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Nonlinear maps of convex sets in Hilbert spaces
with application to kinetic equations

Hermano Frid

Abstract. Let H be a separable Hilbert space, U ⊆ H an open convex subset,
and f : U → H a smooth map. Let � be an open convex set in H with � ⊆ U,
where � denotes the closure of � in H . We consider the following questions. First,
in case f is Lipschitz, find sufficient conditions such that for ε > 0 sufficiently small,
depending only on Lip( f ), the image of � by I + ε f , (I + ε f )(�), is convex. Second,
suppose d f (u) : H → H is symmetrizable with σ(d f (u)) ⊆ (0, ∞), for all u ∈ U,
where σ(d f (u)) denotes the spectrum of d f (u). Find sufficient conditions so that the
image f (�) is convex. We establish results addressing both questions illustrating our
assumptions and results with simple examples. We also show how our first main result
immediately apply to provide an invariance principle for finite difference schemes for
nonlinear ordinary differential equations in Hilbert spaces. The main application of the
theory developed in this paper concerns our second result and provides an invariance
principle for certain convex sets in an L2-space under the flow of a class of kinetic
transport equations so called BGK model.

Keywords: convex sets, invariant domains, finite difference schemes, kinetc equations,
BGK model.
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1 Introduction

In this paper we are concerned with the preservation of the convexity of bodies
transformed by maps f : U ⊆ H → H from an open convex set U of a
separable Hilbert space H into H . The results presented here generalize to
the infinite dimensional setting those of [13, 14]. The first type of result we
consider is related to Lipshitz maps. So, we assume that f is Lipschitz and,
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given an open convex �, with � ⊆ U, we wish to find sufficient conditions on
f and ∂� such that (I + ε f )(�) is convex, if 0 < ε < ε0, with ε0 depending
only on Lip( f ). The link of this problem with the question of the invariance of
convex sets under finite difference schemes for systems of conservation laws,
not necessarily hyperbolic everywhere, was first realized in [12].

As in [13], the most important assumption relating f and ∂� is that, for all ω

at which ∂� is smooth, d f (ω)(Tω(∂�)) ⊆ Tω(∂�), where Tω(∂�) denotes the
tangent space to ∂� at ω. As usual, most of the difficulty for the extension from
the finite to the infinite dimensional case is, from the very beginning, to find
suitable conditions that allow an adequate adaptation of the finite dimensional
techniques to the more general infinite dimensional context. Here, we find nec-
essary to impose the following new assumptions which involve the concept of
what we call standard Fredholm operators. By this we mean a linear operator
T : H0 → H0, H0 a Hilbert space, such that T = cI + K , with c ≥ 0 and
K : H0 → H0 a compact operator. When c > 0 this concept coincides with
the simplest example of the usual concept of Fredholm operator (see, e.g., [8]).
Roughly speaking, if ω ∈ ∂� and locally ∂� is given by the equation G(v) = 0,
with G : U → R, three times continuously Gateaux differentiable, dG(ω) 6= 0,
we assume that d f (ω)|H0 is a standard Fredholm operator and the symmet-
ric bilinear forms d2G(ω)|H0 and dG(ω)d2 f (ω)|H0 are also represented by
standard Fredholm operators, where H0 = Tω(∂�).

The other type of result we consider is concerned with the case when d f
is symmetrizable everywhere in U and σ(d f (u)) ⊆ (0, ∞), for all u ∈ U,
where σ(A) denotes the spectrum of the operator A : H → H . The ques-
tion then is to find sufficient conditions on f and ∂� such that f (�) is con-
vex. In the finite dimensional context this question was first addressed by
D. Serre [27], who first realized its connection with the question of the invari-
ance of convex sets under continuous relaxation and kinetic approximations
for systems of conservation laws.

We illustrate our assumptions and results with simple examples and give simple
applications to finite difference approximations of nonlinear ordinary differential
equations in Hilbert spaces.

The main application of our theorems on nonlinear maps of convex domains
in Hilbert spaces presented in this paper is the rigorous proof of the invariance
of the closure in L2(Rd × 4; H ) of convex sets of the form

C :=
{
f ∈ Cc(R

d × 4; H ) : f(x, ξ) ∈ �ξ := Mξ (�),

for all (x, ξ) ∈ Rn × 4
} (1.1)

with suitable �̄ ⊆ U ⊆ H , M : 4 ×U → H and Mξ (u) = M(ξ, u), where
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H is a separable Hilbert space and 4 is a compact metric space endowed with
a Radon measure μ, under the flow of the H -valued kinetic transport equation

ut + a(ξ) ∙ ∇x u =
M(ξ, u(x, t)) − u(x, t, ξ)

κ
,

(x, t, ξ) ∈ Rd × (0, ∞) × 4,

(1.2)

which is the so called BGK model for collision processes related with Boltzmann
equation [2]. We prove that for a very large class of measure spaces (4,μ) (see
section 4). In the case when 4 is a finite set, H is finite dimensional, and μ

is absolutely continuous with respect to the counting measure this important
invariance principle was proved by Serre [27] under slightly more restrictive
assumptions than those imposed here.

The remaining of this manuscript is organized as follows. In section 2, we
state our main assumptions (A1)-(A6), which will be in force through the whole
paper, and establish the main result for the Lipschitz case mentioned above. In
section 3, we deal with the symmetrizable case, establishing our corresponding
main result. We also present the application to finite difference approximations
for ordinary differential equations in Hilbert spaces. Finally, in section 4, we
present our main application of the theory of nonlinear convex maps in Hilbert
spaces establishing rigorously the invariance domains C as in (1.1) under the
flow of kinetic transport equations of the form (1.2).

2 Lipschitz maps of convex bodies

Let L be a real linear space. A subset S of a real linear space L is called
convex if, for every pair p, q of its points, it contains the entire segment [p, q] =
{θp + (1 − θ)q : 0 ≤ θ ≤ 1}. A subspace V of L has codimension n if there
exists a subspace W ⊆ L of dimension n, with V ∩ W = 0 and L = V + W .
A hyperplane H in L is the translate of a subspace of codimension 1. If l : L →
R is a linear functional and α ∈ R, we denote by [l = α] the set of all points
x ∈ L for which l(x) = α. We define analogously the sets [l ≥ α] and [l ≤ α].
It is well known that H is a hyperplane of L if and only if there is a linear
functional l : L → R and α ∈ R such that H = [l = α].

H is called a supporting hyperplane of S ⊆ X at the point p ∈ S if p ∈ H
and S is entirely contained in one of the closed halfspaces bounded by H , that
is, either S ⊆ [l ≥ α] or S ⊆ [l ≤ α], where H = [l = α].

LetL denote a real topological linear space, that is, a real linear space endowed
with a Hausdorff topology with respect to which the operations (α, u) 7→ αu
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and (u, v) 7→ u +v are continuous fromR×L toL andL×L toL, respectively.
The following is a basic fact about convex sets. We refer to [30] for a proof.

Theorem 2.1 (Minkowski [22], Brunn [9], Klee [16]). If S is a closed sub-
set with nonempty interior in some real Hausdorff topological vectorspace L,
S is convex if and only if it possesses a supporting hyperplane at each of its
boundary points.

We say that the subset S of the real topological linear space L is locally convex
at p ∈ L if there exists a neighborhood U of p in L such that S ∩ U is convex.
S is said to be locally convex if it is locally convex at each of its points. We recall
the following fundamental result. Again, a proof may be found in [30].

Theorem 2.2 (Tietze [29], Klee [16]). Let S be a closed connected subset
of some real topological linear space L. Then S is convex if and only if S is
locally convex.

For many other facts about convex sets we refer to [4], [30], [24], [15] and the
references therein.

In what follows we will be working in a real Hilbert space H , that is, a
real linear space endowed with an inner product 〈∙, ∙〉 : H × H → R, which
is complete with respect to the metric induced by the norm ‖u‖ = 〈u, u〉1/2.
We say that H is separable if it possesses a countable dense subset.

So, we start by assuming:

(A1) H be a real separable Hilbert space and U ⊆ H an open convex subset.

(A2) We consider functions G j : U → R, j = 1, . . . , N , which are in C3(U),
that is, they are 3 times continuously Gateaux differentiable in U. Sup-
pose 0 is a regular value for G j .

Let
Sj =

{
u ∈ U : G j (u) = 0

}
, j = 1, . . . , N . (2.1)

We denote

� j =
{
u ∈ U : G j (u) < 0

}
, j = 1, . . . , N .

We assume

(A3) � j is locally convex at each ω ∈ Sj , j = 1, . . . , N . If Tω(Sj ) denotes
the tangent space to Sj at ω ∈ Sj , this assumption is equivalent to the
quasiconvexity condition:

d2G j (ω)(ξ, ξ) ≥ 0, for all ξ ∈ Tω(Sj ). (2.2)
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Let f : U → H be three times continuously Gateaux differentiable, i.e.,
f ∈ C3(U,H ). We now make our most important assumption. Namely:

(A4) For each ω ∈ Sj , d f (ω)(Tω(Sj )) ⊆ Tω(Sj ), j = 1, . . . , N .

Finally, set
� := ∩N

j=1� j , (2.3)

and assume

(A5) � 6= ∅ and � ⊆ U, where � denotes the closure of � in H .

The last assumption that we next state is only needed in the infinite dimensional
context and involve the concept of standard Fredholm operator.

Definition 2.1. We will say that a linear operator T on a Hilbert space H0 is
a standard Fredholm operator if T = cI + K , where c ≥ 0, I is the identity
operator of H0, and K is a linear compact operator on H0.

Remark 2.1. The motivation for the denomination in the above definition is
just the fact that when c > 0 those operators satisfy the Fredholm alternative.
Here, we also allow the case c = 0 when T is then simply a compact operator.
Notice that the representation T = cI + K for a standard Fredholm map is
unique, except in the finite dimensional case, in which we agree to set c = 0.
We denote by c(T ) and K (T ), respectively, the non-negative constant c and the
compact operator K associated with the standard Fredholm map T . In the finite
dimensional case, according to our convention, K (T ) = T .

Remark 2.2. Clearly, c(T ) ≤ ‖T ‖, since by the compactness of K (T ) we
must have K (T )ek → 0 as k → ∞ for any orthonormal basis {ek}k∈N for
H0. Therefore, we also have in general the estimate ‖K (T )‖ ≤ 2‖T ‖.

Remark 2.3. In the case where the standard Fredholm operator T is symmetriz-
able, that is, symmetric, either with respect to the original or to some other inner
product forH0, by the elementary Lemma 2.1 recalled below, there is an orthono-
mal basis of eigenvectors of K (T ), {ei }, and ‖K (T )‖ = supi∈N |〈K (T )ei , ei 〉|,
where the inner product is the one for which K (T ) is symmetric. This then
implies that ‖K (T )‖ ≤ ‖T ‖, provided ‖K (T )−‖ ≤ ‖K (T )+‖, where K (T )−
is the linear operator which coincides with K (T ) on the space generated by the
eigenvectors associated with the non-positive eigenvalues and vanishes on the
space generated by the eigenvectors associated with the positive eigenvalues,
and K (T )+ := K (T ) − K (T )−.
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We will use the following basic fact about standard Fredholm operators which
follows immediately from the well known spectral theorem for compact sym-
metric operators (see, e.g., [8]).

Lemma 2.1. Let T : H → H be a standard Fredholm operator. Suppose T is
symmetric, that is, 〈T ξ, η〉 = 〈ξ, T η〉, for all ξ, η ∈ H . Then there exists an
orthonormal basis of H , {e1, e2, . . . }, consisting of eigenvectors of T associ-
ated with real eigenvalues, i.e., T e j = λ j e j , j = 1, 2, . . . , and each λ j 6= c(T )

has finite multiplicity.

We also assume:

(A6) For each j = 1, . . . , N and any ω ∈ Sj , the linear maps

d f (ω)|H0, d2G j (ω)|H0, dG j (ω)d2 f (ω)|H0 : H0 → H0

are standard Fredholm operators on H0 = Tω(Sj ).

Here, for ω ∈ Sj , we denote by d2G j (ω)|H0 the symmetric linear operator
on H0 such that

d2G j (ω)(ξ, η) =
〈 [

d2G j (ω)|H0
]
ξ, η

〉
, for all ξ, η ∈ H0, (2.4)

and by dG j (ω)d2 f (ω)|H0 the symmetric linear operator on H0 representing
the symmetric bilinear form on H0 given by

dG j d
2 f (ω)(ξ, η) := dG j (ω)

(
d2 f (ω)(ξ, η)

)
, for all ξ, η ∈ H0,

that is,

dG j d
2 f (ω)(ξ, η) =

〈 [
dG j d

2 f (ω)|H0
]
ξ, η

〉
, for all ξ, η ∈ H0. (2.5)

We say that ν(ω) is a vector in the outer normal cone of a convex set �

at ω ∈ ∂� if ν(ω) is orthogonal to a supporting hyperplane for � at ω and
ω + ν(ω) is separated from � by the supporting hyperplane.

Theorem 2.3. Let H , U, G j : U → R, j = 1, . . . , N , f : U → H and �

satisfy the assumptions (A1)-(A6). Suppose f is Lipschitz continuous onU and
let M0 = Lip( f ). Then, (I + ε f )(�) is an open convex subset of H , provided
that 0 < ε < 1/(2M0). In particular, if ω ∈ ∂� and ν(ω) is an unit vector in
the outer normal cone at ω, we have

〈
f (u) − f (ω), ν(ω)

〉
≤ ε−1

〈
ω − u, ν(ω)

〉
, (2.6)

for all u ∈ �.
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Proof.

1. Since (I + ε f ) is clearly a diffeomorphism from U onto (I + ε f )(U), in
view of (A5) and Theorem 2.2, to prove that (I +ε f )(�) is an open convex
subset of H , provided that 0 < ε < 1/(2M0), it suffices to prove that
(I + ε f )(� j ) is locally convex at each v ∈ (I + ε f )(Sj ), for an arbitrary
j ∈ {1, . . . , N }. We proceed by contradiction. Suppose, on the contrary,
that for some j ∈ {1, . . . , N }, there is a point v0 ∈ ∂(I + ε f )(Sj ) such
that (I + ε f )(� j ) is not locally convex at v0. Let u0 ∈ ∂Sj be given by
(I + ε f )(u0) = v0. Set

g(u) = u + ε
(

f (u) − f (u0)
)
.

Then g(u0) = u0 and g(� j ) is not locally convex at u0 ∈ g(Sj ) ∩ Sj .
Now, g(Sj ) is a smooth submanifold of codimension 1 in H , and so for
r > 0 sufficiently small g(Sj ) ∩ B(u0, r) is the graph of a non-convex
function whose epigraph contains g(� j ) ∩ B(u0, r). So, let us consider
such r > 0.

2. We observe that, by (A4), g satisfies dg(ω)(Tω(Sj )) = Tω(Sj ), for all
ω ∈ Sj . Hence, if ν(ω) is the unit outer normal to ∂� j at ω ∈ Sj , it is
also the unit outer normal to ∂g(� j ) at g(ω) ∈ g(Sj ). Indeed, ν(ω) is an
eigenvector of dg∗, the adjoint of dg, viewed as a transformation onH by
the usual identification H ∗ ≡ H , associated with a positive eigenvalue,
and so

〈
dg(ω)ν(ω), ν(ω)

〉
=

〈
ν(ω), dg(ω)∗ν(ω)

〉
= λ > 0.

Hence, since dg(ω)ν(ω) points outwards g(� j ) and ν(ω) is normal to
g(Sj ), ν(ω) must point also outwards g(� j ). In particular, for ω = u0,
ν(u0) is both the unit outer normal to ∂� j and ∂g(� j ) at u0 ∈ g(Sj )∩ Sj .

3. Changing coordinates by means of an orthogonal affine transformation,
we may assume u0 = 0, and may take a countable orthonormal basis
for H , {e0, e1, e2, . . . }, with e0 = ν(u0), so that any u ∈ H may be
written as a square summable sequence (x0, x1, x2, ∙ ∙ ∙ ), and Tu0(Sj ) is
identified with the Hilbert space H0 ⊆ H consisting of those vectors
x̄ = (x0, x), with x = (x1, x2, . . . ), for which x0 = 0. So, {e1, e2, . . . } is
an orthonormal basis forH0. Further, g(Sj ) ∩ B(u0, r) may be identified
with the graph, x0 = G(x), of a function of class C3, G : H0 → R, satis-
fying G(0) = 0, dG(0) = 0. Moreover, G may be taken so that d2G(0)
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is diagonalizable, as we show in the next paragraph. Thus, {e1, e2, . . . }
may be taken as an orthonormal basis of eigenvectors of d2G(0), where
we identify the bilinear form d2G(0) with the symmetric transformation
canonically associated with it. Moreover, for u0 suitably chosen, as a point
at which g(� j ) is not locally convex, we may also assume that e1 is such
that d2G(e1, e1) > 0. Let us denote by 5 the two-dimensional subspace
(plane) of H having {e0, e1} as an orthonormal basis.

4. Concerning the fact that G may be chosen so that d2G(0) is diagonalizable,
indeed, we may define G implicitly by G j ◦ g−1(G(x), x) = 0, by using
the Implicit Function Theorem. The latter also gives

d2G(∙, ∙) = −
(
dG j ∙ D0g−1

)−1
(

d2G j
( [

D0g−1dG + dtgg−1
]
∙ ,

[
D0g−1dG + dtgg−1

]
∙
)
+ dG j

( [
(dG ∙)(dG ∙)

]
D0 D0g−1

+ 2
[
(dG ∙)

(
dtg D0g−1 ∙

)]
sym + d2

tgg−1(∙, ∙)
)
)

,

as may be easily verified, where dtgg−1 denotes the restriction of dg−1 to
H0, D0 means the partial derivative in the direction e0 and [ ]sym means
the symmetric part. From this formula, using (A6), it can be seen that
d2G is given by a symmetric standard Fredholm operator and, hence, it
is diagonalizable. Indeed, the only terms in the above formula that are
not represented by operators of finite rank are d2G j

(
dtgg−1 ∙ , dtgg−1 ∙

)

and dG j d2
tgg−1(∙, ∙). By (A6) d2G j |H0 is a standard Fredholm operator.

Further, the fact that T0 := d f (ω)|H0 is a standard Fredholm operator,
given also by (A6), implies that T := dg(ω)|H0 is a standard Fredholm
operator and we can write T = cI + K , with c := 1 + εc(T0) and K :=
εK (T0). Moreover, we have ‖c−1 K‖ < 1, because 0 < ε < 1/(2M0) and
‖K (T0)‖ ≤ 2M0 by Remark 2.1. Since

dg−1
tg (g(ω)) =

[
dg(ω)|H0

]−1
= c−1 I + c−1

∞∑

k=1

(
− c−1 K

)k
,

it follows that dg−1
tg (g(ω)) is also a standard Fredholm operator and so this

is also true for
d2G j

(
dtgg−1 ∙ , dtgg−1 ∙

)
.

On the other hand dG j d2g|H0 is a standard Fredholm operator by (A6)
and

dG j d
2
tgg−1(ξ, η) = −dG j

(
d2g(dg−1ξ, dg−1η)

)
, for all ξ, η ∈ Tω(Sj ),

Bull Braz Math Soc, Vol. 39, N. 3, 2008



“main” — 2008/8/27 — 16:00 — page 323 — #9

MAPS OF CONVEX SETS IN HILBERT SPACES 323

and so

dG j d
2
tgg−1|H0 = −

(
dg−1|H0

)∗[
dG j d

2g|H0
](

dg−1|H0
)
,

which shows that dG j d2
tgg−1 is also a standard Fredholm operator.

5. We may parametrize 5 ∩ g(Sj ) ∩ B(u0, r) around u0 by α : [−δ0, δ0] →
g(Sj ), with α(s) = (G(x(s)), x(s)), with x(s) = (s, 0, 0, ∙ ∙ ∙ ). Set p =
α(−δ), q = α(δ), for some 0 < δ < δ0. We have

〈ν(p), q − p〉 > 0, 〈ν(q), p − q〉 > 0, (2.7)

where ν(p) and ν(q) are the unit outer normal vectors to g(Sj ) at p and
q , respectively (see Figure 1).

Figure 1

On the other hand,

‖u − g(u)‖ ≤ εM0‖u − u0‖ ≤
εM0

1 − εM0
‖g(u) − u0‖,

from which we deduce

‖g−1(v) − v‖ ≤
εM0

1 − εM0
‖v − u0‖. (2.8)

Now, since (εM0)/(1 − εM0) < 1, (2.8) implies that, if δ is sufficienly
small, each of the pairs of points p, g−1(p) and q, g−1(q) lies together in
the interior of one of two antipodal and, hence, coaxial convex cones with
vertex u0 and axis parallel to α′(0) (see Figure 2).

6. We first assume that G(x) is quadratic. By the choice of the basis {e1,

e2, ∙ ∙ ∙ }, we then have

G(x) = λ1x2
1 + λ2x2

2 + ∙ ∙ ∙ ,
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Figure 2

where λ1 = d2G(0)(e1, e1) > 0. In this case, along the curve α(s), the
outer unit normal to g(Sj ), ν(α(s)) ∈ H , is parallel to the plane 5. More
specifically,

ν(α(s)) =
1

√
1 + 4λ2

1s2
(1, −2λ1s, 0, 0, ∙ ∙ ∙ ).

We then have the diagram described in Figure 3. The lines 1 and 3 are
the intersections with 5 of the hyperplanes orthogonal to p − q, con-
taining p and q, respectively. The lines 2 and 4 are the intersections
with 5 of the hyperplanes orthogonal to g−1(p) − g−1(q), containing p
and q , respectively. Since g−1(p) and g−1(q) are contained in the inte-
rior of the antipodal strictly convex cones, the hyperplanes orthogonal to
g−1(p) − g−1(q) cannot contain the plane 5, so that the intersection of
those hyperplanes with 5 must actually be lines as 2 and 4 in Figure 3.

7. Now, the convexity of � implies that
〈
ν(p), g−1(q) − g−1(p)

〉
≤ 0,

〈
ν(q), g−1(p) − g−1(q)

〉
≤ 0, (2.9)

where we used the fact that ν(p) is also an outer unit normal vector to Sj

at g−1(p) and similarly for ν(q) and g−1(q). This means that ν(p) and
ν(q) should not point toward the interior of the strip bounded by the lines
2 and 4. But this is impossible because of (2.7). We have then arrived at
a contradiction.

8. We now examine the general case dropping the assumption that G is
quadratic. In this general case, since G is of class C3, near x = 0, we have

G(x) = λ1x2
1 +

∞∑

j=2

λ j x
2
j + O

(
‖x‖3

)
,
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Figure 3

again with λ1 > 0. Hence, we get

ν(α(s)) =
1

√
1 + 4λ2

1s2
(1, −2λ1s, 0, 0, ∙ ∙ ∙ ) + O

(
|s|2

)
.

Set

ν∗(α(s)) =
1

√
1 + 4λ2

1s2
(1, −2λ1s, 0, 0, ∙ ∙ ∙ ).

So the distance from ν(α(s)) to ν∗(α(s)), which plays the role of ν(α(s))
in the quadratic case, is ≤ c|s|2. Here and henceforth c will denote a
positive constant not depending on |s|, whose precise value may change
from one occurrence to the subsequent one.

9. On the other hand, for sufficiently small |s|, the distance from α(s) +
ν(α(s)) to the hyperplane orthogonal to the vector α(s) − α(−s) contain-
ing α(s) is ≥ c|s|, since λ1 > 0. Also, the distance from α(s)+ν(α(s)) to
the hyperplane orthogonal to the vector g−1(α(s))− g−1(α(−s)) contain-
ing α(s) differs from the distance of α(s) + ν∗(α(s)) to the same hyper-
plane by O(|s|2). Moreover, because, for s sufficiently small, g−1(α(s))
and g−1(α(−s)) belong to the interior of the antipodal strictly convex
cones with vertice u0 (see Figure 2), the absolute value of the cosine be-
tween the unit vectors in the direction of α(s) − α(−s) and g−1(α(s)) −
g−1(α(−s)), respectively, is bounded below by a positive constant. Now,
since ν∗(α(s)) and ν∗(α(−s)) should both point toward the interior of
the slab bounded by the hyperplanes orthogonal to the vector α(s) −
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α(−s) containing α(s) and α(−s), respectively, as in Figure 2, then ei-
ther α(s) + ν∗(α(s)) will be apart from the hyperplane orthogonal to
g−1(α(s)) − g−1(α(−s)) containing α(s) a distance ≥ c|s| (this is the
case of q = α(δ) in Figure 3) or the analogous assertion will hold for
α(−s) + ν∗(α(−s)), where we use the observation about the cosine be-
tween the unit vectors in the directions of α(s) − α(−s) and g−1(α(s)) −
g−1(α(−s)). Hence, we again arrive at contradiction, similar to the one
in the quadratic case, for then either ν(α(s)) or ν(α(−s)) would have to
point toward the interior of the slab bounded by the hyperplanes orthogo-
nal to g−1(α(s)) − g−1(α(−s)) containing α(s) and α(−s), respectively,
contradicting (2.9) which must hold by the convexity of �.

10. This completes the proof that (I + ε f )(� j ) is locally convex at each
point of (I + ε f )(Sj ), for each j = 1, . . . , N . Since, by (A5),

(I +ε f )(�) =
N⋂

j=1

(I +ε f )(� j ) and ∂(I +ε f )(�) ⊆
N⋃

j=1

(I +ε f )(Sj ),

applying Theorem 2.2, we easily deduce the convexity of (I + ε f )(�),
as desired, and the inequality (2.6) is an immediate consequence of this
fact. ¤

Remark 2.4. Notice that in the finite dimensional case if f satisfies the hy-
potheses of Theorem 2.3, so does − f . Hence, in this case, we can conclude the
convexity of both (I ± ε f )(�) and inequality (2.6) yields (see [13])

|〈 f (u) − f (ω), ν(ω)〉| ≤ ε−1〈ω − u, ν(ω)〉, for all u ∈ �. (2.10)

Remark 2.5. Perhaps it should be natural to expect that the result would hold
already for ε < (Lip f )−1, instead of ε < (2Lip f )−1. In fact, the only parts
of the above proof where the smaller bound ε < (2Lip f )−1 was needed were
precisely the following two: (i) in the argument to show that the restriction
of dg−1 to H0 is a standard Fredholm operator; (ii) in the obtention of the
cone having the properties depicted in Figure 2. In the finite dimensional case,
part (i) is not needed. In the infinite dimensional case, part (i) can be achieved
with the weaker bound ε < (Lip f )−1 if K (T0) is symmetrizable and ‖K (T0)−‖ ≤
‖K (T0)+‖, with operator norm taken relatively to the inner product for which
K (T0) is symmetric, by using Remark 2.3. This implies the following impor-
tant consequence of the proof of Theorem 2.3.
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Theorem 2.4. Suppose H , U, G j : U → R, j = 1, . . . , N , f : U →
H and � satisfy all the hypotheses of Theorem 2.3 and assume further that
d f (ω)|Tω(∂�∩ Sj ) is symmetrizable for all ω ∈ ∂�∩ Sj , and all j = 1, . . . , N .
Then the conclusions of Theorem 2.3 hold for 0 < ε < 1/(Lip f ) in each of
the following two cases:

(i) H is finite dimensional.

(ii) ‖K
(
d f (ω)|H0

)
−‖ ≤ ‖K

(
d f (ω)|H0

)
+‖, for all ω ∈ ∂�, where H0 :=

Tω(∂�), and the operator norm is taken relatively to the inner product
for which d f (ω)|H0 is symmetric.

Proof. It remains to show that it is possible to obtain a cone with the properties
depicted in Figure 2 under the weaker assumption that ε < 1/(Lip f ). For this
we refer to the argument used to obtain such a cone in the proof of Theorem 3.1
below. ¤

2.1 A simple example

We consider here the following very simple example. LetH be any real separable
Hilbert space and f ∈ C3(H ,H ) such that

f (u) =

{
ρ(‖u‖2)u, if u ∈

⋃N
1 Sj ,

arbitrary, otherwise,
(2.11)

where ρ ∈ C3([0, ∞)), and

Sj =
{
u ∈ H : 〈u, ξ j 〉 = 0

}
, j = 1, . . . , N − 1,

SN =
{
u ∈ H : ‖u‖2 = R2

}
,

for some fixed linearly independent set of vectors {ξ1, . . . , ξN−1} ⊆ H . Setting

G j (u) = 〈u, ξ j 〉, j = 1, . . . , N − 1, G N (u) = ‖u‖2 − R2,

and
� =

{
u ∈ H : ‖u‖ < R, 〈u, ξ j 〉 < 0, j = 1, . . . , N − 1

}
,

it is easy to verify that all assumptions (A1)-(A6) are trivially satisfied and f
is Lipschitz on any open bounded convex U ⊆ H , say, U = B(0, R̄), with
R̄ > R.
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2.2 Application to finite difference approximations

In order to apply our results to finite difference approximations for ordinary
differential equations inH , we establish the following corollary of Theorem 2.3.

Corollary 2.1. Let the hypotheses of Theorem 2.3 be satisfied. Let M0 =
Lip( f ) and g(u) = u + ε f (u), for some ε ≤ 1/(2M0). Suppose further that

〈 f (ω), ν(ω)〉 ≤ 0, (2.12)

for all ω ∈ ∂� and ν(ω) in the outer normal cone of � at ω. Then g(�) ⊆ �.
Moreover, when equality holds in (2.12) we get

g(�) = �, for ε ≤
1

(2M0)
.

Proof. The proof follows from the fact that if u ∈ �, ω ∈ ∂� and ν(ω) is in
the outer normal cone of � at ω then, by Theorem 2.3, one has

〈g(u) − ω, ν(ω)〉 = 〈g(u) − g(ω), ν(ω)〉 + ε〈 f (ω), ν(ω)〉 ≤ 0,

which in turn implies that g(u) ∈ � for any u ∈ �. Finally, in case the
equality holds in (2.12), using the first part for both f and − f we conclude
that, for any ω ∈ ∂�, both ω + ε f (ω) and ω − ε f (ω) belong to �. But, since
ω ∈ ∂� is in the line segment joining these two points, convexity of � implies
that they both should also belong to ∂�. Hence, for ε ≤ 1/(2M0), we have that
g is obviously bijective, g(�) ⊆ � and g(∂�) ⊆ ∂�. Since g|∂� : ∂� → ∂�

provides a homeomorphism between ∂� and g(∂�), we have that g(∂�) is open
and closed in ∂�. Since, by convexity, ∂� is connected, we easily conclude that
g(∂�) = ∂�, which immediately implies g(�) = �. ¤

We apply the above corollary to prove the invariance of � under Euler and
Runge-Kutta type schemes applied to the system of ordinary differential equa-
tions u̇ = f (u), for � and f satisfying its hypotheses. Indeed, we recall that
the Euler scheme is given by

un+1 = un + h f
(
un

)
,

where h = 1t , while the fourth-order Runge-Kutta type scheme we consider
here is given by

un+1 = un +
1

6

(
k1 + 2k2 + 2k3 + k4

)
,
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where,

k1 = h f
(
un

)
, k2 = h f

(
un +

k1

2

)
,

k3 = h f
(

un +
k2

2

)
, k4 = h f

(
un + k3

)
.

We easily see that the invariance of � under the Euler scheme follows imme-
diately from the first part of Corollary 2.1 if we choose h ≤ (2M0)

−1.
Concerning the Runge-Kutta scheme, instead of (2.12), we make the stronger

assumption that
〈 f (ω), ν(ω)〉 = 0, (2.13)

for all ω ∈ ∂� and ν(ω) in the outer normal cone of � at ω. The invariance of
� now follows by first observing that we may write

un+1 =
1

6

(
un + k1

)
+

1

3

(
un + k2

)
+

1

3

(
un + k3

)
+

1

6

(
un + k4

)
. (2.14)

We claim that the expressions inside the parentheses belong to �, for h ≤
(2M0)

−1. Indeed, that un + k1 ∈ � follows directly from Corollary 2.1. More-
over,

k2 = h J2
(
un

)
:= h f ◦

(
I +

h

2
f
)

(
un

)
,

k3 = h J3
(
un

)
:= h f ◦

(
I +

h

2
J2

)
(
un

)
,

k4 = h J4
(
un

)
:= h f ◦

(
I + h J3

)(
un

)
,

and J2, J3, J4 so defined also satisfy (2.13) and the other hypotheses of Corol-
lary 2.1, as can be recursively verified by applying iteratively the corollary itself.
Therefore, the claim follows. Hence, un+1 is a convex combination of points
in � and, hence, it is a point in �.

A simple example of f and � satisfying the hypotheses above for the invari-
ance of the Runge-Kutta scheme is provided by (2.11), assuming ρ(R2) = 0,
and the domain � defined therein. More interesting examples of such f and �

are found below in the discussion about kinetic equations.

3 Maps with symmetrizable differential

In this section we analize the convexity of f (�) for f and � satisfying (A1)-(A6)
but now, instead of assuming f to be Lipschitz, as in Theorem 2.3, we assume
that d f (u) is symmetrizable, for all u ∈ U.
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Definition 3.1. If H is a separable Hilbert space and U ⊆ H is an open set,
we will say that f : U → H is a standard Fredholm map if f = cI + g where
c ≥ 0 and g : U → H is a compact map, that is, g maps bounded sets onto
relatively compact sets. We denote by c( f ) the constant c associated with the
standard Fredholm map f .

Before stating our theorem concerning this context, we establish an
elementary lemma about standard Fredholm maps.

Lemma 3.1. Let H be a separable Hilbert space,U ⊆ H an open set, and f ∈
C1(U,H ) be a standard Fredholm map. Then, for each u ∈ U, d f (u) : H →
H is a standard Fredholm operator.

Proof. We have that f = cI + g, where c ≥ 0 and g ∈ C1(U) is a compact
map, and so the lemma reduces to the fact that the differential dg(u) : H →
H of a differenciable compact map g ∈ C1(U) is a compact operator, which
follows directly from the definition of differential. Indeed, given u ∈ U and
δ > 0, the image by gu,δ = (g(u + ∙ ) − g(u))/δ of the sphere Sδ = {v ∈
H : ‖v‖ = δ}, gu,δ(Sδ), is a relatively compact set, whose distance to dg(u)(S1)

is less than ε > 0, for sufficiently small δ > 0, where S1 = {v ∈ H : ‖v‖ = 1}.
Since ε > 0 is arbitrary, we get that dg(u)(S1) is relatively compact. The latter
clearly implies the compactness of the operator dg(u) as desired. ¤

We now state the main result of this section. In order to do that, if h : O → H
is a non-compact standard Fredholm map (c 6= 0), let us say for short that the
pair h,O, formed by such a map h and an open convex set O ⊆ H , has the
properties (P1), (P2) or (P3) if it satisfies:

(P1) h : O → H is proper, that is, the pre-image of a compact set is compact.

(P2) For any vector ξ ∈ H , supu∈O ξ ∙u < +∞ implies supu∈O ξ ∙h(u) < +∞.

(P3) h(O) is simply connected.

It is an easy exercise to check that, for non-compact standard Fredholm
maps, property (P1’) below implies property (P1).

(P1’) If {un}n∈N is a sequence in O with ‖un‖ → ∞ then ‖h(un)‖ → ∞.

Also, properties (P1’) and (P2) are trivially satisfied if O is bounded.

Theorem 3.1. Let H , U, G j : U → R, j = 1, . . . , N , and f : U → H and
� satisfy the assumptions (A1)-(A6). Suppose, for each u ∈ U, d f (u) : H →
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H is continuously symmetrizable, that is, there exists a symmetric positive def-
inite bounded operator P(u) : H → H , depending continuously on u ∈ U,
such that P(u)d f (u) is symmetric. Further, assume that, for each u ∈ U, the
spectrum of d f (u), σ(d f (u)), satisfies σ(d f (u)) ⊆ (0, ∞). Then, f is a dif-
feomorphism from � onto f (�) and the latter set is convex, provided that, in
addition, one of the following is satisfied:

(i) U = H , σ(d f (u)) ⊆ (ε0, ∞) and μI ≤ P(u) ≤ M I , for all u ∈ H ,
for certain ε0, μ, M > 0.

(ii) U = H and the pair f,H has the property (P1).

(iii) The pair f,� has the properties (P1) and (P3).

(iv) f is a non-compact standard Fredholm map, f = cI + g, with g compact
and c > 0, and the pair f,� has the properties (P1’) and (P2).

Moreover, if ω ∈ ∂� and ν(ω) is an unit vector in the outer normal cone at
ω, we have

〈 f (u) − f (ω), ν(ω)〉 ≤ 0, (3.1)

for all u ∈ �.

Proof.

1. We first prove that f is a diffeomorphism from � onto f (�) in each of the
cases (i)-(iv). We observe that, since σ(d f (u)) ⊆ (0, ∞), we immediately
have that f is a local diffeomorphism on U.

2. In case (i), we easily verify that there exists α > 0 such that ‖d f (u)ξ‖ ≥
α‖ξ‖, for all u, ξ ∈ H . The fact that f : H → H is a diffeomorphism
then follows from a straightforward infinite dimensional version of a well
known lemma of Hadamard (see, e.g., [3], p. 222).

3. In case (ii), we have that f : H → H is a local diffeomorphism which
is closed and proper, in view of property (P1). Hence, f (H ) = H and
f is a covering map from H onto H . Since, H is simply connected, it
follows that f is a diffeomorphism of H onto itself (see, e.g., [18, 21]).

4. Similarly, in case (iii), f is a local diffeomorphism which is proper, by
property (P1), and, so, it is a covering map (see, e.g., [18, 21]), whose
image is simply connected, by property (P3). Hence, again, f is a diffeo-
morphism from � onto its image and the assertions follow as above.
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5. As for case (iv), first we prove that f (∂�) = ∂ f (�). Since f is a local
diffeomorphism, clearly f (∂�) ⊃ ∂ f (�). Therefore, it is enough to
prove that there can be no point of f (∂�) in the interior of f (�). Indeed,
suppose v0 is such a point, and let ω0 ∈ ∂� be such that f (ω0) = v0,
and let ν(ω0) be the outer unit normal to ∂� at ω0, which we may assume
to be well defined by properly choosing v0. Then ν(ω0) is also local
outer normal to f (∂�) at v0 by (A4). Since v0 is in the interior of f (�),
ν(ω0) ∙ f (u) cannot assume a maximum at u = ω0. Hence, because of
the property (P2), there exists ω1 ∈ ∂� for which

ν(ω0) ∙ f (ω1) = sup
u∈�

ν(ω0) ∙ f (u). (3.2)

It then follows that ν(ω0) ∙ u = ν(ω0) ∙ ω1 is a supporting hyperplane to
� and ν(ω0) ∙ u = ν(ω0) ∙ f (ω1) is a supporting hyperplane to f (�). It
follows by convexity that the supporting hyperplanes ν(ω0)∙u = ν(ω0)∙ω0

and ν(ω0) ∙ u = ν(ω0) ∙ ω1 must coincide and so both ω0 and ω1 must lie
in this hyperplane. Again by convexity, the line segment connecting ω0 to
ω1 is entirely contained in ∂�. But then the image by f of this line segment
must be contained in a hyperplane normal to ν(ω0) and containing both
f (ω0) and f (ω1), which is an absurd, and so we actually have f (∂�) =
∂ f (�).

6. Now, for θ ∈ [0, 1] let fθ = (1 − θ) I + θ f ; clearly each fθ also satisfies
properties (P1) and (P2). We obtain analogously fθ (∂�) = ∂ fθ (�). Let
v0 ∈ f (�) and u0 ∈ � be such that f (u0) = v0. Define gθ (u) =
fθ (u) − fθ (u0). We notice that 0 /∈ gθ (∂�), for θ ∈ [0, 1]. We also
observe that the Leray-Schauder topological degree deg(gθ , �, 0) is well
defined since, by property (P1), g−1

θ (0) is finite, and it coincides with the
number of elements of g−1

θ (0) because of the positiveness of the spectrum
of dgθ (u), everywhere inU. Since θ 7→ gθ is a homotopy with g0 = I −u0

and g1 = f − v0, we conclude that deg( f − v0,�, 0) = 1, and since this
holds for all v0 ∈ f (�), it follows that f is a diffeomorphism of � over
its image, and the proof is finished.

7. We now pass to the proof that f (�) is convex. We proceed as in the proof
of Theorem 2.3 and assume that v0 ∈ f (Sj ) is a point at which f (Sj ) is not
locally convex, suitably chosen, and u0 ∈ Sj is given by f (u0) = v0. Let
r > 0 be small enough so that 0 < ε0 ≡ inf{λ ∈ σ(d f (u)) : u ∈ B(v0, r)}.
Define

h(u) = u0 +
1

ε0

(
f (u) − f (u0)

)
.
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Let α : [−δ0, δ0] → h(Sj ), with α(0) = u0, p = α(−δ), q = α(δ), for
some 0 < δ < δ0, as in the proof of Theorem 2.3. Given ξ, η ∈ H , define

〈ξ, η〉u = 〈P(u)ξ, η〉, ‖ξ‖u = 〈P(u)ξ, ξ 〉1/2.

We have

〈dh−1(u0)α
′(0), α′(0)〉u0 > ε0 M−1

0 〈α′(0), α′(0)〉u0, (3.3)

where M0 is the least upper bound of the eigenvalues of d f (u0). Obviously,
a similar inequality holds for −α′(0). Also, clearly

‖dh−1(u0)α
′(0)‖u0 ≤ ‖α′(0)‖u0,

which, from (3.3), gives

〈dh−1(u0)α
′(0), α′(0)〉u0 > ε0 M−1

0 ‖dh−1(u0)α
′(0)‖u0‖α

′(0)‖u0 . (3.4)

8. Inequality (3.4) means that dh−1(u0)α
′(0) lies in the interior of a strictly

convex cone symmetric around the axis passing through u0 in the direc-
tion of α′(0), in the geometry induced in H by the inner product 〈∙, ∙〉u0 .
Replacing α′(0) for −α′(0), we get that −dh−1(u0)α

′(0) lies in the inte-
rior of the strictly convex cone antipodal to the one just described, in the
referred geometry. It follows that for δ > 0 sufficiently small, h−1(p)

and p lie together in the interior of one of these strictly convex cones and
h−1(q) and q lie together in the antipodal one, as depicted in Figure 2,
with g replaced for h. From this point on the proof of the convexity of
f (�) follows exactly as the proof of the convexity of (I ± ε f )(�) in
Theorem 2.3. The inequality (3.1) follows directly from the convexity of
f (�) as was the case for inequality (2.6). The proof is complete. ¤

3.1 A simple example

Let H be any real separable Hilbert space, T : H → H be a linear compact
symmetric operator, with σ(T ) ⊆ [0, ∞), f = cI + g, with c > 0 to be chosen
later, and g ∈ C3(H ,H ) defined by

g(u) = ρ
(
‖T 1/2u‖2

)
T u,

where ρ ∈ C3 ∩ L∞ ∩ Lip([0, ∞)). Let {ξ1, . . . , ξN } be a linearly independent
set of eigenvectors of T ,

Sj =
{
u ∈ H : 〈u, ξ j 〉 = 0

}
,
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set G j (u) = 〈u, ξ j 〉, j = 1, . . . , N , and

� =
{
u ∈ H : 〈u, ξ j 〉 > 0, j = 1, . . . , N

}
.

It is easy to verify that all assumptions (A1)-(A6) are trivially satisfied. Moreover,
f is a standard Fredholm map such that d f (u) is a symmetric standard Fredholm
operator, for all u ∈ H , and σ(d f (u)) ⊆ (0, ∞) if c > 0 is sufficiently large.
Finally, since

‖u‖‖ f (u)‖ ≥ 〈u, f (u)〉 = c‖u‖2 + ρ(‖T 1/2u‖2)〈T u, u〉

≥ (c − ‖ρ‖∞‖T ‖)‖u‖2,

we deduce that, if c > ‖ρ‖∞‖T ‖, (P1’) and, hence, item (ii) of Theorem 3.1
is satisfied.

4 Application to kinetic equations

In this section we give our main application of Theorem 3.1, which is con-
cerned with kinetic equations of the form

ut + a(ξ) ∙ ∇x u =
M(ξ, u(x, t)) − u(x, t, ξ )

κ
,

(x, t, ξ) ∈ Rd × (0, ∞) × 4,

(4.1)

where u ∈ U ⊆ H , H is a separable Hilbert space, U is an open convex
subset of H , κ > 0 is a given constant, M : 4 ×U → H is a given mapping
called Maxwellian whose properties needed here we describe below, and there
are prescribed initial data in the form

u(x, 0, ξ) = u0(x, ξ). (4.2)

In (4.1) we use the notation

u(x, t) :=
∫

4

u(x, t, ξ) dμ(ξ),

and we assume that 4,μ satisfy the following.

4 is a compact metric space endowed with a Radon measure μ. (4.3)

Concerning the map M : 4 ×U → H we assume the following:
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(M1) M ∈ C(4 × U;H ) and, for each ξ ∈ 4, Mξ : U → H is a stan-
dard Fredholm map, with c(Mξ ) > 0 in case H is infinite dimensional,
and Mξ ∈ BUC(U;H ) ∩ C3(U;H ), where Mξ (u) := M(ξ, u) and
BUC(U;H ) is the space of H valued bounded uniformly continuous
functions;

(M2) For all u ∈ U, M(∙, u) ∈ L2(4;H ) and we have
∫

4

M(ξ, u) dμ(ξ) = u. (4.4)

Let � ⊆ Rn be a convex domain, with �̄ ⊆ U, obtained as in (2.3), satis-
fying (A5), with � j satisfying (A2), (A3). For simplicity we assume that U is
bounded. We also assume the following:

(M3) For each ξ ∈ 4 and u ∈ U the Jacobian d Mξ (u) is symmetrizable with
positive eigenvalues;

(M4) For all ξ ∈ 4 and ω ∈ Sj , j = 1, . . . , N , d Mξ (ω) satisfies (A4).

We also assume that

(a1) a : 4 → Rd is bounded and uniformly continuous.

The transport equation (4.1) is called BGK model for collision processes
related with Boltzmann equation after Bhatnagar, Gross and Krook [2]. BGK
models constitute important approximation schemes for conservation laws as
first suggested by Natalini [23]. BGK models as approximation schemes for
systems of conservation laws were first proposed by Bouchut [5] and Serre [27].
In particular, conditions (M3), (M4) first appeared in [5] and [27]. BGK models
for quasilinear parabolic systems are studied in [6, 17]. Concerning many im-
portant topics in the theory of conservation laws, including invariant domais, we
refer to the text books [10] and [26].

We first notice that we may assume with no loss of generality that 0 ∈ �

and that Mξ (0) = 0 for all ξ ∈ 4. Indeed, if u(x, t, ξ) is a solution of (4.1),
(4.2), then v(x, t, ξ) := u(x, t, ξ) − Mξ (0) is a solution of the corresponding
problem obtained replacing M(ξ, u) by M(ξ, u) − M(ξ, 0) and u0(x, ξ) by
u0(x, ξ) − M(ξ, 0), as it is easily verified.

The main purpose of this section is to give a rigorous proof of the following
result as application of Theorem 3.1.
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Theorem 4.1. The closure in L2(Rd × 4;H ) of the convex set C defined by

C :=
{

g ∈ Cc(R
d × 4; H ) : g(x, ξ) ∈ �ξ := Mξ (�)

for all (x, ξ) ∈ Rn × 4
}

is invariant under the flow of the Cauchy problem (4.1), (4.2), where by Cc(D;
H ) we mean H -valued continuous functions with compact support in the
domain D.

Remark 4.1. When H is finite dimensional and 4 is a finite set, in which case
μ is absolutely continuous to the counting measure, Theorem 4.1 was proved by
Serre [26] in the case where the eigenvalues of d Mξ have multiplicity 1.

Proof of Theorem 4.1.

1. Making the change of dependent variables v(x, t, ξ) := u(x +a(ξ)t, t, ξ)

we transform problem (4.1), (4.2) into

ut = M(ξ, ū(x + a(ξ)t, t)) − u(x, t, ξ),

(x, t, ξ) ∈ Rd × (0, ∞) × 4,
(4.5)

u(x, 0, ξ) = u0(x, ξ), (4.6)

where

ū(x, t) :=
∫

4

u(x − a(ξ)t, t, ξ) dμ(ξ), (4.7)

where we have taken κ = 1 for simplicity.

2. First, we observe that the local existence of a solution of (4.5), (4.6)
follows from a well known fixed point argument for a map F : X → X ,
with

X :=
{
v ∈ C([0, T ]; L2(Rd × 4;H )) : ‖u(t)‖L2(Rd×4;H ) ≤ R, t ∈ [0, T ]

}
,

for R > 0 conveniently chosen, defined by

F(v)(t) := f(x, ξ) +
∫ t

0

(
Mξ (v̄(x + a(ξ)s, s)) − v(x, s, ξ)

)
ds, (4.8)

with T > 0 sufficiently small. This solution, which we denote by u(x, t,
ξ), will then be unique in C([0, T ]; L2(R× 4;H )). Considering F as a
mapping X̃ → X̃ with

X̃ :=
{
v ∈ C([0, T ]; BUC(Rd × 4;H )) : ‖u(t)‖∞ ≤ R̃, t ∈ [0, T ]

}
,

Bull Braz Math Soc, Vol. 39, N. 3, 2008



“main” — 2008/8/27 — 16:00 — page 337 — #23

MAPS OF CONVEX SETS IN HILBERT SPACES 337

for R̃ > 0 conveniently chosen and T > 0 small enough, we see, by using
also (a1) and (4.1), that

u ∈ C
(
[0, T ]; BUC

(
Rd × 4;H

))
if f ∈ Cc

(
Rd × 4;H

)
.

3. We notice that Mξ (�) is convex for all ξ ∈ 4. Indeed, this follows
from Theorem 3.1 since hypotheses (M1)-(M4) guarantee that Mξ : U →
H and � satisfy (A1)-(A6). Also, (P1’) and (P2) are satisfied in an obvious
way due to the assumption of boundedness of U, and, by (M1), we have
that item (iv) of Theorem 3.1 is verified.

4. Now, we prove that if t ∈ [0, T ] is such that u(x, t, ξ) ∈ �̄ξ for all
(x, ξ) ∈ Rd × 4, then ū(x, t) ∈ �̄ for all (x, t) ∈ Rd , where ū(x, t) is
defined by (4.7). Indeed, given any ω ∈ ∂�, if ν(ω) is an unity vector in
the outer normal cone to ∂� at ω, then by (A4) ν(ω) is also in the outer
normal cone to ∂�ξ at Mξ (ω) for all ξ ∈ 4, by (M3), (M4) and we have

〈ū(x, t) − ω, ν(ω)〉 =
∫

4

〈u(x − a(ξ)t, t, ξ) − Mξ (ω), ν(ω)〉 dμ(ξ) ≤ 0,
(4.9)

where we have used (M2) and the last inequality follows from the con-
vexity of Mξ (�) together with the fact that Mξ (ω) ∈ ∂�ξ and that
u(x − a(ξ)t, t, ξ) ∈ �̄ξ for all (x, ξ) ∈ Rd × 4. Hence, by the con-
vexity of �, we deduce that ū(x, t) ∈ �̄ for all (x, t) ∈ Rd × [0, T ] as
asserted.

5. We claim that u(x, t, ξ) ∈ �̄ξ for all (x, t, ξ) ∈ Rd × [0, T ] × 4. We
prove this assertion in the following two steps.

6. Indeed, at any time t for which u(x, t, ξ) ∈ �̄ξ for all (x, ξ) ∈ Rd × 4

we have that ū(x, t) ∈ �̄. Let us define F(x, t, ξ, v) := M(ξ, ū(x +
a(ξ)t, t)) − v and for δ > 0 let Fδ(x, t, ξ, v) := F(x, t, ξ, v) − δv.
Hence, at any time t ∈ [0, T ] such that u(x, t, ξ) ∈ �̄ξ for all (x, ξ) ∈
Rd × 4, the approximate right-hand side of (4.5), Fδ(x, t, ξ, u(x, t, ξ)),
satisfies 〈Fδ(x, t, ξ, σξ ), ν(σξ )〉 < 0, if σξ ∈ ∂�ξ and ν(σξ ) is an unity
vector in the outer normal cone to ∂�ξ at σξ . This follows from the
convexity of �ξ since we assume that 0 ∈ �ξ , ū(x, t) ∈ �̄ and so
M(ξ, ū(x + a(ξ)t, t)) ∈ �ξ , for all x ∈ Rd . Then, by a standard ap-
proximation argument, we may assume that 〈F(x, t, ξ, σξ ), ν(σξ )〉 < 0,
at any time t ∈ [0, T ] such that u(x, t, ξ) ∈ �̄ξ for all (x, ξ) ∈ Rd × 4,
where σξ , ν(σξ ) are as before.
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7. Now, for t ∈ [0, T ], the support of u(x, t, ξ), as a function of x, ξ , is
contained in K ×4 for a certain compact K ⊆ Rd . Hence, if the assertion
that u(x, t, ξ) ∈ �̄ξ for all (x, t, ξ) ∈ Rd × [0, T ] × 4̄ is false, there
must t∗ ∈ (0, T ) which is the infimum of the times t ∈ [0, T ] for which
there exists some (x, ξ) ∈ K × 4̄ such that u(x, t, ξ) /∈ �̄ξ . Therefore,
u(x, t, ξ) ∈ �̄ξ for all (x, t, ξ) ∈ Rd × [0, t∗] × 4̄0 and, by compactness,
there exists (x∗, ξ∗) ∈ K ×4̄0 such that u(x∗, t∗, ξ∗) =: σξ∗ ∈ ∂�ξ∗ . Then,
clearly we must have from one side

d

dt
〈v(x∗, t, ξ∗), ν(σξ∗)〉|t=t∗ ≥ 0,

and from the other side

〈
(M(ξ∗, ū(x∗ + a(ξ∗)t∗, t∗)) − σξ∗), ν(σξ∗)

〉
< 0,

which is a contradiction and so proves assertion 5.

8. We can then extend u(∙, t, ∙) : Rd × 4 → H for all t ∈ [0, ∞) as the
unique solution of (4.5), (4.6) in C([0, ∞); BUC(Rd × 4)).

9. If we define

uk(t, ∙, ∙) :=
(

1 −
1

k

)
u(t, ∙, ∙),

by the assumption that 0 ∈ �ξ , we have uk(t, ∙, ∙) ∈ C for all t ≥ 0
and trivially uk(t, ∙, ∙) → u(t, ∙, ∙) in L2(Rd × 40,H ) by dominated
convergence. Therefore, u(t, ∙, ∙) ∈ C̄, for all t ≥ 0, where by C̄ we
denote the closure of C in L2(Rd × 40;H ).

10. Since f ∈ C was taken arbitrarily, we deduce by the above arguments that
the flow given by the Cauchy problem (4.5), (4.6), 8t : C → L2(Rd ×
40;H ), t ≥ 0, satisfies 8t(C) ⊆ C̄, for all t ≥ 0. By the continuity
of 8t in L2(Rd × 40;H ), we conclude that 8t(C̄) ⊆ C̄, for all t ≥ 0,
and so follows the invariance of C̄ by the flow given by (4.5), (4.6), and
the proof is complete. ¤
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