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On the Hermitian positive definite solution
of the nonlinear matrix equation
X + A∗X−1 A + B∗X−1B = I
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Abstract. In this paper, we study the matrix equation X + A∗ X−1 A + B∗ X−1 B =
I , where A, B are square matrices, and obtain some conditions for the existence of
the positive definite solution of this equation. Two iterative algorithms to find the
positive definite solution are given. Some numerical results are reported to illustrate
the effectiveness of the algorithms.
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1 Introduction

In this paper, we consider the matrix equation

X + A∗ X−1 A + B∗ X−1 B = I, (1.1)

where A, B are square matrices, I is the identity matrix and a Hermitian positive
definite solution is required.

The solving of the matrix equation (1.1) is a problem of practical importance.
In many physical applications, we must solve the system of linear equation [1]

Px = f (1.2)
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where the positive definite matrix P arises from a finite difference approximation
to an elliptic partial differential equation. As an example, let

P =




I 0 A
0 I B
A∗ B∗ I



 . (1.3)

We consider the matrix P = P̃ + D, where

P̃ =




X 0 A
0 X B
A∗ B∗ I



 , D =




I − X 0 0

0 I − X 0
0 0 0



 .

We may decompose the matrix P̃ as



X 0 A
0 X B
A∗ B∗ I



 =




I 0 0
0 I 0

A∗ X−1 B∗ X−1 I








X 0 A
0 X B
0 0 X



 . (1.4)

For the decomposition (1.4) exists, the matrix X must be a solution of the equa-
tion X + A∗ X−1 A + B∗ X−1 B = I . The solving of the system P̃ y = f is
transformed to the solving of two linear systems that have lower triangular block
coefficient matrix and upper triangular block coefficient matrix respectively. The
Woodbury formula [2] can be applied to compute the solution of equation (1.2).

Recently, some authors [4-14] have studied the matrix equations

X + A∗ X−1 A = Q, (1.5)

and
X + A∗ X−1 A = I. (1.6)

In both cases, A, Q are square matrices, Q is a Hermitian positive definite ma-
trix and the positive definite solutions are required. Several conditions for the
existence of the positive definite solution were given in [3, 4, 5, 7], and some
iterations were discussed to find the maximal positive definite solution in [8-14]
for these two equations.

Obviously, the equation (1.1) generalizes the equation (1.6). Note that the
equation (1.1) may have non-Hermitian or indefinite solutions. For example, if
A=(1/2)I2, B = (

√
3/2)I2, then

X =
(

1 −α

α−1 0

)
(1.7)
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with any real number α 6= 0, is always a solution. We will not consider this
case in this paper. The matrix equation (1.1) arises in many application areas
including control theory, ladder networks, dynamics programming, stochastic
filtering and statistic (see references given in [3]).

Throughout this paper, we denote by Cn×n and H n×n the set of n × n complex
and n × n Hermitian matrices, respectively. For A, B ∈ H n×n , A ≥ 0(A >

0) means that A is positive semi-definite(positive definite). Moreover, A ≥
B(A > B) means that A − B ≥ 0(A − B > 0), and X ∈ [A, B] means A ≤
X ≤ B. A∗ and r(A) denote the complex conjugate transpose and the spectral
radius of A, respectively. λmax(A∗ A) and λmin(A∗ A) denote the maximal and
the minimal eigenvalue of A∗ A, respectively. Let A ⊗ B = (ai j B), vec(A) =
(
aT

1 , aT
2 , ∙ ∙ ∙ , aT

n

)T
, where A = (ai j ), a1, ∙ ∙ ∙ , an ∈ Cn are the the columns of

A, ||A||2 = λ
1/2
max(A∗ A), ||A||F = (tr(A∗ A))1/2.

This paper is organized as follows, in section 2, we derive some necessary
conditions, some sufficient conditions and a necessary and sufficient condition
for the existence of the positive definite solution of equation (1.1), respectively.
Section 3 contains two iterative algorithms for obtaining the positive definite
solution of equation (1.1). For the sake of illustrating the effectiveness of our
algorithms, several numerical examples are presented in section 4. We draw
conclusions in section 5.

2 Conditions for existence of the positive definite solution

Theorem 2.1.

(1) If equation (1.1) has a positive definite solution X, then X ≤ I .

Proof. First assume that equation (1.1) has a solution X > 0, then X−1 > 0.
This implies that A∗ X−1 A + B∗ X−1 B ≥ 0, which gives

X = I − A∗ X−1 A − B∗ X−1 B ≤ I. ¤

Theorem 2.2. If equation (1.1) has a positive definite solution X, then

(1) A∗ A + B∗ B < I ,

(2) X > AA∗ and X > B B∗.
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Proof. Let X be a positive definite solution of equation (1.1), by Theorem 2.1,
X ≤ I . Hence, we obtain

A∗ A + B∗ B ≤ A∗ X−1 A + B∗ X−1 B = I − X < I.

Rewriting (1.1) yields that

X + A∗ X−1 A = I − B∗ X−1 B. (2.1)

Since X is positive definite, X + A∗ X−1 A is invertible. Applying Schur’s lemma
to (2.1) yields that

(X + A∗ X−1 A)−1 = (I − B∗ X−1 B)−1

= I − B∗(B B∗ − X)−1 B.
(2.2)

Hence, X − B B∗ is invertible. Now consider (X − B B∗)−1. Applying Schur’s
lemma once again yields that

(X − B B∗)−1 = X−1 − X−1 B(B∗ X−1 B − I )−1 B∗ X−1

= X−1 + X−1 B(X + A∗ X−1 A)−1 B∗ X−1,
(2.3)

which is clearly positive definite. Hence X > B B∗. Analogously, we can also
prove X > AA∗. ¤

Remark. Theorem 2.2 generalizes the Theorem 3.1 and Theorem 3.2 (i) in [6].

Lemma 2.1. Let P, Q, R and S ∈ Cn×n, then

r(P∗ R − R∗ P + Q∗S − S∗Q) ≤ r(P∗ P + Q∗Q + R∗ R + S∗S). (2.4)

Proof. First we introduce the following notations,

U = (P∗, R∗, Q∗, S∗), V =







0 I 0 0
−I 0 0 0
0 0 0 I
0 0 −I 0





 .

where I is the n × n identity matrix. By elementary calculation we have

r(P∗ R − R∗ P + Q∗S − S∗Q) = r(U V U ∗). (2.5)

Since r(AB) = r(B A) for ∀A, B ∈ Cn×n , we get

r(U V U ∗) = r(V U ∗U ).

Bull Braz Math Soc, Vol. 39, N. 3, 2008
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Since r(A) ≤ ||A||2, we obtain

r(V U ∗U ) ≤ ||V U ∗U ||2 ≤ ||V ||2 ||U ∗U ||2.

Since U ∗U is a normal matrix, we have ||U ∗U ||2 = r(U ∗U ) and

r(P∗ R − R∗ P + Q∗S − S∗Q) = r(V U ∗U )

≤ ||V ||2 ||U ∗U ||2
= 1 ∗ r(UU ∗)

= r(P∗ P + Q∗Q + R∗ R + S∗S).

¤

Lemma 2.2. If A ∈ H n×n satisfies −I ≤ A ≤ I , then r(A) ≤ 1.

Proof. Since A ∈ H n×n , there exists a unitary matrix U ∈ Cn×n such that
U ∗ AU = 6 = diag(λ1, λ2, ∙ ∙ ∙ , λn), where λi ∈ R is a eigenvalue of A,
i = 1, 2, ∙ ∙ ∙ , n. Since I − A ≥ 0, U ∗ IU − U ∗ AU ≥ 0, that is, I − 6 ≥ 0,

thus
1 − λi ≥ 0, i = 1, 2, . . . , n. (2.6)

Analogously, we can prove

1 + λi ≥ 0, i = 1, 2, . . . , n. (2.7)

It follows from (2.6)–(2.7) that −1 ≤ λi ≤ 1, i = 1, 2, . . . , n, thus
r(A) ≤ 1. ¤

Theorem 2.3. If equation (1.1) has a positive definite solution, then the matrix
A, B satisfy the following inequalities:

(1) r(A + A∗) ≤ 1, r(B + B∗) ≤ 1,

(2) r(A − A∗) ≤ 1, r(B − B∗) ≤ 1.

Proof. Let X be the positive definite solution of equation (1.1). First, we
introduce the following notations:






P := X1/2 − X−1/2 A + X−1/2 B,

Q := X1/2 − X−1/2 A − X−1/2 B,

R := X1/2 + X−1/2 A + X−1/2 B,

S := X1/2 + X−1/2 A − X−1/2 B.
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Hence, we get the following equalities:
{

P∗ P + Q∗Q = 2(I − A − A∗), R∗ R + S∗S = 2(I + A + A∗),

Q∗Q + S∗S = 2(I − B − B∗), P∗ P + R∗ R = 2(I − B − B∗),
(2.8)

{
P∗ R − R∗ P + Q∗S − S∗Q = 4A − AA∗,

Q∗ R − R∗Q + S∗ P − P∗S = 4B − 4B∗.
(2.9)

Since P∗ P + Q∗Q, R∗ R + S∗S, P∗ P + R∗ R and Q∗Q + S∗S are positive
semi-definite, from (2.8) we know that −I ≤ A + A∗ ≤ I , −I ≤ B + B∗ ≤ I .
By Lemma 2.2, the assertion (1) is proved.

Lemma 2.1 and (2.7) yield that

r(A − A∗) = 1/4 ∗ r(P∗ R − R∗ P + Q∗S − S∗Q)

≤ 1/4 ∗ r(P∗ P + Q∗Q + R∗ R + S∗S)

= 1/4 ∗ r(4I ) = 1,

(2.10)

r(B − B∗) = 1/4 ∗ r(Q∗ R − R∗Q + S∗ P − P∗S)

≤ 1/4 ∗ r(P∗ P + Q∗Q + R∗ R + S∗S)

= 1/4 ∗ r(4I ) = 1.

(2.11)

These proves assertion (2). ¤

Remark. Theorem 2.3 generalizes the Theorem 7 in [5].

Theorem 2.4. Equation (1.1) has a positive definite solution X if and only if
A, B admit the following factorization:

A = W ∗ Z1, B = W ∗ Z2, (2.12)

where W is a nonsingular matrix and the columns of




W
Z1
Z2



 are orthonormal. In

this case X = W ∗W is a solution of equation (1.1).
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Proof. If equation (1.1) has a positive definite solution X , then X = W ∗W for
some nonsingular matrix W . Rewrite equation (1.1) as

W ∗W + A∗(W ∗W )−1 A + B∗(W ∗W )−1 B = I
W ∗W + (W −∗ A)∗(W −∗ A) + (W −∗ B)∗(W −∗ B) = I

or equivalently 


W

W −∗ A
W −∗ B





∗ 


W

W −∗ A
W −∗ B



 = I. (2.13)

Let W −∗ A = Z1, W −∗ B = Z2, then A = W ∗ Z1, B = W ∗ Z2 and (2.13) means

that the columns




W
Z1
Z2



 are orthonormal. Conversely, suppose that A, B has the

decomposition (2.12). Set X = W ∗W , then

X + A∗ X−1 A + B∗ X−1 B = W ∗W + (W ∗ Z1)
∗(W ∗W )−1(W ∗ Z1)

+ (W ∗ Z2)
∗(W ∗W )−1(W ∗ Z2)

= W ∗W + Z∗
1 Z1 + Z∗

2 Z2 = I,

that is X = W ∗W being a positive definite solution of equation (1.1). ¤

Consider the following two equations,

x2 − x + λmax(A∗ A) + λmax(B∗ B) = 0, (2.14)

x2 − x + λmin(A∗ A) + λmin(B∗ B) = 0. (2.15)

If

λmax(A∗ A) + λmax(B∗ B) <
1

4
, (2.16)

then equation (2.14) has two positive real roots α2 < β1, equation (2.15) has
two positive real roots α1 < β2. Easily prove that

0 < α1 ≤ α2 <
1

2
< β1 ≤ β2. (2.17)

We define some matrix sets as follows,

ϕ1 =
{

X∗ = X | 0 < X < α1 I
}
,

ϕ2 =
{

X∗ = X | α1 I ≤ X ≤ α2 I
}
,

ϕ3 =
{

X∗ = X | α2 I < X < β1 I
}
,

ϕ4 =
{

X∗ = X | β1 I ≤ X ≤ β2 I
}
,

ϕ5 =
{

X∗ = X | β2 I < X
}
.
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Theorem 2.5. Suppose that A, B satisfy (2.16), then equation (1.1) has

(1) positive definite solutions in ϕ4,

(2) no positive definite solution in ϕ1, ϕ3, ϕ5.

Proof. Consider the mapping φ1 : φ1(X) = I − A∗ X−1 A − B∗ X−1 B, which
is continuous in ϕ4. Obviously, ϕ4 is a bounded closed convex set. If X ∈ ϕ4,
then

λmin(φ1(X)) = λmin(I − A∗ X−1 A − B∗ X−1 B)

≥ λmin(I − (A∗ A + B∗ B)/β1)

≥ 1 − (λmax(A∗ A) + λmax(B∗ B))/β1

= β1,

λmax(φ1(X)) = λmax(I − A∗ X−1 A − B∗ X−1 B)

≤ λmax(I − (A∗ A + B∗ B)/β2)

≤ 1 − (λmin(A∗ A) + λmin(B∗ B))/β2

= β2.

Hence φ1 maps ϕ4 into itself. By Brouwer fixed point theorem, φ1 has fixed
point in ϕ4. Thus equation (1.1) has positive definite solution in ϕ4.

Assume X is the positive definite solution of (1.1), then

λmin(X) = λmin(I − A∗ X−1 A − B∗ X−1 B)

≥ 1 − λmax(A∗ X−1 A) − λmax(B∗ X−1 B)

≥ 1 − λmax(A∗ A)/λmin(X) − λmax(B∗ B)/λmin(X),

that is, λ2
min(X) − λmin(X) + λmax(A∗ A) + λmax(B∗ B) ≥ 0. So, λmin(X) ≤ α2

or λmin(X) ≥ β1, and equation (1.1) has no positive definite solution in ϕ3.

λmax(X) = λmax(I − A∗ X−1 A − B∗ X−1 B)

≤ 1 − λmin(A∗ X−1 A) − λmin(B∗ X−1 B)

≤ 1 − λmin(A∗ A)/λmax(X) − λmin(B∗ B)/λmax(X),

that is, λ2
max(X)−λmax(X)+λmin(A∗ A)+λmin(B∗ B) ≤ 0. So, α1 ≤ λmax(X) ≤

β2, and equation (1.1) has no positive definite solution in ϕ1, ϕ5. ¤

Theorem 2.6. If A and B satisfy the following inequality

||AT ⊗ A∗ + BT ⊗ B∗||2 < α2
1, (2.18)

where α1 is the smaller positive root of (2.15), then equation (1.1) has a unique
positive definite solution in ϕ2.

Bull Braz Math Soc, Vol. 39, N. 3, 2008
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Proof. ∀X , Y ∈ ϕ2, we get X−1 ≤
I

α1
, Y −1 ≤

I

α1
and

||Y −1 − X−1||F = ||X−1(X − Y )Y −1||F

= ||(Y −1 ⊗ X−1) vec(X − Y )||2

≤
1

α2
1

||X − Y ||F .

Hence,

||φ1(X) − φ1(Y )||F = ||A∗(Y −1 − X−1)A + B∗(Y −1 − X−1)B||F

= ||(AT ⊗ A∗ + BT ⊗ B∗)vec(Y −1 − X−1)||2
≤ ||(AT ⊗ A∗ + BT ⊗ B∗)||2 ||(Y −1 − X−1)||F

≤ ||(AT ⊗ A∗ + BT ⊗ B∗)||2 ||X − Y ||F/α2
1

< ||X − Y ||F .

where the mapping φ1 is the same as in Theorem 2.5. Therefore the mapping φ1

is a contraction mapping. By the contraction mapping principle, the mapping φ1

has a unique fixed point in ϕ2. ¤

Theorem 2.7. Assume A, B satisfy (2.16), then equation (1.1) has a unique
positive definite solution in ϕ4.

Proof. By Theorem 2.4, the set of solution, called S, is not empty in ϕ4. Sup-
pose X, Y ∈ S and X 6= Y , then

X − Y = A∗(Y −1 − X−1)A + B∗(Y −1 − X−1)B. (2.19)

Since
||Y −1 − X−1||F = ||X−1(X − Y )Y −1||F

= ||(Y −1 ⊗ X−1) vec(X − Y )||2

≤
1

β2
1

||X − Y ||F ,

(2.20)

||X − Y ||F ≤ (||A||22 + ||B||22)||Y
−1 − X−1||F

≤ ((||A||22 + ||B||22)/β
2
1 )||X − Y ||F

< ||X − Y ||F ,

which is a contradiction. Thus equation (1.1) has a unique positive solution
in ϕ4. ¤
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3 Iterative methods

In this section, we consider two iterative algorithms for finding the positive
definite solution of equation (1.1).

The following lemma considers the linear matrix equation of the type

X − A∗
1 X A1 − A∗

2 X A2 = Q, (3.1)

where Q is a positive semi-definite matrix, A1, A2 are square matrices and X is
unknown matrix.

Lemma 3.1 [15]. If there exists a positive definite matrix Q̃ satisfying Q̃ −
A∗

1 Q̃ A1 − A∗
2 Q̃ A2 > 0, then equation (3.1) has a unique solution which is

positive semi-definite.

Algorithm 3.1. (Basic fixed point iteration)




X0 = δ I, δ ∈

[
1

2
, 1

]
,

Xn+1 = I − A∗ X−1
n A − B∗ X−1

n B,

Theorem 3.1. Assume that equation (1.1) has a positive definite solution, then
the Algorithm 3.1 with

δ(1−δ) ≤ λmin(A∗ A)+λmin(B∗ B), and δ2 > λmax(A∗ A)+λmax(B∗ B) (3.2)

defines a monotonically decreasing matrix sequence {Xn} which converges to
the positive definite solution X of equation (1.1).

Proof. Let Xl be a positive definite solution of equation (1.1). We first show by
induction that Xk ≥ Xl for any k. The formulas (3.2) implies that A∗ A+ B∗ B ≥
δ(1 − δ) and

X0 + A∗ X−1
0 A + B∗ X−1

0 B = δ I +
1

δ
(A∗ A + B∗ B)

≥ δ I + (1 − δ)I
= Xl + A∗ X−1

l A + B∗ X−1
l B.

Hence

X0 − Xl − A∗ X−1
l (X0 − Xl)X−1

0 A − B∗ X−1
l (X0 − Xl)X−1

0 B ≥ 0

Bull Braz Math Soc, Vol. 39, N. 3, 2008
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and

X0 − Xl − [A∗X−1
0 (X0 − Xl )X−1

0 A + A∗ X−1
0 (X0 − Xl )X−1

l (X0 − Xl )X−1
0 A]

−[B∗ X−1
0 (X0 − Xl )X−1

0 B + B∗ X−1
0 (X0 − Xl )X−1

l (X0 − Xl )X−1
0 B] ≥ 0.

(3.3)

Since Xl > 0, we have that

A∗ X−1
0 (X0 − Xl)X−1

l (X0 − Xl)X−1
0 A ≥ 0, and

B∗ X−1
0 (X0 − Xl)X−1

l (X0 − Xl)X−1
0 B ≥ 0.

From (3.3), there exists a matrix C ≥ 0 such that

X0 − Xl − A∗ X−1
0 (X0 − Xl)X−1

0 A − B∗ X−1
0 (X0 − Xl)X−1

0 B = C. (3.4)

Let Y = X0 − Xl . Equation (3.4) is equivalent to

Y − A∗ X−1
0 Y X−1

0 A − B∗ X−1
0 Y X−1

0 B = C. (3.5)

We take Ỹ = X2
0. We get A∗ A + B∗ B < δ2 I from (3.2). Therefore,

Ỹ − A∗ X−1
0 Ỹ X−1

0 A − B∗ X−1
0 Ỹ X−1

0 B = δ2 I − A∗ A − B∗ B > 0.

By Lemma 3.1, we get that equation (3.5) has a unique positive semi-definite
solution Y . Hence Y = X0 − Xl ≥ 0, that is X0 ≥ Xl . Now assume that
Xk ≥ Xl holds for k = n. Then

Xk+1 − Xl = A∗
(
X−1

l − X−1
k

)
A + B∗

(
X−1

l − X−1
k

)
B, (3.6)

since Xk ≥ Xl > 0, it is obvious that Xk+1 ≥ Xl .
Next we show that {Xk} is a monotonically decreasing sequence. First, we

consider that

X0 − X1 = X0 − (I − A∗ X−1
0 A − B∗ X−1

0 B)

= (δ − 1)I +
1

δ
(A∗ A + B∗ B)

≥ (δ − 1)I +
1

δ
(λmin(A∗ A) + λmin(B∗ B))I

≥ 0,

So the statement holds for k = 0, Next, assume that Xk − Xk+1 ≥ 0 for k = n.
Using the induction argument and the fact that Xk > 0 for any k, we have

Xn+1 − Xn+2 = A∗
(
X−1

n+1 − X−1
n

)
A + B∗

(
X−1

n+1 − X−1
n

)
B ≥ 0. (3.7)

So {Xn} is a monotonically decreasing sequence. Combination of both results
yields that {Xn} converges to a matrix X which satisfies X = I − A∗ X−1 A −
B∗ X−1 B and X ≥ Xl . ¤
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Algorithm 3.2. (Inversion free variant of basic fixed point iteration)





X0 = I, Y0 = I,
Xn+1 = I − A∗Yn A − B∗Yn B,

Yn+1 = Yn(2I − XnYn).

Lemma 3.2 [8]. Let C and P be Hermitian matrices of the same order and
let P > 0, then

C PC + P−1 ≥ 2C. (3.8)

Theorem 3.2. Assume that equation (1.1) has a positive definite solution, then
the Algorithm 3.2 defines a monotonically decreasing matrix sequence {Xn}
converging to the positive definite matrix X which is a solution of equation (1.1).

Proof. Let Xl be a positive definite solution of equation (1.1). We show by
induction that {Xn} is a monotonically decreasing sequence bounded from be-
low. We first prove by induction that Xn ≥ Xl, Yn ≥ Yn−1. Since Xl is a
positive definite solution, Xl = I − A∗ X−1

l A − B∗ X−1
l B.

By Algorithm 3.2, it is easy to compute that X0 = I ≥ Xl , X1 = I −
A∗Y0 A − B∗Y0 B = I − A∗ A − B∗ B, Y0 = I , Y1 = Y0(2I − X0Y0) = I , X2 =
I − A∗Y1 A−B∗Y1 B = I − A∗ A−B∗ B, Y2 = Y1(2I −X1Y1) = I + A∗ A+B∗ B.
Hence, X1 = X2 = I − A∗ A − B∗ B ≥ I − A∗ X−1

l A − B∗ X−1
l B = Xl , and

Y0 = Y1 ≤ I + A∗ A + B∗ B = Y2. Now assume that

Xk ≥ Xl, Yk ≥ Yk−1, (3.9)

for all k ≤ n,n ≥ 2. Using Lemma 3.2 we have

X−1
n ≥ 2Yn−1 − Yn−1 XnYn−1. (3.10)

It is obvious that

Xn−1 − Xn = A∗(Yn−1 − Yn−2)A + B∗(Yn−1 − Yn−2)B. (3.11)

By the assumption (3.9), we have Yn−1 ≥ Yn−2, so Xn−1 ≥ Xn , therefore

2Yn−1 − Yn−1 XnYn−1 ≥ 2Yn−1 − Yn−1 Xn−1Yn−1 = Yn. (3.12)

We have X−1
n ≥ Yn or Y −1

n ≥ Xn from (3.10)–(3.12). Thus

Xn+1 = I − A∗Yn A − B∗Yn B

≥ I − A∗ X−1
n A − B∗ X−1

n B

≥ I − A∗ X−1
l A − B∗ X−1

l B = Xl .
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Rewrite the second formula of Algorithm 3.2 as

Yn+1 − Yn = Yn(Y
−1
n − Xn)Yn. (3.13)

hence Yn+1 ≥ Yn , this completes the induction. From above process, we know
easily that {Xn} is monotone decreasing sequence and bounded from below Xl ,
{Yn} is monotone increasing sequence and bounded from above X−1

l . Thus
limn→∞ Xn = X and limn→∞ Yn = Y exist. Taking limits in Algorithm 3.2
gives Y = X−1 and X = I − A∗ X−1 A − B∗ X−1 B. From Xn ≥ Xl , we have
X ≥ Xl , that is limn→∞ Xn = X ≥ Xl . ¤

4 Numerical results

In this section, we report some numerical examples to compute the positive
definite solution of equation (1.1) by Algorithm 3.1 and Algorithm 3.2.

Example 4.1. Consider the equation (1.1) with

A =




0.010 −0.150 −0.259
0.015 0.212 −0.064
0.025 −0.069 0.138



 , B =




0.160 −0.025 0.020

−0.025 −0.288 −0.060
0.004 −0.016 −0.120



 .

Algorithm 3.1 with δ = 1 needs 12 iterations to obtain the solution

X =




0.9717897903 −0.0049365696 −0.0046035965

−0.0049365696 0.8144332065 −0.0388316596
−0.0046035965 −0.0388316596 0.8835618713



 ,

||X + A∗ X−1 A + B∗ X−1 B − I ||∞ = 2.72e − 010.

Algorithm 3.1 with δ = 0.85 needs 10 iterations to get the solution

X =




0.9717897903 −0.0049365696 −0.004603596

−0.0049365696 0.8144332064 −0.0388316596
−0.0046035965 −0.0388316596 0.8835618713



 ,

||X + A∗ X−1 A + B∗ X−1 B − I ||∞ = 2.02e − 010.

Algorithm 3.2 needs 12 iterations to obtain the solution

X =




0.9717897903 −0.0049365696 −0.0046035965

−0.0049365696 0.8144332068 −0.0388316596
−0.0046035965 −0.0388316596 0.8835618713



 ,

||X + A∗ X−1 A + B∗ X−1 B − I ||∞ = 5.95e − 010.
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Example 4.2. Consider the equation (1.1) with

A = 1/680 ∗








40 25 23 35 66
25 32 27 45 21
23 27 28 16 24
35 45 16 52 65
66 21 24 65 69








, B = 1/400 ∗








11 21 23 25 32
21 31 60 42 33
23 60 34 18 26
25 42 18 44 30
32 33 26 30 50








.

Algorithm 3.1 with δ = 1 needs 40 iterations to obtain the solution

X =








0.9437370835 −0.0642332338 −0.0530308768 −0.0690830561 −0.0772109025
−0.0642332338 0.9063186053 −0.0738559550 −0.0832893164 −0.0906944974
−0.0530308768 −0.0738559550 0.9297460796 −0.0716730460 −0.0763116859
−0.0690830561 −0.0832893164 −0.0716730460 0.9080246681 −0.0969684430
−0.0772109025 −0.0906944974 −0.0763116859 −0.0969684430 0.8888791608








,

||X + A∗ X−1 A + B∗ X−1 B − I ||∞ = 1.04e − 009.

Algorithm 3.1 with δ = 0.61 needs 25 iterations to get the solution

X =








0.9437370804 −0.0642332375 −0.0530308799 −0.0690830601 −0.0772109069
−0.0642332375 0.9063186003 −0.0738559593 −0.0832893213 −0.09069450285
−0.0530308799 −0.0738559593 0.9297460759 −0.0716730502 −0.0763116905
−0.0690830601 −0.0832893213 −0.0716730502 0.9080246629 −0.0969684486
−0.0772109069 −0.0906945028 −0.0763116905 −0.0969684486 0.8888791546








,

||X + A∗ X−1 A + B∗ X−1 B − I ||∞ = 8.32e − 009.

Algorithm 3.2 needs 40 iterations to obtain the solution

X =








0.9437370837 −0.0642332336 −0.0530308766 −0.0690830559 −0.0772109023
−0.0642332336 0.9063186055 −0.0738559548 −0.0832893162 −0.0906944972
−0.0530308766 −0.0738559548 0.9297460797 −0.0716730458 −0.0763116857
−0.0690830559 −0.0832893162 −0.0716730458 0.9080246683 −0.0969684427
−0.0772109023 −0.0906944972 −0.0763116857 −0.0969684427 0.8888791610








,

||X + A∗ X−1 A + B∗ X−1 B − I ||∞ = 1.45e − 009.

The above examples show that the different choices of δ occur different numer-
ical results for Algorithm 3.1, and both Algorithm 3.1 and 3.2 are numerically
reliable methods for computing the positive definite solution X .

5 Conclusion

In this paper we consider the nonlinear matrix equation

X + A∗ X−1 A + B∗ X−1 B = I.

Conditions for the existence of positive definite of this equation are derived. Two
iterative algorithms for obtaining the positive definite solution of the equation
are given. Moreover, several numerical results are reported to illustrate the
effectiveness of the algorithms.
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