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1 Introduction

Totally umbilical, parallel and semi-parallel submanifolds are natural general-
izations of totally geodesic submanifolds. They are important to study because
these families of submanifolds provide nice examples and because they give
information about the ambient space. In [3] one can find initial work on the geo-
metry of hypersurfaces of the Riemannian product spaces Sn × R and Hn × R.
In the present paper we give a full classification of totally umbilical, parallel
and semi-parallel hypersurfaces of Sn × R. By comparing our classifications
of totally umbilical hypersurfaces (Theorem 4) and of parallel hypersurfaces
(Theorem 6), we remark that, unlike for submanifolds of real space forms, to-
tal umbilicity does not imply parallelism. In fact, we find a correspondence
between totally umbilical hypersurfaces of Sn × R and solutions of the one-
dimensional Sine-Gordon equation from physics. Moreover, our classifications
of totally umbilical hypersurfaces (Theorem 4) and of semi-parallel hypersur-
faces (Theorem 5) include examples of so-called rotation hypersurfaces, which
were introduced in [6].
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2 Preliminaries

Let F : Mn → M̃n+1 be an isometric immersion of Riemannian manifolds with
Levi Civita connections ∇ and ∇̃ respectively. Denote by N a unit normal
vector field on the hypersurface and let X , Y , Z and W be arbitrary vector fields
tangent to Mn . We define the shape operator S by SX = −∇̃X N , and the second
fundamental form h by h(X, Y ) = 〈SX, Y 〉 = 〈X, SY 〉. The formula of Gauss
states that

∇̃X Y = ∇X Y + h(X, Y )N . (1)

Moreover, the equations of Gauss and Codazzi are given respectively by
(cfr. [2])

〈R̃(X, Y )Z , W 〉 = 〈R(X, Y )Z , W 〉 + h(X, Z)h(Y, W )

− h(Y, Z)h(X, W ),
(2)

〈R̃(X, Y )Z , N 〉 = (∇h)(X, Y, Z) − (∇h)(Y, X, Z), (3)

where R and R̃ are the Riemann-Christoffel curvature tensors of Mn and M̃n+1

respectively. We use the following sign convention: R(X, Y )Z = ∇X∇Y Z −
∇Y ∇X Z − ∇[X,Y ]Z . The covariant derivative of h is defined by

(∇h)(X, Y, Z) = X [h(Y, Z)] − h(∇X Y, Z) − h(Y, ∇X Z). (4)

We say that Mn is totally geodesic in M̃n+1 if h = 0, that Mn is totally
umbilical in M̃n+1 if h is a scalar multiple of the metric at every point, that
Mn is parallel in M̃n+1 if ∇h = 0 and that Mn is semi-parallel in M̃n+1 if
R ∙ h = 0, where

(R ∙ h)(X, Y, Z , W ) = −h(R(X, Y )Z , W ) − h(Z , R(X, Y )W ). (5)

Parallel hypersurfaces of real space forms were classified by H.B. Lawson
in [7], whereas the classification of semi-parallel hypersurfaces of real space
forms was obtained by J. Deprez for Euclidean space in [4] and by F. Dillen for
spaces of non-zero constant sectional curvature in [5].

Denote by En+2 the Euclidean space of dimension n + 2. We define the
Riemannian product manifold Sn ×R as the following subset of En+2, equipped
with the induced metric:

Sn × R =
{
(x1, . . . , xn+2) ∈ En+2 | x2

1 + x2
2 + . . . + x2

n+1 = 1
}
.

Then Sn × R is the Riemannian product of the unit sphere Sn(1) and the real
line. Remark that ξ = (x1, . . . , xn+1, 0) is a unit normal vector field on Sn × R
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in En+2. If X and Y are vector fields on Sn × R, we denote by XSn and YSn the
projections of X and Y onto the tangent space to Sn(1). From (1), we find that
the Levi Civita connection ∇̃ of Sn ×R is given by ∇̃X Y = DX Y +〈XSn , YSn 〉ξ,

where D is the covariant derivative in En+2. This expression yields that the
curvature tensor R̃ of Sn × R is determined by

〈R̃(X, Y )Z , W 〉 = 〈YSn , ZSn 〉〈XSn , WSn 〉 − 〈XSn , ZSn 〉〈YSn , WSn 〉.

Now let F : Mn → Sn × R be a hypersurface with unit normal N . Let T
denote the projection of the coordinate vector field ∂xn+2 onto the tangent space
to Mn and denote by θ a function on Mn such that cos θ = 〈N , ∂xn+2〉. This
means that ∂xn+2 = T + cos θ N . The equations of Gauss and Codazzi, (2) and
(3), reduce to

〈R(X, Y )Z , W 〉 = 〈SX, W 〉〈SY, Z〉 − 〈SX, Z〉〈SY, W 〉

+ 〈X, W 〉〈Y, Z〉 − 〈X, Z〉〈Y, W 〉

+ 〈Y, T 〉〈W, T 〉〈X, Z〉 + 〈X, T 〉〈Z , T 〉〈Y, W 〉

− 〈X, T 〉〈W, T 〉〈Y, Z〉 − 〈Y, T 〉〈Z , T 〉〈X, W 〉,

(6)

∇X SY − ∇Y SX − S[X, Y ] = cos θ(〈Y, T 〉X − 〈X, T 〉Y ), (7)

where X , Y , Z and W are vector fields tangent to Mn . Moreover, by using the
fact that ∂xn+2 is parallel in Sn × R, one obtains

∇X T = cos θ SX, X [cos θ ] = −〈SX, T 〉. (8)

These equations appear in the following existence and uniqueness theorem for
immersions of hypersurfaces into Sn × R:

Theorem 1 ([3]). Let Mn be a simply connected Riemannian manifold with
Levi Civita connection ∇ and curvature tensor R. Let S be a field of symmetric
operators Sp : Tp Mn → Tp Mn, and let T and θ be a vector field and a smooth
function on Mn such that ‖T ‖2 = sin2 θ . Assume that equations (6), (7) and (8)

are satisfied. Then there exists an isometric immersion F : Mn → Sn × R with
unit normal N, such that the shape operator with respect to this normal is given
by S and such that ∂xn+2 = T + cos θ N. Moreover, the immersion is unique up
to global isometries of Sn × R preserving the orientations of both Sn and R.

We will now recall the definition of a special class of hypersurfaces of Sn ×R,
proposed in [6], namely rotation hypersurfaces. Consider a three-dimensional
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subspace P3 of En+2 containing the xn+2-axis. Then (Sn × R) ∩ P3 is a cylin-
der S1 × R. Let P2 be a two-dimensional subspace of P3, also through the
xn+2-axis. Denote by J the group of isometries of En+2 which leave Sn × R
globally invariant and which leave P2 pointwise fixed. Finally, let α be a curve
in S1 × R which does not intersect P2. Then the rotation hypersurface Mn

of Sn × R with profile curve α and axis P2 is defined as the J-orbit of α. It
is clear from the definition that the velocity vector of α is proportional to T ,
unless α lies in a plane orthogonal to ∂xn+2 , in which case T = 0. In the follow-
ing, we will always assume that P3 is spanned by ∂x1 , ∂xn+1 and ∂xn+2 and that
P2 is spanned by ∂x1 and ∂xn+2 . In [6] it was proved that there exists a local
orthonormal frame {e1, . . . , en} on Mn , with T = ‖T ‖e1, such that the shape
operator S takes the form

S =








λ

μ
. . .

μ








.

Moreover, if α is not a vertical line in S1 × R, it can be locally parametrized as
α(s) =

(
cos s, 0, . . . , 0, sin s, a(s)

)
, and we have

λ = −
a′′(s)

(
1 + a′(s)2

)3/2 , μ = −
a′(s) cot s

(
1 + a′(s)2

)1/2 . (9)

If α is a vertical line α(s) =
(

cos c, 0, . . . , 0, sin c, s
)

for some real constant c,
we have

λ = 0, μ = − cot c. (10)

Finally, we mention the following characterization:

Theorem 2 ([6]). Take n ≥ 3 and let F : Mn → Sn × R be a hypersurface
with shape operator

S =








λ

μ
. . .

μ








,

with λ 6= μ. Suppose that ST = λT and assume that there is a functional
relation λ(μ). Then Mn is an open part of a rotation hypersurface.
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3 Totally umbilical hypersurfaces

In this section, we classify totally umbilical hypersurfaces of Sn ×R. Let us first
note that there are only few totally geodesic hypersurfaces of Sn × R.

Theorem 3. Let Mn be a totally geodesic hypersurface of Sn × R. Then Mn

is an open part of a hypersurface Sn(1) × {t0} for t0 ∈ R, or of a hypersurface
Sn−1 × R.

Proof. Let Mn be totally geodesic in Sn × R. It follows from the equation of
Codazzi (7) that there are two cases to consider, namely T = 0 and cos θ = 0.

In the first case, Mn is everywhere orthogonal to ∂xn+2 . This gives the first
family of hypersurfaces mentioned in the theorem.

In the second case, Mn is everywhere tangent to ∂xn+2 and we have a hy-
persurface of type M̄n−1 × R, where M̄n−1 is a hypersurface of Sn(1). It is
easy to see that M̄n−1 × R is totally geodesic in Sn × R if and only if M̄n−1 is
totally geodesic in Sn(1). Hence, we obtain the second family of hypersurfaces
of the theorem. ¤

In the following proposition we remark a correspondence between totally
umbilical hypersurfaces and solutions of the one-dimensional Sine-Gordon
equation from physics.

Proposition 1. Let Mn be a totally umbilical hypersurface of Sn × R with
angle function θ and let p be a point of Mn where sin θ 6= 0. Then there exist
local coordinates (u, v1, . . . , vn−1) on an open neighbourhood U of p in Mn such
that θ only depends on u and such that φ := 2θ satisfies the one-dimensional
Sine-Gordon equation

φ′′ + sin φ = 0. (11)

Conversely, starting with an open subset U ⊆ Rn with coordinates (u, v1, . . . ,

vn−1) and a solution φ(u) of (11), which is nowhere zero on U, we can put θ = φ

2
and we can define a function λ and a Riemannian metric on U such that there
exists an isometric immersion F : U → Sn × R with shape operator S = λ id
and angle function θ .

In the proof of this proposition, we will use the following result.

Proposition 2 ([8]). Let M = N1 × f N2 be a warped product of semi-Rieman-
nian manifolds with Levi Civita connection ∇ and curvature tensor R. Denote
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by RN1 and RN2 the lifts of the curvature tensors of N1 and N2 respectively.
If X, Y and Z are lifts of vector fields on N1 and U, V and W are lifts of vector
fields on N2, then

(i) R(X, Y )Z is the lift of RN1(X, Y )Z,

(ii) R(X, U )Y = H f (X,Y )

f U , where H f is the Hessian of f ,

(iii) R(X, Y )U = R(V, W )X = 0,

(iv) R(U, X)V = 〈U,V 〉
f ∇X (grad f ),

(v) R(U, V )W = RN2(U, V )W − 〈grad f,grad f 〉
f 2 (〈V, W 〉 U − 〈U, W 〉 V ).

Proof of Proposition 1. Assume that Mn is totally umbilical in Sn × R with
shape operator S = λ id. Since sin θ 6= 0 at p, there exists an open neighbour-
hood U of p in Mn on which sin θ is nowhere zero. Let X be a vector field
tangent to U . Then the equation of Codazzi (7) and the second equation of (8)
yield {

X [λ] = − cos θ 〈X, T 〉 ,

X [cos θ ] = −λ 〈X, T 〉 .
(12)

Moreover, the first equation of (8) yields that the orthogonal complement of
span{T } is integrable. Indeed, if X, Y ⊥ T , then we obtain

〈[X, Y ], T 〉 = 〈∇X Y − ∇Y X, T 〉 = − 〈Y, ∇X T 〉 + 〈X, ∇Y T 〉 = 0.

This means that we can choose coordinates (u, v1, . . . , vn−1) on U such that
∂u = T

sin θ
and ∂u ⊥ ∂vi . The system (12) yields that ∂vi λ = ∂vi θ = 0, such that

λ and θ are functions of u only, and that
{

λ′ = − cos θ sin θ,

θ ′ = λ.
(13)

Remark that the function θ satisfies the equation θ ′′ = − cos θ sin θ. After the
substitution φ = 2θ , we obtain (11).

Conversely, let us start with an open part U ofRn , with coordinates (u, v1, . . . ,

vn−1) and with a non-vanishing solution φ(u) of the Sine-Gordon equation (11).
On U , we define a Riemannian metric

g = du2 +
n−1∑

i, j=1

gi j dvi dv j ,

Bull Braz Math Soc, Vol. 39, N. 3, 2008
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the function θ(u) = φ(u)

2 , the vector field T = sin θ ∂u and the field of operators
S = θ ′ id. These data satisfy the equation of Codazzi (7) and the second equation
of (8). From Theorem 1, we know that there exists an isometric immersion of
(U, g) into Sn × R with shape operator S, structure vector field T and angle
function θ if and only if the equation of Gauss (6) and the first equation of (8)
are satisfied. These equations are equivalent to

〈R(∂u, X)∂u, Y 〉 = −
(

cos2 θ + (θ ′)2
)
〈X, Y 〉 , (14)

〈R(X, Y )∂u, Z〉 = 0, (15)

〈R(X, Y )Z , W 〉 =
(
1 + (θ ′)2

)
(〈X, W 〉 〈Y, Z〉 − 〈X, Z〉 〈Y, W 〉), (16)

∇∂u ∂u = 0, (17)

sin θ ∇X∂u = (cos θ)θ ′ X, (18)

where X , Y , Z and W are vector fields on U orthogonal to T , R is the Riemann-
Christoffel curvature tensor of (U, g) and ∇ is the Levi Civita connection of
(U, g). From (18) we find

∂ugi j = ∂u
〈
∂vi , ∂v j

〉
=

〈
∇∂u ∂vi , ∂v j

〉
+

〈
∂vi , ∇∂u ∂v j

〉

= 2(cot θ)θ ′
〈
∂vi , ∂v j

〉
= 2(cot θ)θ ′gi j .

Hence, gi j = sin2 θ ci j (v1, . . . , vn−1) and the metric g takes the form of a warped
product metric

g = du2 + sin2 θ(u)

n−1∑

i, j=1

ci j
(
v1, . . . , vn−1

)
dvi dv j = du2 + sin2 θgc. (19)

Equations (17) and (18) are now satisfied and the question is whether we can
choose the functions ci j such that the curvature tensor R of (U, g) satisfies
equations (14), (15) and (16).

From Proposition 2, we obtain for X ⊥ T

R(∂u, X)∂u =
H sin θ (∂u, ∂u)

sin θ
X =

(
−(θ ′)2+cot θ(θ ′′)

)
X = −

(
(θ ′)2+cos2 θ

)
X.

Hence, equation (14) is satisfied for any choice of ci j . On the other hand, we
have for X, Y, Z ⊥ T

R(X, Y )Z = Rc(X, Y )Z −
‖grad(sin θ)‖2

sin2 θ

(
〈Y, Z〉 X − 〈X, Z〉 Y

)

= Rc(X, Y )Z − (cot2 θ)(θ ′)2
(
〈Y, Z〉 X − 〈X, Z〉 Y

)
,
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where Rc is the curvature tensor associated to the metric gc. Hence, equation
(15) is satisfied and equation (16) is equivalent to

Rc(X, Y )Z =
(

1 +
(θ ′)2

sin2 θ

)
(
〈Y, Z〉 X − 〈X, Z〉 Y

)

or, equivalently,

Rc(X, Y )Z =
(
(θ ′)2 + sin2 θ

)(
gc(Y, Z)X − gc(X, Z)Y

)
.

Remark that (θ ′)2 + sin2 θ is constant, since φ = 2θ satisfies the equation
(11). Hence, the last relation is satisfied if and only if the metric gc has constant
curvature c = (θ ′)2 + sin2 θ . ¤

In [9], the first named author classified totally umbilical surfaces in S2 × R
by means of an explicit parametrization. It turns out that the totally umbilical
surfaces in S2 × R, which are not totally geodesic, are rotation (hyper)surfaces.
The following theorem is a straightforward generalization of that result.

Theorem 4. Let Mn be a totally umbilical hypersurface of Sn ×R, with angle
function θ and let p be a point of Mn where sin θ 6= 0. Then there exist co-
ordinates (u, v1, . . . , vn−1) on an open neighbourhood U of p in Mn such that
θ only depends on u, the shape operator is S = θ ′ id, and

(θ ′)2 + sin2 θ = c, (20)

where c is a strictly positive real constant. Moreover, Mn is locally isometric to
a rotation hypersurface with profile curve

α(u) =
1

√
c

(
sin θ(u), 0, . . . , 0, θ ′(u),

√
c
∫

sin θ du
)

. (21)

Conversely, all rotation hypersurfaces with profile curve (21), where θ and c
satisfy (20), are totally umbilical in Sn × R.

Proof. Let Mn be totally umbilical in Sn ×R with shape operator S = λ id
and angle function θ . Since sin θ 6= 0 at p, there exists an open neighbourhood
U of p in Mn on which sin θ is nowhere zero. In the proof of Proposition 1,
we obtained that there exist local coordinates (u, v1, . . . , vn−1) on U such that
λ and θ only depend on u and satisfy (13). This implies that λ2 + sin2 θ =
(θ ′)2 + sin2 θ = c is constant. Remark that c > 0 since sin θ is nowhere zero
on U .
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As the function θ satisfies (20), the proof of Proposition 1 shows that in the
local coordinates (u, v1, . . . , vn−1), the induced metric on U is g = du2 +
sin2 θ gc(v1, . . . , vn−1), where gc is a Riemannian metric of constant sectional
curvature c. It follows from Theorem 1 that there exists, up to isometries of
Sn × R, a unique immersion F : U → Sn × R such that F is isometric; the
projection of ∂xn+2 on F(U ) is F∗(sin θ ∂u); the angle between the unit normal
N and ∂xn+2 is θ and the shape operator is S = θ ′ id. A straightforward compu-
tation yields that the immersion

F(u, v1, . . . , vn−1) =
1

√
c

(
ϕ1 sin θ(u), . . . , ϕn sin θ(u), θ ′(u),

√
c
∫

sin θ(u) du
)

,

where
(
ϕ1(v1, . . . , vn−1), . . . , ϕn(v1, . . . , vn−1)

)
is a parametrization of the unit

sphere Sn−1(1) ⊂ En , satisfies these four conditions. ¤

Remark. Changing the coordinate u to ū, with ∂ū = sin θ ∂u , equation (20)
becomes

(θ ′)2 + sin4 θ = c sin2 θ.

After putting θ = arctan( f ), we obtain

(
f ′

1 + f 2

)2

+

(
f

√
1 + f 2

)4

= c

(
f

√
1 + f 2

)2

,

or, equivalently,
f ′

f
√

c + (c − 1) f 2
= ±1.

Direct integration yields

f =
4ce±

√
cū+d

4c(1 − c) + e2(±
√

cū+d)
.

A similar approach to the original equation (θ ′)2 + sin2 θ = c with respect to
the u-coordinate, would lead to an elliptic integral.

4 Semi-parallel hypersurfaces

In this section, we give a classification of semi-parallel hypersurfaces of Sn ×R.
First, we characterize them in terms of their shape operator.

Bull Braz Math Soc, Vol. 39, N. 3, 2008
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Lemma 1. Let Mn be a semi-parallel hypersurface of Sn × R and define T
and θ as above. Then there exists a local orthonormal frame field {e1, . . . , en}
on Mn, with respect to which the shape operator S takes one of the following
forms:

(i) S =






λ
. . .

λ




,

(ii) S =








λ

μ
. . .

μ








, with λμ = − cos2 θ and moreover, if n ≥ 3,

T = ‖T ‖e1,

(iii) S =















0
λ

. . .

λ

μ
. . .

μ















, with λμ = −1 and e1 = T = ∂xn+2 .

Proof. Let Mn be a hypersurface of Sn × R and denote by {e1, . . . , en} an
orthonormal tangent frame satisfying Sei = λi ei . Assume that T =

∑n
i=1 T i ei .

By using the equation of Gauss (6), we obtain

R(ei , e j )e j = (λiλ j + 1 − (T j )2)ei + T i T j e j − T i T,

R(ei , e j )ek = T i T ke j − T j T kei ,

where i , j and k are assumed to be mutually different. If n < 3, the second for-
mula does not make sense, but the first one is still correct. From these equations,
we can compute R ∙ h:

(R ∙ h)(ei , e j , ei , ei ) = 0,

(R ∙ h)(ei , e j , ei , e j ) =
(
λ j − λi

)(
λiλ j + 1 − (T i )2 − (T j )2

)
,

(R ∙ h)(ei , e j , ek, ei ) =
(
λi − λk

)
T j T k,

(R ∙ h)(ei , e j , ek, el) = 0.

Bull Braz Math Soc, Vol. 39, N. 3, 2008
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Again, we assume i , j , k and l to be mutually different, such that the last equa-
tions are meaningless for low dimensions.

Now assume that Mn is semi-parallel, then we obtain
(
λi − λ j

)(
λiλ j + 1 − (T i )2 − (T j )2

)
=

(
λi − λk

)
T j T k = 0

for all mutually different indices i , j and k. If all the eigenvalues of S are equal,
we are in case (i) of the lemma. From now on, suppose that S has at least two
different eigenvalues and fix indices i and j such that λi 6= λ j . Remark that
T 6= 0, because for T = 0, we have that Mn ⊆ Sn × {t0} is totally geodesic.
We consider two cases, namely T /∈ span{ei , e j } and T ∈ span{ei , e j }. In
the first case, we have n ≥ 3 and there exists an index k different from i and
j such that T k 6= 0. From (λ j − λi )T k T i = 0, we find that T i = 0, and
from (λi − λ j )T k T j = 0, we find that T j = 0. Hence T is perpendicular to
span{ei , e j } and the equation (λi − λ j )(λiλ j + 1 − (T i )2 − (T j )2) = 0 yields
λiλ j = −1. In the second case, it follows from (λi − λ j )(λiλ j + 1 − (T i )2 −
(T j )2) = 0 that λiλ j + 1 − ‖T ‖2 = 0 and hence λiλ j = − cos2 θ . We conclude
the following: if λi and λ j are different eigenvalues of S, then either λiλ j = −1
and T ⊥ span{ei , e j } or λiλ j = − cos2 θ and T ∈ span{ei , e j }.

Now assume that S has exactly two distinct eigenvalues, say Sei = λei for
i ∈ {1, . . . , k} and Sei = μei for i ∈ {k + 1, . . . , n}. If λμ = −1, we have
that T is perpendicular to span{ei , e j } for every i ∈ {1, . . . , k} and for every
j ∈ {k + 1, . . . , n}. But this implies that T = 0, a contradiction. Hence we
have λμ = − cos2 θ , which yields that T ∈ span{ei , e j } for every i ∈ {1, . . . , k}
and for every j ∈ {k + 1, . . . , n}. This is only possible if k = 1 (or n − k = 1,
but then we switch the role of λ and μ). Moreover, if n ≥ 3, we have that
T = ‖T ‖e1. This is case (ii) of the lemma.

Now assume that S has at least three different eigenvalues, say λ, μ and ν. If
λμ = λν = −1, we have μ = ν, which is a contradiction. If λμ = −1 and
λν = − cos2 θ , we find

μν =
cos2 θ

λ2
≥ 0,

which is only possible if ν = cos θ = 0. Finally, if λμ = λν = − cos2 θ ,
we obtain that either μ = ν, which is a contradiction, or λ = cos θ = 0. We
conclude that one of the eigenvalues is zero and that cos θ = 0. Assume that
λ1 = 0. Since λ1λi = 0 for every i ∈ {2, . . . , n}, we have T ∈ span{e1, ei } for
every i ∈ {2, . . . , n}. Hence, T = ∂xn+2 lies in the direction of e1. Now let λi

and λ j be mutually different eigenvalues with i, j 6= 1. Since T ⊥ span{ei , e j }
we have λiλ j = −1. It follows that there can be only two different nonzero
eigenvalues and that their product is −1. This is case (iii) of the lemma. ¤
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Lemma 1 enables us to give a full description of semi-parallel hypersurfaces
of Sn × R:

Theorem 5. Let Mn be a semi-parallel hypersurface of Sn × R. Then there
are four possibilities:

(i) n = 2 and M2 is flat,

(ii) Mn is totally umbilical,

(iii) Mn is an open part of a rotation hypersurface for which the profile curve
is either a vertical line, or can be parametrized as

α(s) =
(

cos s, 0, . . . , 0, sin s, ±
∫ s

s0

√
C cos2 σ − 1 dσ

)
,

(iv) Mn ⊆ M̄n−1 × R, where M̄n−1 is a semi-parallel hypersurface of Sn(1).

As mentioned above, the classification of semi-parallel hypersurfaces of
Sn(1) is given in [5].

Proof of Theorem 5. Let Mn be a semi-parallel hypersurface of Sn × R with
shape operator S. According to Lemma 1, there are three possible forms of S to
consider.

In the first case, Mn is totally umbilical by definition. This gives case (ii) of
the theorem.

Now assume that we are in the second case of Lemma 1. If n = 2, then M2 is
a general flat surface in S2 × R and we are in case (i) of the theorem. If n ≥ 3,
the form of S is similar to the one given in Theorem 2. In the present case, the
relation λμ = − cos2 θ is not a functional relation in the strict sense, because
θ can be a non-constant function. But from (8) we see that θ does not vary
in directions orthogonal to T . By looking at the proof in [6], we see that this
is actually enough to obtain that Mn is a rotation hypersurface. Moreover, the
equality λμ = − cos2 θ determines the profile curve of the rotation hypersurface.
First remark that formulae (10) yield that this equality is satisfied in the case that
α is a vertical line. In this case we are in case (iv) of the theorem, where M̄n−1

is a hypersphere of Sn(1). If α is not a vertical line, formulae (9) give

λμ =
a′(s)a′′(s) cot s

(1 + a′(s)2)2
.
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On the other hand, we have

− cos2 θ = sin2 θ − 1 =
〈
∂xn+2,

T

‖T ‖

〉2

− 1 =
〈
∂xn+2,

α′

‖α′‖

〉2

− 1

=
a′(s)2

1 + a′(s)2
− 1 = −

1

1 + a′(s)2
.

Thus the equation λμ = − cos2 θ is equivalent to (a′(s)2)′ + 2 tan s a′(s)2 =
−2 tan s, for which the general solution is given by a′(s)2 = C cos2 s − 1, with
C ∈ R. This covers case (iii) of the theorem.

In the last case of Lemma 1, ∂xn+2 is everywhere tangent to Mn and hence we
are dealing with an open part of a product hypersurface M̄n−1 ×R, where M̄n−1

is a hypersurface of Sn(1). Since Sn(1) is a totally geodesic hypersurface of
Sn ×R, we have that the shape operator S̄ of M̄n−1 in Sn(1) satisfies S̄X = SX
for X tangent to M̄n−1, such that S̄ takes the form

S̄ =













λ
. . .

λ

μ
. . .

μ













,

with λμ = −1. It was proven in [5] that this condition is equivalent to the
condition that M̄n−1 is semi-parallel in Sn(1). ¤

5 Parallel hypersurfaces

We will now give a full classification of parallel hypersurfaces of Sn × R. One
can easily verify that a parallel hypersurface has to be semi-parallel and hence
in view of Theorem 5, there are only four cases to consider.

Theorem 6. Let Mn be a parallel hypersurface of Sn ×R. Then there are two
possibilities:

(i) Mn is an open part of a totally geodesic hypersurface Sn × {t0},

(ii) Mn is an open part of a Riemannian product M̄n−1 ×R, where M̄n−1 is a
parallel hypersurface of Sn(1).
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Proof. Since Mn has to be semi-parallel, we just have to find the parallel
hypersurfaces in the four families of Theorem 5.

Case (i). Parallel surfaces in S2 ×R are classified in [1]. The flat ones are open
parts of Riemannian products of a circle in S2(1) and R. This is a special case
of the second case in the theorem.

Case (ii). If Mn is totally umbilical in Sn ×R, with shape operator S = λ id, a
straightforward computation shows that Mn is parallel if and only if λ is constant.
But then the first equation of (13) yields that either cos θ = 0 or sin θ = 0. This
means hat Mn is an open part of either M̄n−1 × R or of Sn × {t0}. In the latter
case, Mn is totally geodesic and we are in the first case of the theorem. In the
former case, the second equation of (13) gives λ = 0 and hence we obtain that
M̄n−1 has to be a totally geodesic hypersurface of Sn(1). This is again a special
case of the second case of the theorem.

Case (iii). Assume that Mn is a rotation hypersurface with λμ = − cos2 θ . We
may assume that n ≥ 3, because for n = 2, we are dealing with a flat surface
and this case was treated above. Take X and Y perpendicular to T . The equation
of Codazzi for X and Y gives X [μ]Y − Y [μ]X = 0, yielding that μ is constant
in directions perpendicular to T . Now let α(s) be the profile curve of Mn and
choose a vector field X (s) along α(s) which satisfies the following conditions:
X (s) ⊥ α′(s) (or equivalently X (s) ⊥ T ), X (s) is parallel along α(s) in En+2

and ‖X (s)‖ = 1. Such a vector field clearly exists, since it is sufficient to
choose X orthogonal to the subspace P3, appearing in the construction of the
rotation hypersurface, and tangent to Mn . The formula of Gauss (1) yields that
DT X = ∇T X , such that X is also parallel along α(s) in Mn . If we now assume
Mn to be parallel, we obtain

0 = (∇h)(T, X, X) = T [h(X, X)] − 2h(∇T X, X) = T [μ].

This implies that μ is constant.

Now take X perpendicular to T , then the equation of Codazzi for X and T
gives

∇X ST − ∇T SX − S[X, T ] = cos θ‖T ‖2 X

⇒ ∇X (λT ) − ∇T (μX) − S(∇X T − ∇T X) = cos θ sin2 θ X

⇒ X [λ]T + λ∇X T − μ∇T X − S(cos θ SX) + S(∇T X) = cos θ sin2 θ X

⇒ X [λ]T + λμ cos θ X − μ∇T X − μ2 cos θ X + μ∇T X = cos θ sin2 θ X
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⇒ X [λ]T − cos θ(μ2 + 1)X = 0

⇒ cos θ = 0.

This means that that Mn is an open part of a Riemannian product M̄n−1 × R.
The second equation of (8) yields ST = 0 and hence λ = 0. Remark that the
condition λμ = − cos2 θ = 0 is automatically satisfied. The shape operators
of M̄n−1 ⊂ Sn(1) as a submanifold of En+1 are S1 = μ id and S2 = id. If we
change the basis of the normal plane by an appropriate rotation, they become
S̄1 =

√
μ2 + 1 id and S̄2 = 0. Hence M̄n−1 is an open part of a sphere of radius

1/
√

μ2 + 1 and we are in a special case of of the second case of the theorem.

Case (iv). Finally, we assume that Mn is an open part of M̄n−1 × R, where
M̄n−1 is a semi-parallel hypersurface of Sn(1). It is easy to see that M̄n−1 × R
is parallel in Sn × R if and only if M̄n−1 is parallel in Sn(1). This is the second
case of the theorem. ¤
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