, f ) ∈ 3(2), and hence that f ∈ A, proving (iii).

As for (ii) if f ∈ A, then again by the associativity property we have that
(h, f g) ∈ 3(2) for all h ∈ H and g ∈ 3 f , so f g ∈ A, of g ∈ f −1(A). ut

A couple of elementary facts related to the above notation are:

Proposition 14.14. Let f, g ∈ 3̃, and A ∈ Q.

(i) If g−1
(

f −1(A)
)

is nonempty, then g ∈ 3 f ∪ {1},

(ii) If g ∈ 3 f ∪ {1}, then ( f g)−1(A) = g−1
(

f −1(A)
)
.

Proof.

(i) The result is obvious if either f = 1 or g = 1, so we suppose f, g ∈ 3.
Clearly f −1(A) is nonempty, so f ∈ A by (14.13.iii), in which case
f −1(A) = 3 f by (14.13.ii). The hypothesis is then that g−1(3 f ) is
nonempty and, again by (14.13.iii), we conclude that g ∈ 3 f .

(ii) Left to the reader. ut

We are now ready to describe the multiplication operation on S(3).

Definition 14.15. Given ( f, A, g) and (h, B, k) in S(3) we will let

( f, A, g)(h, B, k) =

{(
f u , u−1(A) ∩ v−1(B) , kv

)
, if lcm(g, h) = gu = hv,

0 , if g ⊥ h.

There is a slight hitch in the above definition in the sense that nothing guar-
antees that f u and kv are legal products. However, if u is not in 3 f ∪ {1}, then
u is not in A either, because A ⊆ 3 f . By (14.13) we deduce that u−1(A) = ∅,
and hence we define the product to be zero by the rule that any triple with the
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empty set in the middle represents zero in S(3), regardless of the fact that f u is
not defined. The same argument applies if v is not in 3g ∪ {1}.

Rather than include a third clause in the definition above we shall accept illegal
products f u and kv, only as long as the empty set rule applies.

There is a diagrammatic interpretation for the product: in case ( f, A, g)(h, B, k)
is nonzero, we have that g e h, so we may write a pull-back diagram for (g, h),
as displayed in the diamond at the center of the diagram below.

•

•

•

•

•

•

...........................................................................
.....
............
f

................................................................................ .......
.....g

...........................................................................
.....
............ h

................................................................................ .......
.....k

...........................................................................
.....
............
u

................................................................................ .......
.....vA B

u−1(A)∩v−1(B)

Imagining that the element ( f, A, g) is represented by the triangle in the lower
left corner, including the decoration “A” at its top vertex, and similarly for
(h, B, k), the product is then represented by the big triangle encompassing the
whole diagram, with u−1(A)∩ v−1(B) as decoration. This idea is used to prove
the following:

Theorem 14.16. Let S be an inverse semigroup satisfying (14.7). Then the
multiplication on S(3) introduced above is well defined and associative, and
hence S(3) is a semigroup. It is moreover an inverse semigroup with zero,
where the adjoint operation is given by

( f, A, g)∗ = (g, A, f ).

Proof. Since the middle coordinate of 0 is the empty set, it is clear that

0s = s0 = 0, ∀ s ∈ S(3).

Next, given ( f, A, g) and (h, B, k) in S(3) we must show that their product in
fact lies in S(3). Clearly this is so if the product comes out to be zero, so we
suppose otherwise, and hence lcm(g, h) = gu = hv, for suitable u, v ∈ 3. We
claim that u−1(A) ⊆ 3 f u . This is obvious if u = 1, and if u 6= 1, (14.13) applies
to give

u−1(A) ⊆ 3u = 3 f u .
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Similarly v−1(B) ⊆ 3kv. Therefore u−1(A) ∩ v−1(B) ⊆ 3 f u ∩ 3kv, proving
that the product does belong to S(3). To prove associativity let (l,C,m) be a
third element in S(3) and we shall prove that

(
( f, A, g)(h, B, k)

)
(l,C,m) = ( f, A, g)

(
(h, B, k)(l,C,m)

)
. (14.16.1)

We leave it up to the reader to show that if either g ⊥ h, or k ⊥ l, then both
sides reduce to zero. So we assume instead that g e h, and k e l, and write
lcm(g, h) = gu = hv, and lcm(k, l) = kx = ly.

We now claim that if v ⊥ x , then both sides of (14.16.1) vanish. Assuming
by contradiction that e.g. the left-hand side is nonzero then

0 6= ( f, A, g)(h, B, k) = ( f u, u−1(A) ∩ v−1(B), kv),

and moreover kv e l. Write lcm(kv, l) = kvz = lw. By (14.9) we deduce that
vz = xr , and w = yr , for some r ∈ 3̃. This contradicts the assumption that
v ⊥ x , and a similar argument proves that the right-hand side vanishes as well,
so (14.16.1) is proved under the hypothesis that v ⊥ x .

We are then left to treat the case in which v e x . Write

lcm(v, x) = vp = xq, (14.16.2)

so we have built the diagram

• • • •

• • •

• •

•

...........................................................................
.....
............
f

................................................................................ .......
.....g

...........................................................................
.....
............ h

................................................................................ .......
.....k

...........................................................................
.....
............ l

................................................................................ .......
.....m

...........................................................................
.....
............
u

................................................................................ .......
.....

v

...........................................................................
.....
............
x

................................................................................ .......
.....

y

...........................................................................
.....
............
p

................................................................................ .......
.....q

A B C

Even under all of the hypotheses assumed so far, it is still possible that either side
of (14.16.1) vanish, given the role played by the sets A, B, and C . Obviously,
if both sides vanish there is nothing to prove, so we shall assume without loss
of generality that the left-hand side is nonzero. This entitles us to assume the
following

(a) u ∈ A ∪ {1},
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(b) v ∈ B ∪ {1}.

Since A ⊆ 3 f and B ⊆ 3k we have that f u and kv are indeed legal products,
and in addition

(c) kv e l.

As above let lcm(kv, l) = kvz = lw and, using (14.9), write vz = xr , and
w = yr , for some r ∈ 3̃. Using (14.16.2) we may further write z = ps, and
r = qs, with s ∈ 3̃.

We would very much like to be able to perform the multiplication “kvp”, but
even though kv and vp are known to be legal multiplications we cannot use
the only clause of the associativity property which might fail if v = 1. Briefly
assuming that v = 1, notice that

kvz = kz = k(ps),

which implies that kp is a legal multiplication, thus taking care of our concern.
We next observe that

(kv)p = k(vp) = k(xq) = (kx)q = (ly)q = l(yq),

so both kv and l divide kvp, and hence

kvz = lcm(kv, l) | kvp.

Since all elements are monic this implies that z | p, but we have seen above that
p | z, and hence p = z by (14.8). This gives s = 1, and hence r = q, and finally
w = yq . Summarizing,

lcm(kv, l) = kvp = lyq.

Recall that we are assuming the non-vanishing of the left-hand side of (14.16.1),
which is given by

(
f u, u−1(A) ∩ v−1(B), kv

) (
l,C,m

)

=
(

f up, p−1(u−1(A) ∩ v−1(B)
)
∩ (yq)−1(C),myq

)

=
(

f up, p−1(u−1(A)
)
∩ p−1(v−1(B)

)
∩ q−1(y−1(C)

)
,myq

)
.

(14.16.3)

Using (14.14) we have that p ∈ 3u ∪ {1}, so up is a legal multiplication.
Moreover, by (14.13) we have that up ∈ A ∪ {1}. Since A ⊆ 3g we are allowed
to set

t = gup.
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Speaking of the right-hand side of (14.16.1), we have

( f, A, g)
(
(h, B, k)(l,C,m)

)
= ( f, A, g)

(
hx, x−1(B) ∩ y−1(C),my

)
, (14.16.4)

and we claim that t , defined just above, is the least common multiple of g and
hx . It is clear that g | t and

t = gup = (hv)p = h(vp) = h(xq) = (hx)q, (14.16.5)

so hx | t , as well. Let s be a common multiple of g and hx , and write s = ga =
hxb, for suitable a, b ∈ 3̃. Using (14.9) there is c ∈ 3̃ such that a = uc, and
xb = vc. Observing that

h(xb) = ga = g(uc) = (gu)c = (hv)c = h(vc),

and that h is monic, we have vc = xb, so we may write c = pd , and b = qd ,
for some d ∈ 3̃. Thus

s = hxb = (hx)(qd) = ((hx)q)d
(14.16.5)

= td,

proving that t | s. This shows that t = lcm(g, hx), and by (14.16.5) we have
that (14.16.4) equals

(
f up, (up)−1(A) ∩ q−1

(
x−1(B) ∩ y−1(C)

)
,myq

)

=
(

f up, p−1
(
u−1(A)

)
∩ q−1

(
x−1(B)

)
∩ q−1

(
y−1(C)

)
,myq

)

which coincides with (14.16.3) because pv = qx . This concludes the proof of
associativity, and it remains to prove that S(3) is an inverse semigroup with the
indicated adjoint operation. The reader will find no difficulty in proving that

( f, A, g)(g, A, f )( f, A, g) = ( f, A, g),

so what is really at stake is the uniqueness of the adjoint. So, suppose that we
are given s and t in S(3) such that

sts = s, and tst = t.

If either s of t vanishes it is immediate that t = s∗, so we will suppose that s, t 6=
0. This also implies that all products involved are nonzero. Write s = ( f, A, g)
and t = (h, B, k) and, observing that g e h and k e f , write

lcm(g, h) = gu = hv, and lcm(k, f ) = kx = f y.
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We then have

s = sts = ( f, A, g)(h, B, k)( f, A, g) =
(

f u, u−1(A) ∩ v−1(B), kv
)
( f, A, g) = . . .

Further writing lcm(kv, f ) = kvz = fw, the above equals

. . . =
(

f uz, z−1
(
u−1(A) ∩ v−1(B)

)
∩ w−1(A), gw

)
. (14.16.6)

Since this coincides with s we have that f uz = f , and gw = g, and hence
u = z = w = 1, because all elements are monic. Therefore h | g and k | f .
Applying the same reasoning to the equation tst = t we deduce that g | h and
f | k, so f = k, and g = h, by (14.8). This also implies that v = 1, and turning
to the middle coordinate of (14.16.6) we conclude that A ∩ B = A, so A ⊆ B.
By symmetry we also have that B ⊆ A, so in fact A = B, and this finally gives
t = s∗. ut

It is not hard to see that the idempotent semilattice E(S(3)) of S(3) is formed
by the elements ( f, A, g) ∈ S(3), for which f = g. Given the importance of
the order relation in E(S(3)) we shall now describe it in explicit terms:

Proposition 14.17. Let ( f, A, f ) and (g, B, g) be idempotents in E(S(3)), with
A 6= ∅. Then

(i) ( f, A, f ) 6 (g, B, g), if and only if g | f and, writing f = gh, for h ∈ 3̃,
one has that A ⊆ h−1(B),

(ii) if f = g, then ( f, A, f ) 6 ( f, B, f ), if and only if A ⊆ B,

(iii) if g ∈ 3, and B = 3g, then ( f, A, f ) 6 (g,3g, g), if and only if g | f .

(iv) if g = 1, and f ∈ 3, then ( f, A, f ) 6 (1, B, 1), if and only if f ∈ B.

Proof. Beginning with (i), supposing that f = gh, and that A ⊆ h−1(B), we
have that lcm( f, g) = f = f 1 = gh, so

( f, A, f )(g, B, g) = ( f, A ∩ h−1(B), gh) = ( f, A, f ),

so ( f, A, f ) 6 (g, B, g), as desired. Conversely, assuming that ( f, A, f ) 6
(g, B, g) we have that

( f, A, f )(g, B, g) = ( f, A, f ) 6= 0,
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because of the assumption that A 6= ∅. This implies that f e g, so we write
lcm( f, g) = f k = gh, with k, h ∈ 3̃, and then

0 6= ( f, A, f ) = ( f, A, f )(g, B, g) = ( f k, k−1(A) ∩ h−1(B), gh).

Notice that since the elements we are comparing above are nonzero, there is no
identification involved, meaning that equality only holds when the correspondent
components agree. This implies in particular that f = f k = gh, and hence
k = 1, by (14.5). This also proves that g | f . Another conclusion to be drawn
from the equation displayed above is that

A = k−1(A) ∩ h−1(B) = A ∩ h−1(B),

which implies that A ⊆ h−1(B). The other points follow easily from (i). ut

Referring to (14.17), observe that if A = ∅, then ( f, A, f ) = 0, and hence
( f, A, f ) 6 (g, B, g), regardless of any other relationship between f , g, and B.

Proposition 14.18. Let ( f, A, f ) and (g, B, g) be idempotent elements in
E(S(3)). Then ( f, A, f ) e (g, B, g) if and only if there are u, v ∈ 3̃ such
that f u = gv, and u−1(A) ∩ v−1(B) is nonempty.

Proof. Supposing that ( f, A, f ) e (g, B, g) we have that

0 6= ( f, A, f )(g, B, g) =
(

f u, u−1(A) ∩ v−1(B), gv
)
,

where lcm( f, g) = f u = gv. Obviously u−1(A) ∩ v−1(B) is nonempty.

Conversely, suppose that u and v exist as in the statement. Since u−1(A) is
nonempty we have by (14.13) that

u ∈ A ∪ {1} ⊆ 3 f ∪ {1},

so f u is meaningful, and so is gv. Moreover it is clear that u−1(A) ⊆ 3 f u , and
v−1(B) ⊆ 3gv, so we have that

u−1(A) ∩ v−1(B) ⊆ 3 f u ∩3gv,

proving that
(

f u, u−1(A) ∩ v−1(B), gv
)
, is an element of E(S(3)), which is

clearly nonzero. Using (14.17.i) we see that this element is smaller than both
( f, A, f ) and (g, B, g), and hence

0 6=
(

f u, u−1(A) ∩ v−1(B), gv
)
6 ( f, A, f )(g, B, g),

proving that ( f, A, f ) e (g, B, g). ut
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The idempotents (1, B, 1) have an interesting property which is described in
our next result:

Proposition 14.19. Let ( f, A, f ) be an idempotent such that f 6= 1, and let
B ∈ Q.

(i) If f ∈ B, then ( f, A, f ) 6 (1, B, 1).

(ii) If f /∈ B, then ( f, A, f ) ⊥ (1, B, 1).

Proof. We have

(1, B, 1)( f, A, f ) = ( f, f −1(B) ∩ A, f ) = . . .

Assuming that f ∈ B we have by (14.13), that f −1(B) = 3 f . In addition it is
implicit that A ⊆ 3 f , so the above equals

. . . = ( f,3 f ∩ A, f ) = ( f, A, f ),

proving (i). On the other hand, if f is not in B, we have that f −1(B) = ∅, and
hence (1, B, 1)( f, A, f ) = 0. ut

In view of the relevance of E∗-unitary inverse semigroups in the characteri-
zation of the Hausdorff property for the groupoid of germs given in (6.2) and
(6.4), it is interesting to find sufficient conditions for S(3) to be E∗-unitary.
By analogy with (14.5) we will say that an element f ∈ 3 is epic if for every
g, h ∈ 3̃ we have

g f = h f ⇒ g = h.

Proposition 14.20. Let3 be a semigroupoid satisfying (14.7), and such that all
of its elements are epic. Then S(3) is E∗-unitary.

Proof. Suppose that an element ( f, A, g) in S(3) dominates a nonzero idem-
potent (h, B, h). Then

0 6= (h, B, h) = ( f, A, g)(h, B, h),

which implies that g e h, so we may write lcm(g, h) = gu = hv, for suitable
elements u, v ∈ 3̃, and

(h, B, h) = ( f u, u−1(A) ∩ v−1(B), hv).

Since this is nonzero we conclude that h = f u = hv. It follows that

f u = hv = gu,

and since u is epic, we conclude that f = g, thus proving that ( f, A, g) is an
idempotent. ut
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15 Representations of semigroupoids

As before we fix a semigroupoid3 satisfying (14.7). We shall begin this section
by introducing several important notions inspired in [10], most of which are
homonyms of similar notions introduced earlier in this work in the context of
inverse semigroups, such as representations, covers, and tight representations.
Once the appropriate context is clear we believe the double meanings will cause
no confusion.

Definition 15.1. A representation of the semigroupoid3 in an inverse semigroup
with zero S is a map π : 3 → S, such that for every f, g ∈ 3, one has that:

(i) π f πg =

{
π f g, if ( f, g) ∈ 3(2),

0, otherwise.

Moreover the initial and final projections

qπf = π∗
f π f , and pπg = πgπ

∗
g , (15.1.1)

respectively, are required to satisfy

(ii) pπf pπg = 0, if f ⊥ g,

(iii) qπf pπg = pπg , if ( f, g) ∈ 3(2).

In case S is an inverse semigroup formed by partial isometries on a Hilbert space
H , and containing the zero operator, we will say that π is a representation of 3
on H .

We insist that, since the symbol “⊥” is used in (ii) in the context of semi-
groupoids, its meaning is to be taken from (14.4), and not from (11.1).

One might wonder what happens to the element appearing in the left-hand side
of the equation in (15.1.iii), in case ( f, g) is not in3(2). The answer is provided
by (15.1.i), since in this case

qπf pπg = π∗
f (π f πg)π

∗
g = 0. (15.2)

Should the context leave no room for confusion we will abbreviate the nota-
tions qπf and pπg , to q f and pg, respectively.

Definition 15.3. Let 0 be any subset of the semigroupoid 3. A subset H ⊆ 0

will be called a cover for 0 if for every f ∈ 0 there exists h ∈ H such that
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he f . If moreover the elements of H are mutually disjoint then H will be called
a partition of 0.

Definition 15.4. Let S be an inverse semigroup of partial isometries on a Hilbert
space H , containing the identically zero operator. A representation π of 3 on
S is said to be tight if for every finite subsets F,G ⊆ 3, and for every finite
covering H of

3F,G :=
⋂

f ∈F
3 f ∩

⋂

g∈G
3 \3g,

one has that
∨

h∈H

ph = qF,G, where

qF,G :=
∏

f ∈F

q f

∏

g∈G

(1 − qg).

Observe that the Definition given in [10, 4.5] requires that the above holds
for every finite subsets F and G of 3̃, as opposed to 3. However notice that
since 31 = 3, and the convention adopted there says that q1 = 1, one has that
3F,G = ∅, whenever 1 ∈ G, and the above condition holds vacuously. If, on
the other hand, 1 is in F , then 3F,G = 3F ′,G , where F ′ = F \ {1}, at the same
time that ∏

f ∈F

q f =
∏

f ∈F ′

q f .

Therefore we see that the above definition is equivalent to [10, 4.5], regardless
of our use of 3 in place of 3̃.

In the above definition the recipient inverse semigroup S needs to be embedded
in B(H) or otherwise neither the supremum

∨
h∈H ph , nor the term 1−qg, would

make sense. This situation may however be generalized by assuming that E(S)
admits the structure of a Boolean algebra which is compatible with the order of
E(S), in which case one might say that S is a Boolean inverse semigroup. This
and related results may be found in [11].

Tight representations have the following good behavior with respect to least
common multiples:

Proposition 15.5. Suppose that for every f ∈ 3, and every h ∈ 3 f , there exists
a finite partition H of 3 f , such that h ∈ H. If f, g ∈ 3 are such that f e g,
and π is a tight representation of 3 one has that

p f pg = pm,

where m = lcm( f, g).
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Proof. In case f | g, write g = f h, with h ∈ 3̃, and notice that

p f pg = π f π
∗
f π f πhπ

∗
hπ

∗
f = π f πhπ

∗
hπ

∗
f = πgπ

∗
g = pg = pm,

since m = g. The case g | f may be treated similarly so we next assume that
there are u and v in3 (as opposed to 3̃), such that f u = gv = m. By hypothesis
let H and K be finite partitions of3 f and3g, respectively, such that u ∈ H and
v ∈ K . Given that our representation is tight we have

q f =
∨

h∈H

ph =
∑

h∈H

ph,

where the last equality follows from the fact that the ph are pairwise orthogonal
projections by (15.1.ii). Therefore

p f = π f π
∗
f π f π

∗
f = π f q f π

∗
f =

∑

h∈H

π f phπ
∗
f =

∑

h∈H

p f h,

and similarly pg =
∑

k∈K

pgk . So

p f pg =
∑

h∈H

∑

k∈K

p f h pgk .

Among the pairs (h, k) ∈ H × K one clearly has the pair (u, v) for which
p f u pgv = pm , and the proof will be complete once we show that p f h pgk = 0,
for all other pairs (h, k). Thus assume that (h, k) ∈ H × K is such that either
h 6= u or k 6= v. We will in fact prove that f h ⊥ gk, and hence the conclusion
will follow from (15.1.ii). Arguing by contradiction suppose that f hx = gky,
where x, y ∈ 3̃. By (14.9) we have that hx = ur , and ky = vr , for some r ∈ 3̃,
but this says that h e u and k e v, a contradiction. ut

This result motivates the following:

Definition 15.6. A representation π of 3 in an inverse semigroup S is said to
respect least common multiples if for every intersecting pair of elements f and
g in 3, one has that

p f pg = plcm( f,g).

The following is an important property of these representations. It is related
to equation [16, 3.1] in the context of finitely aligned higher rank graphs.
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Proposition 15.7. Suppose that π is a map from 3 into a *-semigroup15 S,
satisfying (15.1.i–iii) and the equation displayed in (15.6). Suppose moreover
that

π f π
∗
f π f = π f , ∀ f ∈ 3.

(This is clearly the case if S is an inverse semigroup and π is a representation of
3 in S respecting least common multiples). Given a pair of intersecting elements
f, g ∈ 3, with f 6= g, write lcm( f, g) = m = f h = gk, with h, k ∈ 3̃. Then

π∗
f πg = πhπ

∗
k .

Proof. It is conceivable that h or k be equal to 1, in which case the right hand
side of the equation above needs clarification. First observe that since we are
assuming that f 6= g, the situation in which both h and k are equal to 1 will
never arise. If h = 1 6= k, then πhπ

∗
k is supposed to mean π∗

k , and vice versa.
The best way to deal with this problem is to think that π1 = 1, where the last
occurrence of 1 is a multiplier of S, meaning an element which may not belong
to S, but which is allowed to multiply elements of S in such a way that

1s = s1 = s, ∀ s ∈ S.

Also we set 1∗ = 1.

Observe that whenever ( f, g) ∈ 3(2), we have by (15.1.iii) that

π∗
f π f πh = π∗

f π f πhπ
∗
hπh = q f phπh = phπh = πh . (15.7.1)

Let us now prove the statement under the special assumption that f | g. In
this case we have m = g, and k = 1 6= h. Therefore

π∗
f πg = π∗

f π f πh
(15.7.1)

= πh = πhπ
∗
k .

Assuming instead that g | f one may give a similar proof, or just use adjoints,
so we next suppose that f and g do not divide each other. This implies that
h, k 6= 1, so h ∈ 3 f and k ∈ 3g. We then have

π∗
f πg = π∗

f π f π
∗
f πgπ

∗
gπg = π∗

f p f pgπg = π∗
f pmπg = π∗

f πmπ
∗
mπg

= π∗
f π f πhπ

∗
k π

∗
gπg = π∗

f π f πh(π
∗
gπgπk)

∗ (15.7.1)
= πhπ

∗
k .

ut

15A *-semigroup is a semigroup equipped with an involution s 7→ s∗, which satisfies (st)∗ = t∗s∗.
For reasons which will soon become apparent we do not suppose that S is an inverse semigroup
here.
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We will often deal with representations of 3 in inverse semigroups of partial
isometries on a Hilbert space and in the lcm-preserving case it is possible to omit
any reference to that semigroup:

Proposition 15.8. Let H be a Hilbert space and let π : 3 → B(H) be a map
satisfying (15.1.i–iii). Suppose moreover that, for every f, g ∈ 3, one has that

(i) π( f ) is a partial isometry,

(ii) q f and qg commute,

(iii) if f e g, then p f pg = plcm( f,g).

Then the smallest multiplicative subsemigroup of B(H) which is closed under
adjoints and contains the range of π is an inverse semigroup and moreover π is
a representation of 3 in it.

Proof. For each finite nonempty subset F ⊆ 3, let

qF =
∏

f ∈F

q f .

The order in which the above elements are multiplied is irrelevant in view of (ii).
Extending π to 3̃ by setting π1 = 1, let

S =
{
π f qFπ

∗
g : f, g ∈ 3̃, F ⊆ 3 is finite and nonempty

}
∪ {0}.

Notice that for every ( f, g) ∈ 3̃× 3̃ \ {(1, 1)}, we have that

π f π
∗
g = π f π

∗
f π f π

∗
gπgπ

∗
g = π f q{ f,g}π

∗
g ∈ S,

so in particular S contains the range of π . We next then claim that S is a
multiplicative subsemigroup of B(H). To prove it let us be given f, g, h, k ∈ 3̃,
and finite nonempty subsets F,G ⊆ 3. We will prove that

π f qFπ
∗
g πhqGπ

∗
k (15.8.1)

either vanishes or equals πuqHπ
∗
v , for suitable u, v ∈ 3̃, and H ⊆ 3. We divide

the proof in several cases, according to the values of g and h:

Case 1: g = h = 1. Take u = f , H = F ∪ G, and v = k.
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Case 2: g = 1, h 6= 1. Notice that qFπh = qF phπh, while

qF ph =

{
ph, if ( f, h) ∈ 3(2), ∀ f ∈ F,

0, otherwise,

by (15.1.iii) and (15.2). Thus qFπh either vanishes or agrees with πh . Therefore
(15.8.1) either vanishes or equals

π f qFπhqGπ
∗
k = π f πhqGπ

∗
k = π f hqGπ

∗
k ,

where we have also assumed that ( f, h) ∈ 3(2), or else (15.8.1) again vanishes.

Case 3: g 6= 1, h = 1. Follows from case 2, and taking adjoints.

Case 4: g, h ∈ 3, and g ⊥ h. Then π∗
gπh = π∗

g pg phπh = 0, by (15.1.ii), and
hence (15.8.1) vanishes.

Case 5: g = h 6= 1. Take u = f , H = F ∪ {g} ∪ G, and v = k.

Case 6: g, h ∈ 3, g 6= h, and g e h. Applying (15.7) to the multiplicative
*-semigroup of all bounded operators on H , we have that π∗

gπh = πuπ
∗
v , with

u, v ∈ 3̃. Then (15.8.1) equals

π f qFπuπ
∗
v qGπ

∗
k ,

and the result follows as in case 2. It is now clear that S is the *-subsemigroup of
B(H) generated by the range of π . We will now prove that S consists of partial
isometries. For this let u ∈ S be a generic element and write u = π f qFπ

∗
g .

Observing that
u = π f q f qFqgπ

∗
g = π f q{ f }∪F∪{g}π

∗
g ,

we may assume that f, g ∈ F . We then have

uu∗u = π f qFπ
∗
g πgqFπ

∗
f π f qFπ

∗
g = π f qFqgqFq f qFπ

∗
g = π f qFπ

∗
g = u,

so u is a partial isometry as claimed. It is well known that any subsemigroup
of B(H) consisting of partial isometries, and which is closed under adjoints, is
an inverse semigroup. It is obvious that S is closed under adjoints, so it is an
inverse semigroup. Obviously π is then a representation of 3 in S. ut
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Our next long term goal is to show a close relationship between tight repre-
sentations of 3 and tight representations of S(3) (which in turn are related to
representations of the groupoid of germs, by (13.3)). An important ingredient in
this relationship is a representation of 3 in S(3) to be introduced next.

Proposition 15.9. The map τ : 3 → S(3) defined by τ f = ( f,3 f , 1), for all
f ∈ 3, is a representation of3 in S(3), which respects least common multiples
and moreover satisfies

qτf = τ ∗
f τ f = (1,3 f , 1), and pτf = τ f τ

∗
f = ( f,3 f , f ),

for all f ∈ 3.

Proof. For f ∈ 3 one has that

τ ∗
f τ f = (1,3 f , f )( f,3 f , 1) =

(
1, 1−1(3 f ) ∩ 1−1(3 f ), 1

)
= (1,3 f , 1),

and similarly one proves that τ f τ
∗
f = ( f,3 f , f ). If we are also given g ∈ 3,

then
τ f τg = ( f,3 f , 1)(g,3g, 1) =

(
f g, g−1(3 f ) ∩3g, 1

)
.

If ( f, g) ∈ 3(2) then g ∈ 3 f and hence g−1(3 f ) = 3g, by (14.13), so

τ f τg =
(

f g,3g, 1
)

=
(

f g,3 f g, 1
)

= τ f g.

If ( f, g) /∈ 3(2) then g /∈ 3 f and using (14.13) again we have that g−1(3 f ) = ∅,
so

τ f τg = ( f g,∅, 1) = 0,

regardless of the fact that f g is meaningless. With respect to (15.1.ii) assume
that f ⊥ g. Then

τ ∗
f τg = (1,3 f , f )(g,3g, 1) = 0,

by definition, from which one sees that p f pg = 0. If g ∈ 3 f then

τ ∗
f τ f τg = (1,3 f , 1)(g,3g, 1) = (g, g−1(3 f ) ∩3g, 1) = (g,3g, 1) = τg,

and hence (15.1.iii) follows. To conclude we must show that τ respects least
common multiples, so let f, g ∈ 3 be intersecting elements. Write lcm( f, g) =
m = f u = gv, for u, v ∈ 3̃, and notice that

u−1(3 f ) = u−1( f −1(3))
(14.14.ii)

= ( f u)−1(3) = 3 f u = 3m,
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and similarly v−1(3g) = 3m . So

pτf pτg = ( f,3 f , f )(g,3g, g) = ( f u, u−1(3 f ) ∩ v−1(3g), gv)

= (m,3m,m) = pτm .
ut

It is interesting to notice that if f is a spring, that is, if 3 f = ∅, then τ f = 0.
This is partly the reason why springs are cumbersome elements to deal with.

Given A, B ∈ Q it is immediate that

(1, A, 1)(1, B, 1) = (1, A ∩ B, 1).

So, given any A ∈ Q, say A =
⋂

h∈H
3h, where H is a nonempty finite subset of

3, we have that

(1, A, 1) =
(
1,
⋂

h∈H
3h, 1

)
=

∏

h∈H

(1,3h, 1) =
∏

h∈H

τ ∗
h τh.

In addition, if f, g ∈ 3 are such that 3 f ∩3g ⊇ A, we have

( f,3 f , 1)(1, A, 1)(1,3g, g) = ( f,3 f ∩ A ∩3g, g) = ( f, A, g),

so we have proved that:

Proposition 15.10. Let ( f, A, g) ∈ S(3), and write A =
⋂

h∈H3
h, for some

nonempty finite subset H ⊆ 3. Then

( f, A, g) = τ f

( ∏

h∈H

τ ∗
h τh

)
τ ∗

g .

We therefore see that the range of τ generates S(3) as an inverse semigroup.
Our next result uses τ to express the first relationship between representations
of 3 and representations of S(3).

Proposition 15.11. If σ is a representation of S(3) on a Hilbert space H
(in the sense of 10.4) such that σ(0) = 0, then the composition π = σ ◦ τ
is a representation of 3 (in the sense of 15.1), which respects least common
multiples. If moreover 3 has no springs and σ is tight (in the sense of 13.1),
then π is tight (in the sense of 15.4).

Proof. That π is a representation preserving least common multiples follows
immediately from (15.9), and the fact that σ(0) = 0. Next, assuming that σ is
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tight, let us prove that the same applies to π . So let F,G ⊆ 3 be finite sets and
let H be a cover for 3F,G in the sense of (15.3). We must prove that

∨

h∈H

πhπ
∗
h =

∏

f ∈F

π∗
f π f

∏

g∈G

(1 − π∗
gπg). (15.11.1)

Letting
X =

{
(1,3 f , 1) : f ∈ F

}
,

Y =
{
(1,3g, 1) : g ∈ G

}
,

Z =
{
(h,3h, h) : h ∈ H

}
,

we claim that Z is a cover of E(S(3))X,Y , in the sense of (11.5). In order to
prove our claim let (k,C, k) be a nonzero idempotent in E(S(3))X,Y . Therefore
C is nonempty, so we pick some c ∈ C . Given that C ⊆ 3k , we may speak of
kc, and it is easy to see, based on the fact that 3kc = 3c, and (14.17.i), that

(kc,3kc, kc) 6 (k,C, k).

Since (k,C, k) is in E(S(3))X,Y , the same applies to (kc,3kc, kc), and hence
for every f ∈ F , and g ∈ G, we have

(kc,3kc, kc) 6 (1,3 f , 1), and (kc,3kc, kc) ⊥ (1,3g, 1).

Noticing that (kc,3kc, kc) is nonzero because 3 has no springs, and hence it
cannot be simultaneously orthogonal and smaller than any other element, we
have by (14.19) that kc ∈ 3 f and kc /∈ 3g. This says that

kc ∈
⋂

f ∈F
3 f ∩

⋂

g∈G
3 \3g = 3F,G,

so there exists some h ∈ H such that kce h, and hence we may write kcx = hy,
for some x, y ∈ 3̃. Using (14.17.iii) one has that (kcx,3kcx , kcx) is simultane-
ously smaller than (h,3h, h) and (kc,3kc, kc). This implies that

0 6= (kcx,3kcx , kcx) 6 (h,3h, h)(kc,3kc, kc) 6 (h,3h, h)(k,C, k),

proving that (h,3h, h) e (k,C, k). This shows that Z is indeed a cover for
E(S(3))X,Y , and because σ is assumed to be a tight representation of S(3) we
have ∨

z∈Z

σz =
∏

x∈X

σx

∏

y∈Y

(1 − σy). (15.11.2)

For every z = (h,3h, h) ∈ Z , with h ∈ H , notice that

σz = σ(h,3h, h) = σ(τhτ
∗
h ) = πhπ

∗
h ,
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and similarly
σx = π∗

f π f , and σy = π∗
gπg,

for every x = (1,3 f , 1) ∈ X , and y = (1,3g, 1) ∈ Y , so we see that (15.11.1)
follows from (15.11.2). This proves that π is tight. ut

16 The Boolean algebra of Domains

In our pursuit of a bijective correspondence between representations of the semi-
groupoid3 and of its associated inverse semigroup S(3) we would like to show
that any representation π of 3 may be extended to S(3), meaning that there
exists a representation σ of S(3), such that π = σ ◦ τ , thus obtaining a converse
to (15.11). In order to understand the difficulties in doing so let us temporarily
suppose that σ has been found. If F is a nonempty finite subset of 3, then

∏

f ∈F

π∗
f π f =

∏

f ∈F

σ(τ ∗
f τ f ) = σ

( ∏

f ∈F

τ ∗
f τ f

)
= σ

( ∏

f ∈F

(1,3 f , 1)
)

= σ
(

1,
⋂

f ∈F
3 f , 1

)
= σ

(
1, QF , 1

)
,

where our use of QF is the same as in (14.10). Implicit in the above calculation
is the fact that

∏
f ∈F π

∗
f π f depends only on QF , and not on F . While for a

general representation π this may fail, we will prove that this does hold provided
π is tight. Under that hypothesis we will not only prove that σ exists, but also
that it is tight. Our correspondence will therefore involve tight representations
only.

A large part of the effort in accomplishing our goal will be spent on studying the
behavior of tight representations of 3 with respect to a certain Boolean algebra
of subsets of 3.

Throughout this section we therefore fix a semigroupoid 3 satisfying
(14.7) and a tight representation π of 3 on a Hilbert space H .

Definition 16.1. A subset X ⊆ 3 will be called a domain, provided it belongs
to the Boolean subalgebra D of P(3) generated by {3 f : f ∈ 3}.

If F and G are finite subsets of 3, then the set

3F,G =
⋂

f ∈F
3 f ∩

⋂

g∈G
3 \3g,
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already employed in (15.4), is clearly a domain. Moreover it is easy to see that
any member of D may be written as the union of a finite collection of sets each
of which has the above form.

If one is to decide whether or not some h in 3 belongs to a given domain
D ∈ D, that task will consist of a perhaps logically complicated check depending
on whether or not h ∈ 3 f , for several elements f in 3. It is therefore easy to
see that for every k ∈ 3h one has

h ∈ D ⇐⇒ hk ∈ D. (16.2)

In this section we will not be dealing with any representation of 3 other than
π , so we will drop the superscripts in the qπf and pπg of (15.1.1).

We wish to define a map Q : D → B(H) such that Q(3 f ) = q f , and which
is a Boolean algebra homomorphism in the sense that

• Q(∅) = 0,

• Q(C ∩ D) = Q(C)Q(D), and

• Q(C̃) = 1 − Q(C),

for every C, D ∈ D, where C̃ denotes the complement of C in 3. Clearly we
will have as a consequence that

Q(C ∪ D) = 1 − Q(C̃ ∩ D̃) = 1 −
(
1 − Q(C)

)(
1 − Q(D)

)

= Q(C)+ Q(D)− Q(C)Q(D),

which is precisely the join, or supremum Q(C) ∨ Q(D), of the commuting
projections Q(C) and Q(D) in B(H). If we are to succeed in obtaining Q then
for every finite subsets F,G ⊆ 3 we must have

Q(3F,G) =
∏

f ∈F

Q(3 f )
∏

g∈G

(
1 − Q(3g)

)
=

∏

f ∈F

q f

∏

g∈G

(1 − qg) = qF,G,

where qF,G was already employed in (15.4).
In the next result we will take a first step in the direction of the goal stated

above by showing that qF,G does indeed depend only on the set 3F,G , and not
on F and G.

Proposition 16.3. Let F, G, H, and K be finite subsets of 3.

(i) If 3F,G ⊆ 3H,K , then qF,G 6 qH,K .

(ii) If 3F,G = 3H,K , then qF,G = qH,K .
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Proof. Assume that 3F,G ⊆ 3H,K . For each fixed h ∈ H notice that 3F,G ⊆
3H,K ⊆ 3h , and hence

∅ = 3F,G ∩ (3 \3h) = 3F,G∪{h}.

Since π is tight we deduce that

0 = qF,G∪{h} = qF,G(1 − qh),

so that qF,G 6 qh . On the other hand, for every k ∈ K , we have that 3F,G ⊆
3 \3k , and hence

∅ = 3F,G ∩3k = 3F∪{k},G .

Since π is tight we deduce that 0 = qF∪{k},G = qF,G qk, so that qF,G 6 1 − qk .
Therefore

qF,G 6
∏

h∈H

qh

∏

k∈K

(1 − qk) = qH,K ,

proving (i), and hence also (ii). ut

If a domain D has the form3F,G , we may then define Q(D) = qF,G , without
worrying about other possible descriptions of D in the form 3H,K . In the next
result we shall consider the possibility that some domains may be described in
several ways as unions of sets of the form 3F,G .

Proposition 16.4. Let {Fi }n
i=0 and {Gi }n

i=0 be two collections of finite subsets of
3, such that

3F0,G0 = 3F1,G1 ∪3F2,G2 ∪ . . . ∪3Fn ,Gn ,

Then qF0,G0 =
∨n

i=1 qFi ,Gi .

Proof. Let H = F0 ∪ G0 ∪ F1 ∪ G1 ∪ . . .∪ Fn ∪ Gn . For each subset X ⊆ H
we let

E X = 3X,H\X .

It is then easy to see that the EX are pairwise disjoint and that
⋃

X∈P(H)E
X = 3.

Likewise, letting
eX = qX,H\X ,

it is easy to see that the eX are pairwise orthogonal projections such that∑
X∈P(H) eX = 1. In order to prove the statement it is therefore enough to

show that for every X ∈ P(H) one has that

qF0,G0eX =
n∨

i=1

qFi ,Gi eX . (16.4.1)
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Since eX = 0 whenever E X = ∅, by (16.3), we need only consider those X
for which E X is nonempty. Let us thus fix X ⊆ H , with E X 6= ∅. For each
i = 0, . . . , n, observe that if Fi ⊆ X , and Gi ⊆ H \ X , then E X ⊆ 3Fi ,Gi

and eX 6 qFi ,Gi . On the other hand if either Fi 6⊆ X , or Gi 6⊆ H \ X , then
necessarily E X ∩3Fi ,Gi = ∅, and eX ⊥ qFi ,Gi .

Case 1: Assume that there exists some i > 1 such that Fi ⊆ X , and Gi ⊆
H \X . Then the right-hand side of (16.4.1) equals eX . Moreover E X ⊆ 3Fi ,Gi ⊆
3F0,G0 , from where we deduce that F0 ⊆ X , and G0 ⊆ H \ X , and hence
eX 6 qF0,G0 , so the left-hand side of (16.4.1) also equals eX .

Case 2: Assume that there is no i > 1 such that Fi ⊆ X , and Gi ⊆ H \ X .
Then eX ⊥ qFi ,Gi , for all i > 1, and hence the right-hand side of (16.4.1)
vanishes. Moreover E X is disjoint from each 3Fi ,Gi , with i > 1, and hence it is
also disjoint from3F0,G0 . Thus, it cannot be that F0 ⊆ X , and G0 ⊆ H \ X , and
hence eX ⊥ qF0,G0 , proving that the left-hand side of (16.4.1) also vanishes. ut

The next result will finally allow us to define the map we are seeking:

Proposition 16.5. For every D ∈ D, write D =
⋃n

j=13
Fj ,G j , where the Fj and

G j are finite subsets of 3, and define Q(D) =
∨n

j=1 qFj ,G j . Then Q : D →
B(H) is a well defined map which moreover satisfies

(i) Q(3 f ) = q f ,

(ii) Q(∅) = 0,

(iii) Q(C ∩ D) = Q(C)Q(D),

(iv) Q(C ∪ D) = Q(C) ∨ Q(D),

(v) Q(D̃) = 1 − Q(D),

for every f ∈ 3, and every C, D ∈ D.

Proof. To show well definedness suppose that D is a domain which may be
written in two ways as

D =
n1⋃

j=1
3

F1
j ,G

1
j =

n2⋃

j=1
3

F2
j ,G

2
j ,
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where the Fi
j and Gi

j are finite subsets of 3. Fix k 6 n1 and notice that

3F1
k ,G

1
k = 3F1

k ,G
1
k ∩ D =

n2⋃

j=1
3F1

k ,G
1
k ∩3F2

j ,G
2
j =

n2⋃

j=1
3

F1
k ∪F2

j ,G
1
k∪G2

j .

By (16.4) we conclude that

qF1
k ,G

1
k
=

n2∨

j=1

qF1
k ∪F2

j ,G
1
k∪G2

j
=

n2∨

j=1

qF1
k ,G

1
k

qF2
j ,G

2
j
= qF1

k ,G
1
k

( n2∨

j=1

qF2
j ,G

2
j

)
,

showing that

qF1
k ,G

1
k
6

n2∨

j=1

qF2
j ,G

2
j
.

Since k is arbitrary we deduce that

n1∨

k=1

qF1
k ,G

1
k
6

n2∨

j=1

qF2
j ,G

2
j
,

and by symmetry we obtain the reverse inequality, hence proving that the two
possibly different descriptions of D lead to the same proposed value of Q(D).

We leave it for the reader to prove (i–iii) and we will verify (v) next. Supposing
initially that D has the form D = 3F,G , we have

D̃ =
⋃

f ∈F
3 \3 f ∪

⋃

g∈G
3g,

hence

Q(D̃) =
∨

f ∈F

(1−q f )∨
∨

g∈G

qg = 1−
∏

f ∈F

q f

∏

g∈G

(1−qg) = 1−qF,G = 1−Q(D).

In the general case write D =
⋃n

j=1 D j , where each D j is of the above form,
then

Q(D̃) = Q
( n⋂

j=1
D̃ j

)
=

n∏

j=1

Q(D̃ j ) =
n∏

j=1

(
1 − Q(D j )

)

= 1 −
n∨

j=1

Q(D j ) = 1 − Q(D).

As already seen, (iv) follows from (iii) and (v). ut
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For the record we notice the following:

Corollary 16.6. If H ⊆ 3 is a finite nonempty subset and A =
⋂

h∈H
3h then

Q(A) =
∏

h∈H
π∗

hπh.

Recall that the condition for a representation of 3 to be tight is that
∨

h∈H

ph =
∏

f ∈F

q f

∏

g∈G

(1 − qg),

whenever F,G ⊆ 3 are finite sets and H is a finite cover for3F,G . If we denote
by D the domain D = 3F,G , then the above condition may be expressed as∨

h∈H ph = Q(D). One may therefore ask if the same is true for every domain.
The next result proves that this is in fact true.

Proposition 16.6. Let D be a domain and let H be a finite cover for D in the
sense of (15.3), then ∨

h∈H

ph = Q(D).

Proof. Write D =
⋃n

j=13
Fj ,G j , where the Fj and G j are finite subsets of 3.

By assumption we have that H ⊆ D, so if we put

Hj = H ∩3Fj ,G j ,

we will have that H =
⋃n

j=1 Hj . We claim that Hj is a cover for 3Fj ,G j for
each j 6 n. In fact, given any k ∈ 3Fj ,G j , we in particular have that k ∈ D.
By hypothesis there exists some h ∈ H such that h e k, and we may therefore
choose u, v ∈ 3̃ such that hu = kv. By (16.2) we have that h ∈ 3Fj ,G j , so
h ∈ Hj , and the claim is proved. Since we are assuming π to be tight it follows
that ∨

h∈Hj

ph = qFj ,G j ,

and therefore that

∨

h∈H

ph =
n∨

j=1

∨

h∈Hj

ph =
n∨

j=1

qFj ,G j = Q(D). ut

17 Extending representations

The sole aim of this section is to prove the following:
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Theorem 17.1. Let 3 be a semigroupoid without springs in which every ele-
ment is monic, and such that every intersecting pair of elements admits a least
common multiple. Given a tight representation π of 3 on a Hilbert space H,
which respects least common multiples, there exists a unique representation σ
of the inverse semigroup S(3) such that σ = π ◦ τ . Moreover σ is tight.

Observing that the representation of 3 given by (15.11) necessarily respects
least common multiples, the above result cannot survive without assuming that
π also has this property.

Given ( f, A, g) in S(3)write A =
⋂

h∈H
3h , where H ⊆ 3 is a finite nonempty

subset. Recall from (15.10) that

( f, A, g) = τ f

( ∏

h∈H

τ ∗
h τh

)
τ ∗

g ,

so if we want a representation σ of S(3) such that σ ◦ τ = π , we have no

choice but to define σ( f, A, g) = π f

( ∏
h∈H π

∗
hπh

)
π∗

g . This immediately gives

uniqueness and, in view of (16.6), it also suggests that we define

σ( f, A, g) = π f Q(A)π∗
g ,

where Q is given by (16.5). For f ∈ 3 we then have that

σ(τ f ) = σ( f,3 f , 1) = π f Q(3 f ) = π f π
∗
f π f = π f ,

so π = σ ◦ τ , as required. It is also clear that σ preserves the star operation.
We next claim that if A ∈ Q and f ∈ 3 one has that

Q(A)π f =

{
π f , if f ∈ A,

0, otherwise.
(17.2)

To prove it write A =
⋂

h∈H3
h , for some finite nonempty subset H of 3.

Assuming initially that f ∈ A, we then have that f ∈ 3h , for all h ∈ H , and
hence π∗

hπhπ f = π f , by (15.1.iii). So

Q(A)π f =
( ∏

h∈H

π∗
hπh

)
π f = π f .

On the other hand, if f /∈ A, then f /∈ 3h for some h ∈ H , and hence π∗
hπhπ f =

0, by (15.1.i), so our claim is proved. Using (14.13), we may express (17.2)
alternatively as

Q(A)π f = π f Q
(

f −1(A)
)
. (17.3)
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The advantage of this over (17.2) is that it holds inclusively for f = 1, while the
former does not.

We are now prepared to prove that σ is multiplicative. Given ( f, A, g) and
(h, B, k) in S(3) we then have to show that

σ( f, A, g)σ (h, B, k) = σ
(
( f, A, g)(h, B, k)

)
. (17.4)

Observing that the left-hand side equals

π f Q(A)π∗
gπh Q(B)π∗

k ,

we see that it vanishes whenever g ⊥ h, because

π∗
gπh = π∗

gπgπ
∗
gπhπ

∗
hπh = π∗

g pg phπh = 0,

by (15.1.ii). Still under the assumption that g ⊥ h, we have that
( f, A, g)(h, B, k) = 0, by definition, and since σ(0) = 0, the right-hand side
of (17.4) also vanishes. Thus (17.4) is true provided g ⊥ h, and we may then
suppose that g e h, writing lcm(g, h) = m = gu = hv, with u, v ∈ 3̃.

Assuming, as we are, that π respects least common multiples, we wish to
apply (15.7) to describe π∗

gπh , but for this we also need to assume we are in the
special case in which g 6= h. Under this premise we have that π∗

gπh = πuπ
∗
v ,

and hence the left-hand side of (17.4) equals

π f Q(A)πuπ
∗
v Q(B)π∗

k
(17.3)
= π f πu Q

(
u−1(A)

)
Q

(
v−1(B)

)
π∗
v π

∗
k

= π f πu Q
(
u−1(A) ∩ v−1(B)

)
π∗
v π

∗
k .

(17.5)

If u−1(A)∩ v−1(B) = ∅, then the above is zero, but so is the right-hand side of
(17.4), and hence equality is established. In the event that u−1(A) ∩ v−1(B) is
nonempty we have by (14.13) that

u ∈ A ∪ {1} ⊆ 3 f ∪ {1}, and v ∈ B ∪ {1} ⊆ 3k ∪ {1}.

Thus π f πu = π f u and πkπv = πkv, so (17.5) equals

π f u Q
(
u−1(A) ∩ v−1(B)

)
π∗

kv = σ
(

f u, u−1(A) ∩ v−1(B), kv
)

= σ
(
( f, A, g)(h, B, k)

)
,

proving (17.4) under the assumption that g 6= h, and the only case left to be
discussed is that in which g = h. Under this assumption observe that, since
A ⊆ 3g, we have by (16.5) that

Q(A)π∗
gπg = Q(A)Q(3g) = Q(A ∩3g) = Q(A),
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and hence the left-hand side of (17.4) equals

π f Q(A)π∗
gπg Q(B)π∗

k = π f Q(A)Q(B)π∗
k = π f Q(A ∩ B)π∗

k

= σ( f, A ∩ B, k) = σ
(
( f, A, g)(g, B, k)

)
,

proving that σ is indeed a representation of S(3). Summarizing our findings so
far we have:

Lemma 17.6. Under the hypotheses of (17.1) the map σ : S(3) → B(H),
defined by

σ( f, A, g) = π f Q(A)π∗
g , ∀ ( f, A, g) ∈ S(3),

is a representation of S(3) satisfying σ ◦ τ = π .

The remaining of this section will be dedicated to proving the last sentence of
(17.1), namely that σ is tight. The characterization of tightness given in (11.8)
will prove itself useful, but to employ it we must first check either (i) or (ii) of
(11.7). We therefore suppose that (11.7.ii) fails, meaning that E(S(3)) admits
a finite cover, say Z . Let us classify the elements ( f, A, f ) of Z according to
whether f = 1 or not by setting

Z ′ =
{
( f, A, f ) ∈ Z : f ∈ 3

}
, and Z ′′ =

{
( f, A, f ) ∈ Z : f = 1

}
.

For each (1, A, 1) in Z ′′ write A =
⋂

g∈G
3g, where G ⊆ 3 is finite and nonempty,

and choose at random some gA ∈ G. Once this is done we have that A ⊆ 3gA

and hence
(1, A, 1) 6 (1,3gA , 1) = τ ∗

gA
τgA .

With respect to the elements ( f, A, f ) in Z ′ notice that A ⊆ 3 f and hence

( f, A, f ) 6 ( f,3 f , f ) = τ f τ
∗
f .

Substituting each element of Z appearing in the left-hand side of the two in-
equalities displayed above by the respective right-hand side we therefore obtain
a set of the form

W =
{
τ ∗

g τg : g ∈ G
}

∪
{
τ f τ

∗
f : f ∈ F

}
,

which is clearly also a cover for E(S(3)). We next claim that F is a cover for

3∅,G =
⋂

g∈G
3 \3g,

Bull Braz Math Soc, Vol. 39, N. 2, 2008



“main” — 2008/5/29 — 11:50 — page 287 — #97

INVERSE SEMIGROUPS AND COMBINATORIAL C*-ALGEBRAS 287

in the sense of (15.3). To prove this let h ∈ 3∅,G , and notice that τhτ
∗
h must

necessarily intersect some element of W . If that element is of the form τ ∗
g τg, for

some g ∈ G, then

0 6= τhτ
∗
h τ

∗
g τg = (h,3h, h)(1,3g, 1) = (h,3h ∪ h−1(3g), h),

so h−1(3g) is nonempty, and hence h ∈ 3g by (14.13.iii), but this contradicts
the fact that h ∈ 3∅,G . The conclusion is that the element of W which intersects
τhτ

∗
h must be some τ f τ

∗
f , with f ∈ F . In this case

0 6= τhτ
∗
h τ f τ

∗
f = (h,3h, h)( f,3 f , f )

which implies that h e f , concluding the proof of our claim. Since we are
assuming that π is tight we have that

∨

f ∈F

π f π
∗
f =

∏

g∈G

(1 − π∗
gπg) = 1 −

∨

g∈G

π∗
gπg,

and hence that ( ∨

f ∈F

π f π
∗
f

)
∨

( ∨

g∈G

π∗
gπg

)
= 1.

This implies that
∨

w∈W

σ(w) =
( ∨

f ∈F

σ(τ f τ
∗
f )

)
∨

( ∨

g∈G

σ(τ ∗
g τg)

)

=
( ∨

f ∈F

π f π
∗
f

)
∨

( ∨

g∈G

π∗
gπg

)
= 1.

We have therefore proven:

Lemma 17.7. Either E(S(3)) does not admit any finite cover or there exists
a finite cover W such that

∨
w∈W σ(w) = 1.

As already mentioned this result enables us to use (11.8) to attempt a proof
that σ is tight. Therefore, given ( f, A, f ) ∈ E(S(3)) and a finite cover Z for
( f, A, f ) we need to prove that

∨

z∈Z

σ(z) > σ( f, A, f ). (17.8)

We will argue in two different ways according to whether f = 1 or not, so let
us begin by assuming that f = 1. As before write Z = Z ′ ∪ Z ′′, where

Z ′ =
{
(h,C, h) ∈ Z : h ∈ 3

}
=

{
(hi ,Ci , hi )

}n
i=1,
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and
Z ′′ =

{
(h,C, h) ∈ Z : h = 1

}
=

{
(1, Di , 1)

}m
i=1.

Our proof will be by induction on |Z ′| = n, so let us first treat the case in which
n = 0.

Thus Z ′′ is a cover for (1, A, 1), and we claim that A =
⋃m

i=1 Di . Since
each (1, Di , 1) 6 (1, A, 1) we have that Di ⊆ A. On the other hand, given
f ∈ A, we have that ( f,3 f , f ) 6 (1, A, 1). Assuming that 3 has no springs
we see that ( f,3 f , f ) is nonzero, so there is some (1, Di , 1) ∈ Z ′′, such that
( f,3 f , f ) e (1, Di , 1), which means that f ∈ Di , by (14.19). This proves our
claim, therefore

∨

z∈Z

σ(z) =
m∨

i=1

σ(1, Di , 1) =
m∨

i=1

Q(Di )
(16.5.iv)

= Q
( m⋃

i=1
Di

)

= Q(A) = σ(1, A, 1),

thus proving (17.8) for f = 1, and n = 0.
Still assuming that f = 1, but now that n > 1, pick any j 6 n, and let

(h,C, h) = (h j ,C j , h j ). Since (h,C, h) 6 (1, A, 1) we have by (14.17.iv) that
h ∈ A. Incidentally notice that (14.17.iv) requires that C be nonempty, which
we may assume, since otherwise (h,C, h) may be deleted from the covering Z
without altering the left-hand side of (17.8). Given that h ∈ A, we have that

(h,3h, h) 6 (1, A, 1).

We next claim that
Zh := τ ∗

h Z τh

is cover for τ ∗
h τh = (1,3h, 1). To prove the claim let 0 6= γ 6 τ ∗

h τh and observe
that

τhγ τ
∗
h 6 τhτ

∗
h τhτ

∗
h = τhτ

∗
h = (h,3h, h) 6 (1, A, 1).

Since Z is a cover for (1, A, 1), and τhγ τ
∗
h is nonzero (or else γ = τ ∗

h τhγ τ
∗
h τh =

0), there exists z ∈ Z such that τhγ τ
∗
h e z, so

0 6= τhγ τ
∗
h z = (τhτ

∗
h )τhγ τ

∗
h z = τhγ τ

∗
h z(τhτ

∗
h ),

which implies that γ τ ∗
h zτh 6= 0, and hence that γ e τ ∗

h zτh , proving the claim.
Let us now decompose Zh as the union Z ′

h ∪ Z ′′
h , where

Z ′
h =

{
(g, B, g) ∈ Zh : g ∈ 3

}
, and Z ′′

h =
{
(g, B, g) ∈ Zh : g = 1

}
,
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in the same way we did with Z , because we are interested in the number of
elements of Z ′

h , given that our proof is by induction on this parameter. Notice
that for every i 6 m

τ ∗
h (1, Di , 1)τh = (1,3h, h)(1, Di , 1)(h,3h, 1)

=
(
1,3h ∩ h−1(Di ), h

)
(h,3h, 1)

=
(
1,3h ∩ h−1(Di ) ∩3h, 1

)
∈ Z ′′

h ,

which means that
τ ∗

h Z ′′τh ⊆ Z ′′
h .

If the reader is expecting a similar inclusion with single primes replacing double
primes, he or she will be surprised to find that there is an element of Z ′ which
migrates to Z ′′

h when conjugated by τh , namely

τ ∗
h (h,C, h)τh = (1,3h, h)(h,C, h)(h,3h, 1)

= (1,3h ∩ C ∩3h, 1) = (1,C, 1) ∈ Z ′′
h .

It follows that Z ′
h has at most n − 1 elements and hence the induction hypothesis

applies to give ∨

z∈Z

σ(τ ∗
h zτh) > σ(τ

∗
h τh),

which translates into ∨

z∈Z

π∗
hσ(z)πh > π

∗
hπh .

If this is left-multiplied by πh , and right-multiplied by π∗
h , we get

∨

z∈Z

πhπ
∗
hσ(z)πhπ

∗
h > πhπ

∗
hπhπ

∗
h = πhπ

∗
h ,

which means that
πhπ

∗
h 6

∨

z∈Z

σ(z). (17.9)

Leaving this aside for a moment consider the domain D = A \
⋃m

i=1 Di , and let
K be the set of all hi ’s belonging to D. So far we have been discussing several
covers in the sense of semilattices (11.5), but now we claim that K is a cover for
D, in the sense of semigroupoids (15.3). To see this let g ∈ D, and notice that
since g ∈ A, we have that (g,3g, g) 6 (1, A, 1). It follows that there is some
z ∈ Z such that z e (g,3g, g), but notice that such a z may not be in Z ′′, since

(g,3g, g) ⊥ (1, Di , 1),
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by (14.19), because g /∈ Di . Therefore (hi ,Ci , hi )(g,3g, g) 6= 0, for some
i 6 n. In particular this implies that hi u = gv, for some u, v ∈ 3̃. Since
g ∈ D, we have by (16.2) that hi ∈ D, so in fact hi ∈ K . This proves our claim
that K is a cover for D, so

Q(D)
(16.7)
=

∨

h∈K

πhπ
∗
h

(17.9)
6

∨

z∈Z

σ(z). (17.10)

Since A ⊆ D ∪
⋃m

i=1 Di , we have

σ(1, A, 1) = Q(A) 6 Q(D) ∨
m∨

i=1

Q(Di )

(17.10)
6

∨

z∈Z

σ(z) ∨
m∨

i=1

σ(1, Di , 1) =
∨

z∈Z

σ(z),

proving (17.8) for f = 1, and arbitrary n. Summarizing:

Lemma 17.11. If A ∈ Q and Z is a cover for (1, A, 1) then
∨

z∈Z

σ(z) > σ(1, A, 1).

Let us now face (17.8) in the most general situation, so we assume that
( f, A, f ) is an arbitrary element of S(3) and that Z = {(hi ,Ci , hi )}n

i=1 is a
cover for ( f, A, f ).

Since (hi ,Ci , hi ) 6 ( f, A, f ), for every i , we have by (14.17) that f | hi , so
we may write hi = f gi , with gi ∈ 3̃, and in addition we have that Ci ⊆ g−1

i (A).
Observe that

Ci ⊆ 3hi = 3 f gi ⊆ 3gi ,

so (gi ,Ci , gi ) ∈ S(3). Notice that

(gi ,Ci , gi )(1, A, 1) = (gi ,Ci ∩ g−1
i (A), gi ) = (gi ,Ci , gi ),

so (gi ,Ci , gi ) 6 (1, A, 1). We then claim that {(gi ,Ci , gi )}n
1=1 is a cover for

(1, A, 1). In order to prove it let (k, B, k) be a nonzero element with (k, B, k) 6
(1, A, 1), so B ⊆ k−1(A). Given that B is nonempty, the same is true for k−1(A),
so (14.13) applies and gives k ∈ A ∪ {1} ⊆ 3 f ∪ {1}, so f k is a well defined
element of 3̃. Since A ⊆ 3 f = f −1(3), we have

B ⊆ k−1(A) ⊆ k−1( f −1(3))
(14.11.ii)

= ( f k)−1(3) = 3 f k,
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hence ( f k, B, f k) ∈ S(3), and clearly ( f k, B, f k) 6 ( f, A, f ). Therefore
there exists i 6 n such that ( f k, B, f k)e (hi ,Ci , hi ), which may be interpreted
via (14.18), by saying that there are x, y ∈ 3̃, such that

f kx = hi y = f gi y, and x−1(B) ∩ y−1(Ci ) 6= ∅.

Since f is monic we conclude that kx = gi y and, again by (14.18), that
(k, B, k) e (gi ,Ci , gi ), proving our claim. Therefore

n∨

i=1

πgi Q(Ci )π
∗
gi

=
n∨

i=1

σ(gi ,Ci , gi )
(17.11)
> σ(1, A, 1) = Q(A),

which leads to

σ( f, A, f ) = π f Q(A)π∗
f 6 π f

( n∨

i=1

πgi Q(Ci )π
∗
gi

)
π∗

f

=
n∨

i=1

π f πgi Q(Ci )π
∗
gi
π∗

f =
n∨

i=1

πhi Q(Ci )π
∗
hi

=
n∨

i=1

σ(hi ,Ci , hi ) =
∨

z∈Z

σ(z),

and we are done!

18 The C*-algebra of a semigroupoid

In this section we fix a countable semigroupoid 3 without springs, in which
every element is monic, and such that every intersecting pair of elements admits
a least common multiple. Our goal will be to study the universal C*-algebra for
representations of 3.

To single out the special kind of representations of 3 which we will focus on
we give the following:

Definition 18.1. A representation π of 3 on a Hilbert space H will be called
normal, provided it is tight and respects least common multiples.

Recall from [10] that the C*-algebra of 3, denoted O3, is the C*-algebra
generated by a universal tight representation of 3. By definition we therefore
see that *-representations of O3 correspond bijectively to tight representations
of 3. If 3 satisfies the hypothesis of (15.5), then it is automatic that the tight

Bull Braz Math Soc, Vol. 39, N. 2, 2008



“main” — 2008/5/29 — 11:50 — page 292 — #102

292 R. EXEL

representations we are talking about respect least common multiples, and hence
are normal representations.

It is not clear to me whether or not one really needs the hypothesis of (15.5)
to obtain that conclusion but, given the dependence of our previous results on
least common multiples, we simply cannot live without it. So much so that we
are willing to impose it from the outside:

Definition 18.2. We will denote by Olcm
3 the C*-algebra generated by the range

of a universal normal representation πu of3 (such as the direct sum of all normal
representations of 3 on subspaces of Hilbert’s space l2).

If 3 satisfies the hypothesis of (15.5) it is then obvious that Olcm
3 = O3, but

in general all we can say is that Olcm
3 is a quotient of O3.

Observe that πu is not necessarily injective by (11.11). The reader is referred
to [11] for a thorough treatment of the injectivity question.

Restricting our attention to Olcm
3 we therefore see that its *-representations

correspond bijectively to normal representations of 3, and in view of (15.11)
and (17.1), they also correspond bijectively to tight representations of S(3). Fur-
thermore these correspond to representations of the C*-algebra of the groupoid
described in (13.3).

Definition 18.3. We will denote by G3 the the groupoid of germs associated
to the restriction of the action θ of (10.3.iv) to the tight part of the spectrum of
E(S(3)).

We thus arrive at one of the main results of this work:

Theorem 18.4. Let 3 be a countable semigroupoid with no springs, in which
every element is monic, and such that every intersecting pair of elements admits
a least common multiple. Then Olcm

3 is naturally isomorphic to C∗(G3).

Proof. Let X = ̂E(S(3))tight, as defined in (12.8). By (10.13) we have that
the map

σ u : s ∈ S(3) 7→ i(1X
ss∗δs) ∈ C∗(G3),

is a representation of S(3) in C∗(G3) (assumed to be an algebra of opera-
tors via any faithful non-degenerated representation), which is supported in
̂E(S(3))tight, and hence is tight by (13.2). The superscript “u” in σ u is jus-

tified by its universal property (10.14).
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Employing (15.11) we deduce that the composition

π : 3
τ

−→ S(3)
σ u

−→ C∗(G3)

is a tight representation of 3 which respects least common multiples, i.e., π is
a normal representation. Invoking the universal property of Olcm

3 there exists a
*-homomorphism

φ : Olcm
3 → C∗(G3),

such that the diagram

S(3)

τ σ u

3
π

πu

C∗(G3)

φ

Olcm
3

commutes, where πu was defined in (18.2). To define an inverse for φ recall
that πu is a normal representation of 3, and hence by (17.1) there exists a tight
representation σ of S(3) such that πu = σ ◦ τ . The space of σ is evidently the
same as the space H u of πu . Since τ(3) generates S(3), by (15.10), we deduce
that the range of σ is contained in the inverse semigroup of partial isometries
on H u generated by the range of πu , which is obviously contained in Olcm

3 . We
may therefore regard σ as a map from S(3) to Olcm

3 .

Being tight, σ is supported in ̂E(S(3))tight by (13.2) and hence we may use
(10.14) to conclude that there exists a *-representation ρ of C∗(G3) on H u , such
that ρ ◦ σ u = σ . The range of σ u may be shown to generate C∗(G3) as a C*-
algebra, and hence we conclude as above that ρ may be regarded as a map from
C∗(G3) to Olcm

3 .

S(3)

σ

σ u

3

τ

πu

C∗(G3)

ρ

Olcm
3
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We therefore have

ρ ◦ φ ◦ πu = ρ ◦ π = ρ ◦ σ u ◦ τ = σ ◦ τ = πu,

so ρ◦φ coincides with the identity on the range of πu , which is known to generate
Olcm
3 . This proves that ρ ◦ φ is the identity map. On the other hand

φ ◦ ρ ◦ π = φ ◦ πu = π,

so φ ◦ ρ coincides with the identity on the range of π , which again generates
C∗(G3). Therefore φ ◦ ρ is the identity map, proving that φ and ρ are each
other’s inverse, and hence isomorphisms. ut

It is interesting to notice that since τ(3) generates S(3), the groupoid G3,
which consists of germs for the action of S(3) on ̂E(S(3))tight, is also in a sense
generated by the action of 3, via τ .

A concrete understanding of this groupoid clearly depends on the ability to
describe ̂E(S(3))tight in clear terms. That is the purpose of our next section.

19 Categorical semigroupoids

In this section we will give a concrete description for the space of tight characters
on the idempotent semilattice of S(3), where 3 is a semigroupoid. To reduce
the technical difficulties to a minimum we will assume that3 possesses a crucial
property well known to hold on categories.

Definition 19.1. A semigroupoid 3 is said to be categorical, if for every f, g ∈
3 one has that 3 f and 3g are either equal or disjoint.

With this notion we wish to capture the essential characteristic of categories
which is relevant to our work. Obviously any small category is a categorical
semigroupoid.

In order to apply our results to a categorical semigroupoid 3 we must assume
that it satisfies our crucial working hypotheses, namely the conditions listed in
(14.7), often adding the absence of springs. With respect to the requirement
that every element is monic we should stress that, although the term we use
is inspired in the Theory of Categories, our use of it is strictly different. In
particular, requiring an element f to be monic impedes the existence of a right
unit to f , namely an element u such that f u = f . According to Definition
(14.5), the only element u which is allowed to satisfy such an equation is the
added unit 1, as in 3̃ = 3 ∪̇ {1}.
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If one is to apply our theory to a classical small category, one should therefore
first remove all of its identities, and then hope that the products of the remaining
elements never come out to being an identity. See below for a discussion of this
issue in the context of higher rank graphs.

Proposition 19.2. Let C be a small category such that no morphism is right-
invertible, except for the identities. Then the set3 of all non-identity morphisms
admits the structure of a categorical semigroupoid. In addition:

(i) If every morphism in C is a monomorphism (in the usual sense of the word),
then every element of 3 is monic (in the sense of Definition (14.5)).

(ii) If for every object v in C there exists a morphism f 6= idv , such that
r( f ) = v, then 3 has no springs.

(iii) Suppose that whenever f u = gv in C, there exists a pull-back for the pair
( f, g). Then 3 admits least common multiples.

Proof. Given f, g ∈ 3 suppose that f g is an identity morphism, necessarily
the identity on v := r( f ). Then f is right-invertible and hence by hypothesis,
f = idv /∈ 3, a contradiction. So whenever f, g ∈ 3, and f g is defined in C,
one has that f g ∈ 3. We may then put

3(2) = {( f, g) ∈ 3×3 : d( f ) = r(g)},

and it is clear that 3 is a categorical semigroupoid with composition as multi-
plication.

Under hypothesis (i) suppose that f g = f h, for f ∈ 3, and g, h ∈ 3̃. If
g, h ∈ 3, we have that g = h because f is a monomorphism, by hypothesis. If
g ∈ 3 and h = 1, then

f g = f = f idd( f ).

Using again that f is monic we deduce that g = idd( f ) /∈ 3, a contradiction.
This shows that every element is monic in the sense of (14.5).

Point (ii) is elementary. With respect to (iii) let f, g ∈ 3 be such that f e g.
If g | f then it is obvious that f = lcm( f, g), and similarly g = lcm( f, g), if
f | g. Otherwise, assuming that neither g | f , nor f | g, there are u and v in 3
(as opposed to 3̃) such that f u = gv. So there let (p, q) be a pull back for ( f, g),
which in particular entails f p = gq . Since f and g do not divide each other we
have that neither p nor q are identity morphisms. Setting m = f p, notice that
m is not an identity either because f is not right-invertible, and so m ∈ 3. It is
then clear that m is a common multiple of f and g (relative to 3). If n ∈ 3 is
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another common multiple of f and g, then n = f x = gy, for some x, y ∈ 3̃.
But, since f and g do not divide each other we see that x, y ∈ 3, and hence
the equation f x = gy makes sense in C. By definition of pull-backs, there is a
morphism r such that x = pr , and y = qr . Therefore n = f x = f pr = mr ,
and hence m | n in 3, regardless of whether or not r ∈ 3. ut

From now on we assume that 3 is a fixed categorical semigroupoid satis-
fying (14.7), and having no springs.

The greatest simplification brought about by restricting one’s attention to such
semigroupoids is in the structure of the semilattice Q of elementary domains
defined in (14.10), which is easily seen to be just

Q = {3 f : f ∈ 3} ∪ {∅}.

If f lies in3g1 and3g2 , for two elements g1, g2 ∈ 3, then evidently3g1 ∩3g2

is nonempty, and hence by hypothesis3g1 = 3g2 . We may then define the range
of f , denoted

r( f ),

to be the only element A ∈ Q for which f ∈ A. It is possible that some f ∈ 3
is not in any 3g, in which case r( f ) will not be defined. We then conclude that

( f, g) ∈ 3(2) ⇐⇒ 3 f = r(g), ∀ f, g ∈ 3,

where we consider the expression in the right-hand side to be false if r(g) is not
defined. The reader is invited to compare this with the criteria for two morphisms
in a category to be composable.

The above simple form of Q leads to a simplified S(3), which then consists
of the disjoint union of the following sets:

{
( f, A, g) : f, g ∈ 3, 3 f = 3g = A

}
,

{
( f,3 f , 1) : f ∈ 3

}
,

{
(1,3g, g) : g ∈ 3

}
,

{
(1,3 f , 1) : f ∈ 3

}
, and {0}.

The all important semilattice E
(
S(3)

)
is then simply the disjoint union of the

sets16

E(S(3)) =
{
( f,3 f , f ) : f ∈ 3

}
∪

{
(1, A, 1) : A ∈ Q}.

16In case 3 is obtained from a category C, as in (19.2), then Q is in one-to-one correspondence
with the objects in C, or at least those which are the co-domain of a non-identity morphism. It
is therefore curious that, after the identities have been put to sleep in (19.2), they were suddenly
awakened by this expression for E(S(3)).
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Notations 19.3. From now on we shall adopt the following shorthand notations:

(i) E = E
(
S(3)

)
,

(ii) E p =
{
( f,3 f , f ) : f ∈ 3

}
,

(iii) Eq =
{
(1, A, 1) : A ∈ Q},

(iv) p f = pτf = ( f,3 f , f ), for all f ∈ 3,

(v) qA = (1, A, 1), for all A ∈ Q.

This in turn evokes the notations Ê from (10.1), Ê0 from (12.4), in addition to
Ê∞ and Êtight from (12.8). It is our purpose here to describe the most important
of these, namely Êtight. Recall from (12.9) that Êtight is the closure of Ê∞ in
Ê0. Being left out of this equation, Ê will not matter much to us.

The following is a compilation of properties relating to the order relation on E ,
some of which we have already encountered in (14.17) and (14.19), and which
completely describes the structure of E , as a semilattice.

Proposition 19.4. If f, g ∈ 3, and A, B ∈ Q. Then

(i) p f pg = plcm( f,g), if f e g,

(ii) p f 6 pg, if and only if g | f ,

(iii) p f ⊥ pg, if f ⊥ g,

(iv) p f 6 qA, if f ∈ A,

(v) p f ⊥ qA, if f /∈ A,

(vi) qA ⊥ qB, if A 6= B.

Definition 19.5. Let ξ be a filter in E . We will say that ξ is of

(i) p-type, if ξ ⊆ E p,

(ii) q-type, if ξ ⊆ Eq ,

(iii) pq-type, if ξ ∩ E p, and ξ ∩ Eq are nonempty.

If ξ is a filter of q-type then all of its elements are of the form qA, for some
nonempty A ∈ Q. But since any two of these are disjoint by (19.4.vi), only
one such element is allowed. We thus see that ξ = {qA}, for a single nonempty
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A ∈ Q. On the other hand, given any A ∈ Q, with A 6= ∅, it is easy to see that
the singleton

ξA = {qA} (19.6)

is a filter of q-type.
The next concept is borrowed from [12, 5.5].

Definition 19.7. Let ξ be a filter in E . We will say that the stem of ξ is the set

ωξ = { f ∈ 3 : p f ∈ ξ }.

It is clear that a filter is of q-type if and only if its stem is empty. The following
elementary result describes all filters according to their type:

Proposition 19.8. Let ξ be a filter in E.

(i) If ξ is of q-type, then ξ = ξA := {qA}, for some A ∈ Q, with A 6= ∅.

(ii) If ξ is of p-type, then ξ = {p f : f ∈ ωξ }, and moreover r( f ) is not
defined for any f ∈ ωξ .

(iii) If ξ is of pq-type, then there is some A ∈ Q, such thatωξ ⊆ A. In addition
ξ = {p f : f ∈ ωξ } ∪ {qA}.

Proof. Point (i) was already discussed above. Under the hypothesis of (ii),
suppose that f is an element of ωξ such that f ∈ A, for some A ∈ Q. Then
p f 6 qA, by (19.4.iv) and hence qA ∈ ξ , by (12.1.ii). This contradicts the fact
that ξ is of p-type, and hence f does not belong to any A, which means that
r( f ) is not defined. The first sentence of (ii) is obvious.

If ξ is of pq-type, then by assumption ξ contains some qA, for A ∈ Q. As
already argued, only one such element is allowed and hence ξ ∩ Eq must be a
singleton {qA}. The other elements of ξ must be of the form p f , for f ∈ 3, and
hence ξ = {p f : f ∈ ωξ } ∪ {qA}. Given any f ∈ ωξ , we have that both p f and
qA lie in ξ , and hence p f e qA, by (12.1.iii). It then follows from (19.4.iv) that
f ∈ A. ut

Proposition 19.9. Given a filter ξ on E one has that:

(i) if f ∈ ωξ and g ∈ 3 is such that g | f , then g ∈ ωξ ,

(ii) for every f, g ∈ ωξ , one has that f e g, and moreover lcm( f, g) ∈ ωξ .
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Proof. If g | f ∈ ωξ , we have that ξ 3 p f 6 pg, so pg ∈ ξ , and hence
g ∈ ωξ . In order to prove (ii) let us be given f, g ∈ ωξ and suppose by contra-
diction that f ⊥ g. Then

0 = p f pg ∈ ξ,

which is impossible. This proves that f e g. Moreover,

ξ 3 p f pg = plcm( f,g),

so lcm( f, g) ∈ ωξ . ut

Based on the findings of the above result we introduce the following general-
ization of the notion of paths in a graph:

Definition 19.10. A path in a semigroupoid 3 is a subset ω ∈ 3 such that,

(i) if f ∈ ω, and g ∈ 3 is such that g | f , then g ∈ ω,

(ii) for every f, g ∈ ω, one has that f e g, and moreover lcm( f, g) ∈ ω.

An ultra-path is a path which is not properly contained in any other path.

It is therefore obvious that ωξ is a path for every filter ξ , possibly the empty
path if ξ is of q-type.

Given a nonempty path ω, suppose that f, g ∈ ω and that f ∈ A, for some
A ∈ Q. By (19.10.ii) we may write f u = gv, for suitable u, v ∈ 3̃, and hence
g ∈ A, by (14.2). This means that, if r( f ) is defined for some f ∈ ω, then
r(g) = r( f ) for every g ∈ ω. In this case we say that A is the range of ω, in
symbols

r(ω) = A.

Otherwise r(ω) is not defined.
Notice that if we are given some f ∈ 3 then

ω f := {g ∈ 3 : g | f }

is clearly a path. By Zorn’s Lemma there exists an ultra-path containing ω f , and
hence any element of 3 belongs to some ultra-path. Another consequence of
this is that even if the definition allows for paths to be empty, the empty path is
never an ultra-path (unless 3 = ∅).

A filter of the form ξA, as defined in (19.8.i), is never an ultra-filter because if
f ∈ A, then the set of all elements in E which are bigger than or equal to p f

forms a filter properly containing ξA. For that reason the filters of q-type are left
out of the following characterization of ultra-filters.
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Proposition 19.11. The correspondence ξ 7→ ωξ is a bijection from the set
of all filters in E, bar the q-types, and the set of all nonempty paths. This also
gives a one-to-one correspondence from the set of all ultra-filters to the set of all
ultra-paths.

Proof. Given a nonempty path ω consider the subset ξω of E defined by

ξω =

{
{p f : f ∈ ω} ∪ {qr(ω)}, if r(ω) is defined,

{p f : f ∈ ω}, otherwise.

It is then easy to see that ξω is a filter and that the resulting map ω → ξω gives
the inverse of the correspondence in the statement. Since the two correspon-
dences referred to preserve inclusion, it is clear that ultra-filters correspond to
ultra-paths. ut

From now on we will use (12.5) and (12.6) to identify characters with filters,
without further warnings. Therefore Ê0 will be seen as the set of all filters in E .
This said, Ê∞ corresponds to ultra-filters, and the filters corresponding to the
elements of Êtight will be referred to as tight-filters.

Were we only interested in Ê∞, it would be sensible to use the above result
to replace Ê∞ by the set of all ultra-paths. However our primary interest is in
tight filters, and unfortunately paths fail to capture the topological complexity
of filters.

Proposition 19.12. Let ξ be a filter in E.

(a) Suppose that ξ is of q-type, and write ξ = ξA, as in (19.6). Then ξ is tight
if and only if A admits no finite cover (in the sense of (15.3)),

(b) Suppose that ξ is of p-type. Then ξ is tight if and only if for every f ∈ ωξ ,
and every finite cover H for 3 f (again in the sense of (15.3)), there is
some h ∈ H such that f h ∈ ωξ .

(c) Suppose that ξ is of pq-type. Then ξ is tight if and only if the condition in
(b) is satisfied and moreover for every finite cover (ditto) H of r(ωξ ), one
has that h ∈ ωξ , for some h ∈ H.

Proof. Before we begin it is convenient to notice the following auxiliary result:
if A ∈ Q is nonempty then the covers of qA (in the sense of (11.5)) which do
not contain qA itself, correspond to the covers of A (in the sense of (15.3)) in
the following way: given a cover H of A, the set {ph : h ∈ A} is a cover for
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qA. On the other hand, given a cover Z of qA which does not contain qA, the set
{h ∈ 3 : ph ∈ Z} is a cover for A.

To prove it let H be a cover for A. Then every nonzero element z ∈ E , which
is smaller than qA is either qA itself, in which case z intercepts every ph , or
z = pg, for some g ∈ A by (19.4). In the latter case g e h, for some h ∈ H , and
hence

zph = pg ph = plcm(g,h) 6= 0,

so z e ph . Conversely, assuming that Z is a cover for qA not containing qA, we
have by (19.4) that Z must have the form

Z =
{

ph : h ∈ H
}
,

where H is a subset of A. To prove that H is a cover for A, let f ∈ A. Then
p f 6 qA by (19.4.iv), so p f ph is nonzero for some h ∈ H , which means that
f e h.

Addressing (i) suppose that ξA is a tight filter. Arguing by contradiction let H
be a finite cover for A, so that {ph : h ∈ H} is a cover for qA. If φ is the tight
character associated to ξ according to (12.6), then

1 = φ(qA) =
∨

h∈H

φ(ph),

and hence ph ∈ ξ , for some h ∈ H . This would seem to indicate that h ∈ ωξ ,
which is a contradiction. Thus no cover for A may exist.

Conversely suppose that A admits no finite cover. Again denoting by φ the
associated character, as in (12.6), notice that φ(qA) = 1, and hence condition
(11.7.i) is satisfied so we may use (11.8) in order to prove that φ is tight. So let
x ∈ E and let Z be a finite cover for x . We must then prove that

∨

z∈Z

φ(z) > φ(x). (19.12.1)

Observe that, except for x = qA, one has that φ(x) = 0, in which case the above
inequality holds trivially. We may then restrict our attention to the case in which
x = qA. Excluding the trivial case in which qA itself belongs to Z , we have that
Z = {ph : h ∈ H}, where H is a finite cover for A, but since A admits no finite
cover by hypothesis, there is nothing to be proven.

Suppose now that ξ is a tight filter of p-type or pq-type, which implies that
ωξ is nonempty. Let f ∈ ωξ and let us be given a finite cover H for 3 f . This
time we claim that {p f h : h ∈ H} is a cover for p f . In fact, any element of E
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which is smaller than p f is necessarily of the form pg, for some g ∈ 3 which
is a multiple of f , by (19.4). So write g = f k, with k ∈ 3̃. If k = 1 then
obviously pg e p f h , for all h ∈ H . Otherwise k ∈ 3 f , and hence h e k, for
some h ∈ H . This implies that f h e f k, or equivalently that f h e g, whence

p f h pg = plcm( f h,g) 6= 0,

proving the claim. Because the character φ associated to ξ is tight we deduce
that

1 = φ(p f ) =
∨

h∈H

φ(p f h),

so there exists some h ∈ H , such that p f h ∈ ξ , and hence f h ∈ ωξ . In the
special case in which ξ is a tight filter of pq-type we must still address the last
assertion in (c). Let A = r(ωξ ), and picking any f ∈ ωξ we have that f ∈ A, so

ξ 3 p f 6 qA,

whence qA ∈ ξ , which is to say that the associated character φ satisfies φ(qA) =
1. Let H be a finite cover for A. By the auxiliary result proved above one has
that {ph : h ∈ H} is a cover for qA and hence

1 = φ(qA) =
∨

h∈H

φ(ph),

from where we deduce that φ(ph) = 1, for some h ∈ H , meaning that h ∈ ωξ .
Let us now address the converse implications in (b) and (c) simultaneously.

So let ξ be a filter with nonempty stem satisfying the condition in (b). In case ξ
is of pq-type, we assume in addition that it also satisfies the condition in (c).

Since the associated character φ is nonzero, there must exist some x ∈ E , such
that φ(x) = 1, and hence we may again use (11.8) in order to prove that φ is
tight. So let x ∈ E , and let Z be a finite cover for x . We must prove (19.12.1).
Excluding the trivial case in which φ(x) = 0, we suppose that x ∈ ξ .

The proof will be broken up in two cases, the first one corresponding to
x = p f , for some f ∈ ωξ . Since Z is a cover for p f we have by (19.4.ii)
that,

Z =
{

pg : g ∈ G
}
,

where G is a finite subset of 3 consisting of multiples of f . We may therefore
rewrite Z as

Z =
{

p f h : h ∈ H
}
,
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where H is a finite subset of 3 f ∪ {1}. If p f itself belongs to Z then obviously
the right-hand side of (19.12.1) is 1, and the proof is finished. So assume that
H ⊆ 3 f . We then claim that H is a cover for3 f . To prove it let k ∈ 3 f . Then
p f k 6 p f , so that p f k e p f h , for some h ∈ H , meaning that f kx = f hy, for
suitable x, y ∈ 3̃. Canceling out f we deduce that kx = hy, and hence that
k e h, proving our claim. The hypothesis therefore applies and we have that
f h ∈ ωξ , for some h ∈ H , which may be rephrased by saying that φ(p f h) = 1,
proving that the left-hand side of (19.12.1) is 1.

Assume next that x = qA, for some A ∈ Q. As we are supposing that
φ(x) = 1, and hence that qA ∈ ξ , this can only happen if ξ is of pq-type, in which
case we moreover have that A = r(ωξ ). The fact that Z is a cover for qA implies
that either qA ∈ Z , when (19.12.1) is readily proved, or Z = {ph : h ∈ H}, where
H is a cover for A = r(ωξ ). This may then be combined with our hypothesis to
give h ∈ ωξ , for some h ∈ H . Then ph ∈ ξ and hence φ(ph) = 1. Since ph is
in Z , we have that the left-hand side of (19.12.1) is 1, concluding the proof. ut

20 Higher rank graphs

In this section we wish to apply our theory to higher rank graphs. The reader
should consult the references listed in the introduction for more information on
this subject.

From now on we assume that k > 1 is an integer and3 is a k-graph, with rank
map given by

∂ : 3 → Nk .

The well known unique factorization property states that for every morphism f
in 3, and for every n,m ∈ Nk such that ∂( f ) = n + m, there exists a unique
pair of morphisms (g, h) such that f = gh, ∂(g) = n, and ∂(h) = m.

As usual we will say that f is an edge if ∂( f ) is an element of the canonical
basis {ei }k

i=1 of Nk . For an edge f , one sometimes refer to ∂( f ) as the color of
f . While one does not really have to attach “colors” to the ei , it does make sense
to say that two edges have, or do not have the same color.

The possibility of studying 3 with our tools naturally hinges on whether or
not we may verify our working hypotheses, namely (14.7), and the absence of
springs.

We will soon specialize to a situation in which we may apply all of the points
in (19.2), hence obtaining our working hypotheses. We do so mainly to avoid
technical complications, but we nevertheless believe that our methods, and The-
orem (13.3) in special, may be applied to the inverse semigroup constructed in
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[13] in the most general case, obtaining the same description of the C*-algebra
of 3 as a groupoid C*-algebra.

Notice that the identities in 3 are precisely the morphisms with rank zero.
Moreover if f, g ∈ 3 are such that f g is an identity, then

0 = ∂( f g) = ∂( f )+ ∂(g),

which implies that ∂( f ) = ∂(g) = 0, so f and g are both identities. This says
that no morphism other than the identities may be right-invertible, and hence
we have by (19.2) that the set 3 of all non-identity morphisms is a categorical
semigroupoid.

With respect to (19.2.i), if f, g, h are morphisms in3 such that f g = f h, then
∂(g) = ∂(h), and the uniqueness of the factorization implies that g = h. This
says that every morphism in 3 is a monomorphism, so we may apply (19.2.i) to
collect another of our working hypotheses.

For each vertex (object) v in 3 and each n ∈ Nk one usually denotes by 3v
n

the set of all morphisms f in 3 with r( f ) = v and ∂( f ) = n.
Recall that 3 is said to be row-finite if 3v

n is finite for every v and n. If 3v
n

is never empty then one says that 3 has no sources. Notice that in order for the
associated semigroupoid 3 to have no springs one does not necessarily need to
rule out all sources of 3. It is clearly enough to suppose that

3v =
⋃

n 6=0
3v

n 6= ∅,

for every object v in 3.
The last requirement we will impose on 3 is designed to allow for the use of

(19.2.iii), and it is related to the question of finite alignment. Recall that 3 is
said to be finitely aligned, if for every f, g ∈ 3 one has that

3min( f, g) :=
{
(p, q) ∈ 3×3 : f p = gq, and ∂( f p) = ∂( f ) ∨ ∂(g)

}

is finite.
Observe that for any pair (p, q) in 3min( f, g), one has that m := f p is a

common multiple of f and g. If (p′, q ′) is another pair in 3min( f, g), then
m ′ = f p′ is another common multiple but neither m | m ′, nor m ′ | m, because
∂(m) = ∂(m ′). Thus, unless 3min( f, g) has at most one element, 3 will not
admit least common multiples.

Definition 20.1. We shall say that 3 is singly aligned, if3min( f, g) has at most
one element for every f and g in 3.
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We would like to reach the conclusion that3 is singly aligned, and also that3
admits least common multiples, starting with the following apparently weaker
concept:

Definition 20.2. We shall say that 3 satisfies the little pull-back property if,
given two commuting squares

•
p1 ↗ ↘ f1

• •
q1 ↘ ↗g1

•

and

•
p2 ↗ ↘ f2

• •
q2 ↘ ↗g2

•

such that

(i) all arrows involved are edges,

(ii) all northeast edges are of the same color,

(iii) all southeast edges are of the same color, but not the same as the north-
east ones,

then
f1 = f2 and g1 = g2 =⇒ p1 = p2 and q1 = q2.

It is obvious that a k-graph which does not satisfy the little pull-back property
cannot be singly aligned.

Speaking of either one of the diagrams above, say the one on the left-hand side,
one sometimes think of the two-dimensional figure formed by it as a geometrical
representation of the element f1 p1 of3. The algebraic structure of3 is based on
the idea that this square is determined by the sides p1 and f1. In particular, there
cannot be two different squares sharing these two sides. A similar observation
clearly holds for the sides q1 and g1. The little pull-back property goes very much
in this direction by stating that there cannot be two different squares sharing the
sides f1 and g1. A similar property, which could be called the little push-out
property, would say that two different squares cannot share the sides p1 and q1.
That property may be shown to imply the existence of push-outs in 3.

Proposition 20.3. Suppose that 3 satisfies the little pull-back property, and let
fi , gi , pi and qi be morphism (rather than edges) such that fi pi = gi qi , for
i = 1, 2. Suppose also that ∂( fi ) ∧ ∂(gi ) = 0, and ∂(pi ) ∧ ∂(qi ) = 0, for
i = 1, 2. Then the implication at the end of (20.2) holds true.
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Proof. First observe that

∂( fi )− ∂(gi ) = ∂(qi )− ∂(pi ),

so one necessarily has

∂( fi ) = ∂(qi ), and ∂(gi ) = ∂(pi ),

as a consequence of orthogonality.
Letting f = f1 = f2, and g = g1 = g2, observe that it is enough to show that

p1 = p2, since this would imply that

gq1 = f p1 = f p2 = gq2,

and the uniqueness of the factorization would give q1 = q2.
Suppose first that ∂( f ) = 0. Then ∂(q1) = ∂(q2) = 0, so f , q1, and q2 are

the identity morphisms on their respective domains. Therefore

p1 = f p1 = gq1 = g = gq2 = f p2 = p2.

A similar argument proves the result if ∂(g) = 0. We therefore suppose, from
now on, that ∂( f ) and ∂(g) are both nonzero.

We will now proceed by induction on |∂( f )| + |∂(g)|, observing that when
|∂( f )| + |∂(g)| 6 1, the conclusion follows from the above arguments.

If |∂( f )| + |∂(g)| = 2, since |∂( f )|, |∂(g)| > 0, we must have that |∂( f )| =
|∂(g)| = 1, and hence f and g are edges. By hypothesis the pi and qi are also
edges, so the conclusion follows from the little pull-back property.

We thus assume that n > 2, and |∂( f )| + |∂(g)| = n + 1. Hence either
|∂( f )| > 2, or |∂(g)| > 2. Without loss of generality we assume that |∂( f )| >
2. So by the factorization property there are morphisms f ′ and f ′′ such that
f = f ′ f ′′, and |∂( f ′)|, |∂( f ′′)| < |∂( f )|. Since, for i = 1, 2,

∂(qi ) = ∂( f ) = ∂( f ′)+ ∂( f ′′),

we may write qi = q ′
i q

′′
i , with ∂(q ′

i ) = ∂( f ′), and ∂(q ′′
i ) = ∂( f ′′). We further-

more observe that

∂( f pi ) = ∂( f ′)+ ∂( f ′′)+ ∂(pi ) = ∂( f ′)+ ∂(pi )+ ∂(q ′′
i ),

and hence we factorize f pi = φi hiψi , with

∂(φi ) = ∂( f ′), ∂(hi ) = ∂(pi ), and ∂(ψi ) = ∂(q ′′
i ).
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Notice that
f ′ f ′′ pi = f pi = φi hiψi .

By the uniqueness of the factorization we conclude that

f ′ = φi , and f ′′ pi = hiψi . (20.4)

On the other hand, notice that

f ′hiψi = φi hiψi = f pi = gqi = gq ′
i q

′′
i .

Again by the uniqueness of the factorization we conclude that

f ′hi = gq ′
i , and ψi = q ′′

i .

Observe that ∂( f ′) ∧ ∂(g) 6 ∂( f ) ∧ ∂(g) = 0, that ∂( f ′) = ∂(q ′
i ), and that

∂(hi ) = ∂(g). By the induction hypothesis we have that h1 = h2, and q ′
1 = q ′

2.
Let us thus use the simplified notation h = h1 = h2, and q ′ = q ′

1 = q ′
2. By

(20.4) we then deduce that
f ′′ pi = hψi .

Again we have ∂( f ′′) ∧ ∂(h) 6 ∂( f ) ∧ ∂(g) = 0, ∂( f ′′) = ∂(ψi ), and ∂(pi ) =
∂(h). By induction we conclude that p1 = p2, and ψ1 = ψ2, finishing the
proof. ut

While the result above deals with uniqueness, the next result will provide
existence:

Lemma 20.5. Let f1, f2, p1, p2 be morphisms such that f1 p1 = f2 p2. Then
there are morphisms r, p̄1, p̄2, such that, for every i = 1, 2, one has

(i) f1 p̄1 = f2 p̄2,

(ii) pi = p̄i r ,

(iii) ∂( p̄1) ∧ ∂( p̄2) = 0,

(iv) ∂( fi p̄i ) = ∂( f1) ∨ ∂( f2).

Proof. Since ∂( f1), ∂( f2) 6 ∂( f1 p1) = ∂( f2 p2), we have that ∂( f1)∨ ∂( f2) 6
∂( fi pi ), and hence there are morphisms s and r such that sr = fi pi , and ∂(s) =
∂( f1) ∨ ∂( f2). Notice that

∂(s)+∂(r) = ∂( fi pi ) = ∂( fi )+∂(pi ) 6 ∂( f1)∨∂( f2)+∂(pi ) = ∂(s)+∂(pi ),
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and hence ∂(r) 6 ∂(pi ). By the factorization property we may factor pi = p̄i ri ,
with ∂(ri ) = ∂(r). Notice that

fi p̄i ri = fi pi = sr.

By the uniqueness of the factorization we conclude that fi p̄i = s, and ri = r ,
hence proving (i) and (ii). In addition we have

∂( fi p̄i ) = ∂(s) = ∂( f1) ∨ ∂( f2),

taking care of (iv). In order to show (iii) suppose that n ∈ Nk is such that
n 6 ∂( p̄i ), for all i , then

∂( fi ) 6 ∂( fi )+ ∂( p̄i )− n = ∂( f1) ∨ ∂( f2)− n,

whence ∂( f1) ∨ ∂( f2) 6 ∂( f1) ∨ ∂( f2)− n, so that n = 0. ut

The following result can be proved by applying (20.5) to the opposite category
3 op.

Lemma 20.6. Let q1, q2, g1, g2 be morphisms such that q1g1 = q2g2. Then
there are morphisms s, q̄1, q̄2, such that, for every i = 1, 2, one has

(i) q̄1g1 = q̄2g2,

(ii) qi = sq̄i ,

(iii) ∂(q̄1) ∧ ∂(q̄2) = 0,

(iv) ∂(q̄i gi ) = ∂(g1) ∨ ∂(g2).

Proposition 20.7. Assume that 3 satisfies the little pull-back property and let
f1, f2, p1, p2, p′

1 and p′
2 be morphisms such that for all i = 1, 2,

(i) f1 p1 = f2 p2, and f1 p′
1 = f2 p′

2,

(ii) ∂(p1) ∧ ∂(p2) = 0, and ∂(p′
1) ∧ ∂(p′

2) = 0.

Then pi = p′
i , for i = 1, 2.

Proof. First observe that

∂(p1)− ∂(p2) = ∂( f2)− ∂( f1) = ∂(p′
1)− ∂(p′

2),
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so ∂(pi ) = ∂(p′
i ), by (ii). Using (20.6) with gi = pi , and qi = fi , let f̄i and s

be such that f̄1 p1 = f̄2 p2, fi = s f̄i , and ∂( f̄1) ∧ ∂( f̄2) = 0. Since

∂( f̄1)− ∂( f̄2) = ∂(p2)− ∂(p1),

we have ∂( f̄1) = ∂(p2), and ∂( f̄2) = ∂(p1).

Replacing pi by p′
i in our application of (20.6) just above we would get f̄ ′

i and
s ′ such that f̄ ′

1 p′
1 = f̄ ′

2 p′
2, fi = s ′ f̄ ′

i , ∂( f̄ ′
1)∧ ∂( f̄ ′

2) = 0. As above we may also
prove that ∂( f̄ ′

1) = ∂(p′
2), and ∂( f̄ ′

2) = ∂(p′
1). Therefore

∂( f̄1) = ∂(p2) = ∂(p′
2) = ∂( f̄ ′

1),

and
∂( f̄2) = ∂(p1) = ∂(p′

1) = ∂( f̄ ′
2).

Furthermore

∂(s) = ∂( fi )− ∂( f̄i ) = ∂( fi )− ∂( f̄ ′
i ) = ∂(s ′),

and hence the identity s f̄i = s ′ f̄ ′
i , together with the uniqueness of the factoriza-

tion gives s = s ′ and f̄i = f̄ ′
i . The two identities

f̄1 p1 = f̄2 p2, and f̄1 p′
1 = f̄2 p′

2

and (20.3) thus give the conclusion. ut

So here is the result we were looking for:

Theorem 20.8. A k-graph 3 satisfying the little pull-back property is singly
aligned and the associated semigroupoid 3 admits least common multiples.

Proof. Let f1, f2, p1, p2 be morphisms such that f1 p1 = f2 p2. Pick r, p̄1, p̄2

as in (20.5). We claim that ( p̄1, p̄2) is a pull-back for ( f1, f2).

In order to prove this let q1, q2 be morphisms such that f1q1 = f2q2. Again
pick s, q̄1, q̄2 as in (20.5), so that f1q̄1 = f2q̄2, qi = q̄i s, and ∂(q̄1)∧ ∂(q̄2) = 0.
By (20.7) we deduce that p̄i = q̄i , and hence qi = p̄i s, as desired. It is also clear
that s is unique by the factorization property. If then immediately follows that 3
is singly aligned. That 3 admits least common multiples is then a consequence
of (19.2.iii). ut

The little pull-back property is the last restriction we need to impose on 3 in
order to be able to apply all of the conclusions of (19.2).

In view of [13, 3.8.(3)] it is reasonable to restricts one’s attention to represen-
tations of 3 which respects least common multiples. The following is the main
result of this section.
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Theorem 20.9. Let 3 be a countable k-graph satisfying the little pull-back
property and such that for every vertex v there is some morphism f , other than
the identity on v, with r( f ) = v. Then, removing the identities from3we obtain a
semigroupoid3which has no springs, contains only monic elements and in which
every intersecting pair of elements admits a least common multiple. Moreover
the the C*-algebra generated by the range of a universal tight representation of
3, respecting least common multiples, is naturally isomorphic to the C*-algebra
of the groupoid G3 of germs for the standard action of S(3) on the tight part of
the spectrum of its idempotent semilattice.

Proof. Follows from (19.2) and (18.4). ut

From now we fix a k-graph 3 satisfying the hypothesis of (20.9).

To conclude this section we will give a description of Êtight, where E is
the idempotent semilattice of S(3). Given a path ω on 3, let f, g ∈ ω with
∂( f ) = ∂(g). Since f e g, by (19.10.ii) we may write f u = gv. Extending
∂ to 3̃ by defining ∂(1) = 0, we then have that ∂(u) = ∂(v), and then f = g
by the unique factorization property. This says that ω may contain at most one
element f with ∂( f ) = n, for each n ∈ Nk .

Proposition 20.10. Given a nonempty path ω on 3, let D be the image of ω
under the rank function ∂ , and for each n ∈ D, let μ(n) be the unique element
f in ω with ∂( f ) = n. Then

(i) D ∪ {0} is a hereditary subset of Nk ,

(ii) if n,m ∈ D, then n ∨ m ∈ D,

(iii) if n,m ∈ D, and n 6 m, then μ(n) | μ(m),

(iv) ω = {μ(n) : n ∈ D}.

Proof. Let n,m ∈ N k , with m ∈ D, and 0 6= n 6 m. Set f = μ(m), so that
∂( f ) = m. Writing m = n + (m − n), the unique factorization property implies
that f = gh, with ∂(g) = n, and ∂(h) = m − n. Since g | f we conclude that
g ∈ ω, and hence n ∈ D, proving (i). It is also clear that g = μ(n), so (iii) is
also proved. To prove (ii) let n,m ∈ D, so f := lcm(μ(n), μ(m)) ∈ ω, and
hence ∂( f ) ∈ D. It may be proved that ∂( f ) = m ∨ n, but it suffices to notice
that, since f is a common multiple of μ(n) andμ(m), one has that n,m 6 ∂( f ),
and consequently n ∨ m 6 ∂( f ). Thus (ii) follows from (i). The last point is
trivial. ut
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The following is a converse to the above:

Proposition 20.11. Let D be a subset of Nk not containing 0, but such that
D ∪ {0} is a hereditary subset of Nk . Assume that D is closed under “ ∨” and
let ω : D → 3 be any map such that for every n,m ∈ D,

(i) ∂(μ(n)) = n,

(ii) μ(n) | μ(m), if n 6 m,

Then the set ω = {μ(n) : n ∈ D} is a path in 3.

Proof. If f ∈ 3, and f | μ(m), for some m ∈ D, write μ(m) = f u, for some
u ∈ 3̃. This clearly implies that

n := ∂( f ) 6 ∂(μ(m)) = m,

so n ∈ D, and μ(m) = μ(n)v, for some v ∈ 3̃. By the unique factorization we
have that f = μ(n) ∈ ω.

To prove (19.10.ii) suppose that n,m ∈ D. Then μ(n ∨ m) is a common
multiple of μ(n) and μ(m) and, recalling that under our assumptions 3 admits
least common multiples, we have

lcm(μ(n), μ(m)) | μ(n ∨ m).

However it is easy to see that ∂
(
lcm

(
μ(n), μ(m)

))
> n ∨ m, so

lcm(μ(n), μ(m)) = μ(n ∨ m) ∈ ω. ut

Notice that for any set D as above one may define the supremum of D as an
element

m ∈ (N ∪ {∞})k,

and hence D = �k,m := {n ∈ Nk : n 6 m}, as defined in [13, 3.2].
It therefore follows that paths in 3 correspond to maps μ, as in (20.11), and

hence also to the usual notion of paths in higher rank graphs [13, 5.1]. One may
then use (19.12) to relate elements of Êtight to the boundary paths of [13].
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