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The second Sobolev best constant along
the Ricci flow

Ezequiel R. Barbosa and Marcos Montenegro

Abstract. In this work we present some properties satisfied by the second L2-Rieman-
nian Sobolev best constant along the Ricci flow on compact manifolds of dimensions
n ≥ 4. We prove that, along the Ricci flow g(t), the second best constant B0(2, g(t))
depends continuously on t and blows-up in finite time. In certain cases, the speed of
the explosion is, at least, the same one of the curvature operator. We also show that, on
manifolds with positive curvature operator or pointwise 1/4-pinched curvature, one of
the situations holds: B0(2, g(t)) converges to an explicit constant or extremal functions
there exists for t large.

Keywords: Ricci flow, blow-up, extremal functions, best constants.

Mathematical subject classification: 41A44, 53C21.

1 Introduction and main results

Best constants and sharp first-order Sobolev inequalities on compact Rieman-
nian manifolds have been extensively studied in the last few decades and sur-
prising results have been obtained by showing the influence of the geometry on
such problems. Particularly, the arising of concentration phenomena has moti-
vated the development of new methods in analysis, we mention [3], [13], [22]
and [29] for an overview about this matter. Important advances in geometric
analysis also have been obtained through the developing of an elegant theory
started by Hamilton [15] in 1982 and known as the Ricci flow theory. Several
mathematicians have given important contributions for the construction of this
theory, see for example the works of Hamilton [15], [16], [17], [18], [19], [20],
[21], of Perelman [25], [26], [27] and, more recently, of Böhm and Wilking
[4] and of Brendle and Schoen [5]. The Ricci flow theory provides a powerful
tool in the study of important topological and geometric questions, see [6], [8]

Received 27 November 2007.



“main” — 2008/8/27 — 19:12 — page 428 — #2

428 EZEQUIEL R. BARBOSA and MARCOS MONTENEGRO

and [24] for an overview of this subject and some important implications. Our
main interest in this work is the study of the behavior of the second Riemannian
Sobolev best constant along the Ricci flow and the discussion of some questions
such as bound and asymptotic behavior of the second best constant along the
flow and the existence of associated extremal functions. Our results in particular
show that the Ricci flow theory can also be worked in connection with some
questions of interest in best constants theory.

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Denote
by H 1,2(M) the standard first-order Sobolev space defined as the completion of
C∞(M) with respect to the norm

||u||H1,2(M) =
(∫

M
|∇gu|2 dvg +

∫

M
u2 dvg

) 1
2

.

The Sobolev embedding theorem ensures that the inclusion H 1,2(M) ⊂ L2∗
(M)

is continuous for 2∗ = 2n
n−2 . Thus, there exist constants A, B ∈ R such that, for

any u ∈ H 1,2(M),
(∫

M
|u|2

∗
dvg

) 2
2∗

≤ A
∫

M
|∇gu|2 dvg + B

∫

M
u2 dvg . (AB)

In this case, we say simply that (AB) is valid.

The first Sobolev best constant associated to (AB) is

A0(2, g) = inf
{

A ∈ R : there exists B ∈ R such that (AB) is valid
}

and, by Aubin [1], its value is given by K (n, 2)2, where

K (n, 2) = sup
u∈D1,2(Rn)

(∫
Rn |u|2

∗
dx

) 1
2∗

(∫
Rn |∇u|2 dx

) 1
2

,

where D1,2(Rn) is the completion of C∞
0 (R

n) under the norm

||u||D1,2(Rn) =
(∫

Rn
|∇u|2 dx

) 1
2

.

In particular, the first best constant A0(2, g) does not depend on the metric g.

The first optimal Riemannain Sobolev inequality states that, for any u ∈
H 1,2(M),

(∫

M
|u|2

∗
dvg

) 2
2∗

≤ K (n, 2)2
∫

M
|∇gu|2 dvg + B

∫

M
u2 dvg (Ig,opt )
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for some constant B ∈ R. The validity of (Ig,opt ) has been proved by Hebey and
Vaugon in [23].

Define the second Sobolev best constant by

B0(2, g) = inf
{

B ∈ R : (Ig,opt) is valid
}
.

On the contrary of the first best constant, the second one depends on the metric.
Indeed, if g̃ = λg, where λ > 0 is a constant, then B0(2, g̃) = λ−1 B0(2, g).
Note also that B0(2, g) ≥ volg(M)−2/n , where volg(M) denote the volume of
M in the metric g.

Clearly, for any u ∈ H 1,2(M), one has the inequality

(∫

M
|u|2

∗
dvg

) 2
2∗

≤ K (n, 2)2
∫

M
|∇gu|2 dvg + B0(2, g)

∫

M
u2 dvg . (IIg,opt )

This inequality is known as the second optimal Riemannian Sobolev inequality.
A function u0 ∈ H 1,2(M) is said to be an extremal of (IIg,opt ) if

(∫

M
|u0|

2∗
dvg

) 2
2∗

= K (n, 2)2
∫

M
|∇gu0|

2 dvg + B0(2, g)
∫

M
u2

0 dvg .

In [2], Aubin obtained the following lower bound for B0(2, g) in dimension
n ≥ 4,

B0(2, g) ≥
n − 2

4(n − 1)
K (n, 2)2 max

M
Rg,

where Rg stands for the scalar curvature of g. In [11], Djadli and Druet studied
the existence of extremal functions for (IIg,opt ) and the explicit value of B0(2, g)
for n ≥ 4. Precisely, they show that, at least, one of the following assertions
holds:

(a) B0(2, g) = n−2
4(n−1)K (n, 2)2 maxM Rg, or

(b) extremal functions of (I Ig,opt ) exists.

As already mentioned, this work focuses the behavior of B0(2, g) along the
Ricci flow g = g(t) and its implications.

Given a compact Riemannian manifold (M, g0), the Ricci flow starting at
g0 is the curve g(t) in the metric-space such that g(0) = g0 and satisfies the
evolution equation

∂g

∂t
= −2Ric(g), (1)
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where Ric(g) represents the Ricci curvature tensor of the metric g. As it is well
known, this problem admits a unique solution g(t) defined on a maximal interval
[0, T ), see Hamilton [15] and De Turck [10]. The maximal interval may be finite
or infinite depending on the metric g0. For instance, if the scalar curvature Rg0

is positive on M , then T is finite. This follows from the maximum principle for
parabolic equations applied to the following inequality satisfied by Rg(t),

∂Rg(t)

∂t
≥ 1Rg(t) +

2

n
R2

g(t) .

When T is finite, g(t) develops singularity, i.e.

max
M

|Rm(g(t))| → ∞

as t ↑ T . Here, Rm(g) denotes the Riemann tensor of the metric g, also called
Riemann curvature operator.

Another flow strictly related to the Ricci flow is generated by the evolution
equation

∂g

∂t
= −2Ric(g)+

2

n
μg where μ =

∫
M Rgdvg∫

M dvg
,

which is called the normalized Ricci flow since it preserves the volume of M in
the initial metric g0. Both flows were introduced by Hamilton in [15] and there it
was proved that they differ by a change of scale in the time and a parametrization
in the space. In particular, it is possible to conclude that if the maximal interval
of the normalized Ricci flow starting at g0 is finite, then the maximal interval of
the Ricci flow with the same initial metric is also finite. This implies that the
normalized Ricci flow also develops a singularity in finite time.

A central question in the Ricci flow theory is to know if the normalized
Ricci flow there exists for all time and if converges to a metric of constant
sectional curvature.

Let (M, g0) be a Riemannian manifold of dimension n ≥ 4. Hamilton
proved in [16] that if n = 4 and the curvature operator is positive, then the
normalized Ricci flows starting at g0 there exists for all time and converges to
a metric g of constant sectional curvature. In [7], Chen proved that the same
conclusion holds when n = 4 and the curvature operator is 2-positive, i.e. the
sum of its two smallest eigenvalues is positive. Hamilton also conjectured in
[16] that its conclusion would be valid in any dimension n ≥ 4. Recently,
Böhm and Wilking [4] proved the Hamilton’s conjecture requiring only
2-positivity of the curvature operator.
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Another interesting situation is when the Riemannian manifold (M, g0) has
pointwise 1/4-pinched curvature, i.e. if all sectional curvatures K are positive
and, for each point p ∈ M , the ratio between the maximum and minimum
sectional curvatures at p is less than 4. In other words, for any pair of planes
51 and 52 contained in the tangent space Tp M , one has K (51) < 4K (52). In
[7], Chen also showed that the normalized Ricci flow there exists for all time
when n = 4 and the pointwise 1/4-pinched curvature condition holds. In this
year, Brendle and Schoen [5] extended this result for n ≥ 4. Summarizing, if
(M, g0) is a Riemannian manifold of dimension n ≥ 4 with 2-positive curvature
operator or pointwise 1/4-pinched curvature, then the normalized Ricci flow g(t)
is defined on all time and converges to a metric of constant sectional curvature.

Assume that the metric g0 is Einstein, i.e.

Ric(g0) = λg0

for some constant λ ∈ R. In this case, the normalized Ricci flow starting at g0

is constant on t , i.e. g(t) = g0. However, the Ricci flow g(t) of (1) is given by
g(t) = (1 − 2λt)g0, so that

B0(2, g(t)) = (1 − 2λt)−1 B0(2, g0)

on the maximal interval. Moreover, if (I Ig0,opt) admits an extremal function u0,
then (I Ig(t),opt) also admits an extremal function given by

u(x, t) = (1 − 2λt)−
n−2

4 u0(x) .

In the Einstein case, note that T is finite or infinite depending on the sign of λ.
For example, if (Sn, g0) is the standard unit sphere in Rn+1 of dimension n ≥ 4,
then g(t) = (1 − 2(n − 1)t)g0,

B0(2, g(t)) = (1 − 2(n − 1)t)−1ω
− 2

n
n

and, by [2] and [22],

ux0,β(x, t) = (1 − 2(n − 1)t)−
n−2

4
(
β − cos rg0

)1− n
2 ,

for x0 ∈ Sn and β > 1, are all extremal functions of (I Ig(t),opt), where ωn stands
for the volume of Sn and rg0 denotes the geodesic distance from x to x0, both
in relation to the metric g0. Therefore, extremal functions there exist along the
Ricci flow on Sn starting at the standard metric. More generally, let (M, g0) be a
homogeneous Riemannian manifold of dimension n ≥ 4 and consider the Ricci

Bull Braz Math Soc, Vol. 39, N. 3, 2008



“main” — 2008/8/27 — 19:12 — page 432 — #6

432 EZEQUIEL R. BARBOSA and MARCOS MONTENEGRO

flow g(t) starting at g0 on the maximal interval [0, T ). The scalar curvature Rg(t)

along this flow is constant on M at each time, so that (I Ig(t),opt ) admits extremal
function for all t ∈ [0, T ).

In the Einstein case, remark that the second best constant B0(2, g(t)) is always
continuous on t . This lead us to ask if B0(2, g(t)) remains continuous for any
initial metric g0 on M .

Our first result answers this question.

Theorem 1.1 (Continuous evolution). Let (M, g0) be a compact Riemannian
manifold of dimension n ≥ 4 and g(t) the Ricci flow (normalized or not) starting
at g0 and defined on the maximal interval [0, T ). Then, both assertions hold:

(a) B0(2, g(t)) is continuous on [0, T ),

(b) if g(t) converges to a metric g, then B0(2, g(t)) converges to B0(2, g) as
t ↑ T .

The continuity of the second best constant along the Ricci flow connected with
the best constants and Ricci flow theories produce some interesting results which
we state as follows.

Corollary 1.1 (Blow-up in finite time). Let (M, g0) be a compact Riemannian
manifold of dimension n ≥ 4 and g(t) the Ricci flow (normalized or not) starting
at g0 and defined on the maximal interval [0, T ). If T is finite, then B0(2, g(t))
blows up as t ↑ T . Moreover, if the curvature operator of g0 is positive, then
there exists a positive constant a(n), depending only on n, such that

B0(2, g(t))

maxM |Rm(g(t))|
≥ a(n)

for all t ∈ [0, T ).

Corollary 1.2 (Bound in infinite time). Let (M, g0) be a compact Riemannian
manifold of dimension n ≥ 4 with 2-positive curvature operator or pointwise
1/4-pinched curvature and let g(t) be the normalized Ricci flow starting at g0

and defined on all time. Then, B0(2, g(t)) is uniformly bounded on t.

Corollary 1.3 (Asymptotic behavior or extremal existence). Let (M, g0) be
a compact Riemannian manifold of dimension n ≥ 4 with 2-positive curvature
operator or pointwise 1/4-pinched curvature and let g(t) be the normalized Ricci
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flow starting at g0 and defined on all time. Then, at least, one of the assertions
holds:

(a) there exists R > 0 such that B0(2, g(t)) converges to R−1
(

1
ωn

)2/n
as t →

∞, or

(b) there exists t0 ≥ 0 such that (I Ig(t),opt) admits extremal function for all
t ≥ t0.

The proof of Theorem 1.1 is made by contradiction. In this case, we find
two possible alternatives. One of them is directly eliminated according to the
definition of second best constant. The other alternative implies the existence of
minimizers of certain functionals which concentrate in some point. The proof
then consists in obtaining estimates of these minimizers around a concentration
point and in combining them in order to find a contradiction. These ideas are
inspired in the work of Djadli and Druet [11]. The proofs of the remaining results
are based on Theorem 1.1 and on best constants and Ricci flow theories.

2 Proof of Theorem 1.1

Let g(t) be the Ricci flow on M starting at g0 defined on a maximal interval
[0, T ). We prove here only the part (a), since that the ideas involved in proof of
the part (b) are similar. Suppose, by contradiction, that g(t) is discontinuous in
some time t0 ∈ [0, T ). Then, there exist ε0 > 0 and a sequence (tk) ⊂ [0, T )
such that tk → t0 and

|B0(2, g(tk))− B0(2, g(t0))| > ε0

for all k. Then, at least, one of the cases holds:

B0(2, g(t0))− B0(2, g(tk)) > ε0

or
B0(2, g(tk))− B0(2, g(t0)) > ε0

for infinitely many k. If the first one holds, for any u ∈ H 1,2(M), one has

(∫

M
|u|2

∗
dvg(tk )

) 2
2∗

≤ K (n, 2)2
∫

M
|∇g(tk )u|2 dvg(tk )

+(B0(2, g(t0))− ε0)

∫

M
u2 dvg(tk ) .
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Taking the limit in this inequality as k → ∞, one finds

(∫

M
|u|2

∗
dvg(t0)

) 2
2∗

≤ K (n, 2)2
∫

M
|∇g(t0)u|2 dvg(t0)

+(B0(2, g(t0))− ε0)

∫

M
u2 dvg(t0),

which contradicts the definition of B0(2, g(t0)).
Suppose then that the second case holds, i.e. B0(2, g(t0))+ ε0 < B0(2, g(tk))

for infinitely many k. For each k, consider the functional

Jk(u) =
∫

M
|∇g(tk )u|2 dvg(tk ) + (B0(2, g(t0))+ ε0)K (n, 2)−2

∫

M
u2 dvg(tk )

defined on 3k =
{
u ∈ H 1,2(M) :

∫
M |u|2

∗
dvg(tk ) = 1

}
. From the definition of

B0(2, g(tk)), it follows directly that

λk := inf
3k

Jk(u) < K (n, 2)−2 .

But this implies the existence of a nonnegative minimizer uk ∈ 3k for λk . The
Euler-Lagrange equation for uk is then

−1g(tk )uk + (B0(2, g(t0))+ ε0)K (n, 2)−2uk = λku2∗−1
k , (Ek)

where 1g(tk ) = divg(tk )(∇g(tk )) is the Laplacian operator with respect to the
metric g(tk). By the standard elliptic theory, uk belongs to C∞(M) and, by the
strong maximum principle, uk > 0 on M . Moreover,

∫

M
u2∗

k dvg(tk ) = 1 .

Our goal now is to study the sequence (uk)k as k → ∞. First, note that
∫

M
|∇g(tk )uk |

2 dvg(tk ) + (B0(2, g(t0))+ ε0)K (n, 2)−2
∫

M
u2

k dvg(tk )

= λk < K (n, 2)−2

and there exists a constant c > 0, independent of k, such that
∫

M
u2

k dvg(t0) ≤ c
∫

M
u2

k dvg(tk )

Bull Braz Math Soc, Vol. 39, N. 3, 2008
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and ∫

M
|∇g(t0)uk |

2 dvg(t0) ≤ c
∫

M
|∇g(tk )uk |

2 dvg(tk )

for all k. This implies that (uk)k is bounded in H 1,2(M) with respect to the
metric g(t0). So, there exists u ∈ H 1,2(M), u ≥ 0, such that uk ⇀ u weakly
in H 1,2(M) and λk → λ as k → ∞, up to a subsequence. Moreover, by the
Sobolev embedding compactness theorem, one easily finds

∫

M
uq

k dvg(tk ) →
∫

M
uq dvg(t0) (2)

for any 1 ≤ q < 2∗. So, letting k → ∞ in the equation (Ek), one concludes
that u satisfies

−1g(t0)u + (B0(2, g(t0))+ ε0)K (n, 2)−2u = λu2∗−1 . (E)

Assume that u 6= 0. In this case, by (I Ig(t0),opt ) and (E), one has

(∫

M
u2∗

dvg(t0)

) 2
2∗

< K (n, 2)2
∫

M
|∇g(t0)u|2 dvg(t0)

+ (B0(2, g(t0))+ ε0)

∫

M
u2 dvg(t0)

= K (n, 2)2λ
∫

M
u2∗

dvg(t0) ≤
∫

M
u2∗

dvg(t0)

since 0 ≤ λ ≤ K (n, 2)−2. This implies that
∫

M |u|2
∗

dvg(t0) > 1. But this
inequality contradicts

∫

M
u2∗

dvg(t0) ≤ lim inf
k→∞

∫

M
u2∗

k dvg(tk ) = 1 .

We then assume that u = 0 on M and prove that this assumption leads us to an
contradiction. We claim that, in this case, λk → K (n, 2)−2 as k → ∞. In fact,
the optimal inequality furnishes

(∫

M
u2∗

k dvg(t0)

) 2
2∗

≤ K (n, 2)2
∫

M
|∇g(t0)uk |

2 dvg(t0)

+B0(2, g(t0)
∫

M
u2

k dvg(t0) .

Bull Braz Math Soc, Vol. 39, N. 3, 2008



“main” — 2008/8/27 — 19:12 — page 436 — #10

436 EZEQUIEL R. BARBOSA and MARCOS MONTENEGRO

Note that ∫

M
u2∗

k dvg(t0) → 1

since uk ∈ 3k , and

lim
k→∞

∫

M
u2

k dvg(tk ) = 0

by (2). So, letting k → ∞ in the Sobolev inequality above, one finds

lim inf
k→∞

∫

M
|∇g(t0)uk |

2 dvg(t0) ≥ K (n, 2)−2,

so that

lim inf
k→∞

∫

M
|∇g(tk )uk |

2 dvg(tk ) ≥ K (n, 2)−2 .

Therefore, combining this last inequality with
∫

M
|∇g(tk )uk |

2 dvg(tk ) ≤ λk,

it follows directly that λ = K (n, 2)−2.
In the sequel, we divide the proof into four steps. Several possibly different

positive constants independent of k are denoted by c.
Let xk ∈ M be a maximum point of uk , i.e. uk(xk) = ||uk ||∞.

Step 1. For each R > 0, we have

lim
k→∞

∫

Bg(tk )(xk ,Rμk )

u2∗

k dvg(tk ) = 1 − εR (3)

where μk = ||uk ||
− 2∗

n
∞ and ε = ε(R) → 0 as R → ∞.

Proof. First, note that

1 =
∫

M
u2∗

k dvg(tk ) ≤ ||uk ||
2∗−2
∞

∫

M
u2

k dvg(tk )

implies that ||uk ||∞ → ∞ as k → ∞, since
∫

M
u2

k dvg(tk ) → 0.

Bull Braz Math Soc, Vol. 39, N. 3, 2008



“main” — 2008/8/27 — 19:12 — page 437 — #11

THE SECOND SOBOLEV BEST CONSTANT ALONG THE RICCI FLOW 437

In particular, μk → 0 as k → ∞. Consider the exponential map exp(xk ,g(tk ))

at xk with respect to the metric g(tk). Clearly, there exists δ > 0, independent
of k, such that exp(xk ,g(tk )) map B(0, δ) ⊂ Rn onto Bg(tk )(xk, δ). For each x ∈
B(0, δμ−1

k ), we set

g̃(tk)(x) =
(
exp∗

(xk ,g(tk )) g(tk)
)
(μk x)

and
ϕk(x) = μ

n/2∗

k uk
((

exp(xk ,g(tk ))

)
(μk x)

)
.

Clearly, g̃(tk) converges to ξ as k → ∞, where ξ denotes the Euclidean metric
on Rn . Moreover, as one easily checks,

−1g̃(tk )ϕk + (B0(2, g(t0))+ ε0)K (n, 2)−2μ2
kϕk = λkϕ

2∗−1
k . (Ẽk)

Since 0 ≤ ϕk ≤ 1 and the coefficients of (Ẽk) are bounded, from the standard
elliptic theory, it follows that ϕk → ϕ in C2

loc(R
n), up to a subsequence. Clearly,

ϕ 6= 0 since ϕk(0) = 1 for all k. In addition, ϕ satisfies

−1ϕ = K (n, 2)−2ϕ2∗−1,

since λk → K (n, 2)−2, μk → 0 and g̃(tk) → ξ as k → ∞. So,
∫

Rn
|∇ϕ|2 dx = K (n, 2)−2

∫

Rn
ϕ2∗

dx .

The Euclidean Sobolev inequality furnishes

K (n, 2)−2

(∫

Rn
ϕ2∗

dx
)2/2∗

≤
∫

Rn
|∇ϕ|2 dx = K (n, 2)−2

∫

Rn
ϕ2∗

dx,

so that ∫

Rn
ϕ2∗

dx ≥ 1 .

Combining this fact with the inequality
∫

B(0,δμ−1
k )

ϕ2∗

k dvg̃(tk ) =
∫

Bg(tk )(xk ,δ)

u2∗

k dvg(tk ) ≤ 1,

it follows that
∫
Rn ϕ

2∗
dx = 1. Thus, from the convergence

∫

Bg(tk )(xk ,Rμk )

u2∗

k dvg(tk ) =
∫

B(0,R)
ϕ2∗

k dvg̃(tk ) →
∫

B(0,R)
ϕ2∗

dx,

we end the proof of the step 1. ¤
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Step 2. There exists a constant c > 0, independent of k, such that

dg(tk )(x, xk)
n/2∗

uk(x) ≤ c,

where dg(tk ) stands for the distance with respect to the metric g(tk).

Proof. Set ωk(x) = dg(tk )(x, xk)
n/2∗

uk(x) and suppose, by contradiction, that
the conclusion of this step is false. In this case, one has

lim
k→∞

||ωk ||∞ = ∞

for some subsequence. We prove that this leads to a contradiction. Let yk ∈ M
be a maximum point of ωk . From the inequality

dg(tk )(yk, xk)

μk
=

ωk(yk)
2∗/n

μkuk(yk)2
∗/n

≥ ωk(yk)
2∗/n,

one has

lim
k→∞

dg(tk )(yk, xk)

μk
= ∞ . (4)

Fix δ > 0 small enough. Set

�k = uk(yk)
2∗/n exp−1

(yk ,g(tk ))
(Bg(tk )(xk, δ)) .

For each x ∈ �k , define

ψk(x) = uk(yk)
−1uk

(
exp(yk ,g(tk ))

(
uk(yk)

−2∗/nx
))

and
ĝ(tk)(x) =

(
exp∗

(yk ,g(tk )) g(tk)
)
(uk(yk)

−2∗/nx) .

Then, ψk satisfies

−1ĝ(tk )ψk + Bkψk = λkψ
2∗−1
k in �k

for a certain constant Bk > 0, so that

−1ĝ(tk )ψk ≤ λkψ
2∗−1
k in �k . (5)

On the other hand, for x ∈ B(0, 2), one finds

dg(tk )

(
xk, exp(yk ,g(tk ))

(
uk(yk)

−2∗/nx
))

≥ dg(tk )(xk, yk)− 2uk(yk)
−2∗/n

≥
(

1 − 2ωk(yk)
−2∗/n

)
dg(tk )(xk, yk) .
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Since ωk(yk) → ∞ as k → ∞, it follows that

dg(tk )

(
xk, exp(yk ,g(tk ))

(
uk(yk)

−2∗/nx
))

≥
1

2
dg(tk )(xk, yk) (6)

for k large. Hence,

ψk(x) ≤ 2n/2∗
dg(tk )(xk, yk)

−n/2∗
uk(yk)

−1ωk(yk) = 2n/2∗
,

so that, for k large,
||ψk ||L∞(B(0,2)) ≤ 2n/2∗

. (7)

In addition, by (4) and (6), for any R > 0 and k large, one has

Bg(tk )

(
yk, 2uk(yk)

−2∗/n
)

∩ Bg(tk ) (xk, Rμk) = ∅ . (8)

In fact, this inequality is implied by

wk(yk)
2∗/n = dg(tk )(xk, yk)uk(yk)

2∗/n ≥ 2 + Ruk(yk)
2∗/nμk

= 2 + R uk(yk)
2∗/n ||uk ||

−2∗/n
∞ ,

which clearly holds for k large. Note that the step 1 and (8) imply that
∫

Bg(tk )(yk ,uk (yk )
−2∗/n)

u2∗

k dvg(tk ) → 0

as k → ∞. On the other hand, applying De Giorgi-Nash-Moser iterative scheme
in (5) and using (7), one obtains

ψk(0) ≤ sup
B(0,1)

ψk(x) ≤ c
∫

B(0,2)
ψ2∗

k dvĝ(tk ) = c
∫

Bg(tk )(yk ,2uk (yk )
−2∗/n)

u2∗

k dvg(tk )

for some constant c > 0 independent of k and this contradicts the fact of
ψk(0) = 1 for all k. This concludes the proof of the step 2. ¤

Let x0 ∈ M be such that dg(t0)(xk, x0) → 0 as k → ∞, up to a subsequence.
In particular, dg(tk )(xk, x0) → 0 as k → ∞.

Step 3. For any δ > 0 small enough,

lim
k→∞

∫
M\Bg(tk )(x0,δ)

u2
k dvg(tk )

∫
M u2

k dvg(tk )
= 0 . (9)
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Proof. The De Giorgi-Nash-Moser iterative scheme applied to (Ek) furnishes
∫

M\Bg(tk )(x0,δ)

u2
k dvg(tk ) ≤ c

(∫

M
uk dvg(tk )

)(∫

M
u2

k dvg(tk )

)1/2

, (10)

where c > 0 is a constant independent of k. Let ξk be the solution of the problem

−1g(tk )ξk + (B0(g(t0))+ ε0)ξk = 1 .

By the standard elliptic theory, there exists a constant c > 0, independent of k,
such that 0 ≤ ξk ≤ c on M . Then,

∫

M
uk dvg(tk ) =

∫

M

(
−1g(tk )ξk + (B0(g(t0))+ ε0)ξk

)
uk dvg(tk )

=
∫

M

(
−1g(tk )uk + (B0(g(t0))+ ε0)uk

)
ξk dvg(tk )

≤ c
∫

M
u2∗−1

k dvg(tk ) .

As one easily checks, this estimate combined with (10) and an interpolation
inequality give (9) for n ≥ 5. For n = 4, we use the step 1 as follows. First,
write

∫
M u3

k dvg(tk )
(∫

M u2
kdvg(tk )

)1/2 ≤ ||uk ||L∞(M\Bg(tk )(xk ,δ))

(∫

M
u2

k dvg(tk )

)1/2

+

∫
B(0,δμ−1

k )
ϕ3

k dvg̃(tk )

(∫
B(0,δμ−1

k )
ϕ2

k dvg̃(tk )

)1/2 .

For R > 0 fixed, Holder inequality and the step 1 lead us to

∫

B(0,δμ−1
k )

ϕ3
k dvg̃(tk ) ≤

∫

B(0,R)
ϕ3

k dvg̃(tk ) + εR

(∫

B(0,δμ−1
k )

ϕ2
k dvg̃(tk )

)1/2

,

where εR → 0 as R → ∞. By the step 2, this implies

lim
k→∞

∫
M u3

k dvg(tk )
(∫

M u2
k dvg(tk )

)1/2 ≤ εR +

∫
Rn ϕ

3 dx
(∫

B(0,R) ϕ
2 dx

)1/2 , (11)

Noting that

lim
R→∞

∫

B(0,R)
ϕ2 dx = ∞

for n = 4 and letting R → ∞ in (11), we end the proof of (9). ¤
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Step 4. This is the final step. Combining the local isoperimetric inequality of
[12] and the co-area formula, as done recently in [9], for any ε > 0, we easily
find δε > 0, independent of k, such that

(∫

M
|u|2

∗
dvg(tk )

) 2
2∗

≤ K (n, 2)2
∫

M
|∇g(tk )u|2 dvg(tk )

+ Bε(g(tk))
∫

M
u2 dvg(tk )

(12)

for all u ∈ C∞
0 (Bg(tk )(x0, δε)), where

Bε(g(tk)) =
n − 2

4(n − 1)
K (n, 2)2

(
Scalg(tk )(x0)+ ε

)
.

Fix 0 < ε < ε0 and consider a smooth cutoff function ηk such that 0 ≤ ηk ≤ 1,
ηk = 1 in Bg(tk )(x0, δε/4) and ηk = 0 in M \ Bg(tk )(x0, δε/2). Taking u = ηkuk

in (12), using the identity
∫

M
|∇g(tk )(ηkuk)|

2 dvg(tk ) = −
∫

M
η2

k uk1g(tk )uk dvg(tk )

+
∫

M
|∇g(tk )ηk |

2u2
k dvg(tk ),

the equation (Ek) and the step 3, one obtains

(∫

M
(ηkuk)

2∗
dvg(tk )

)2/2∗

+ (B0(g(t0))− Bε(g(tk))+ ε0)

∫

M
η2

k u2
k dvg(tk )

≤
∫

M
η2

k u2∗

k dvg(tk ) + c
∫

M
|∇g(tk )ηk |

2u2
k dvg(tk ) .

By Hölder inequality,

∫

M
η2

k u2∗

k dvg(tk ) ≤
(∫

M
(ηkuk)

2∗
dvg(tk )

)2/2∗ (∫

M
u2∗

k dvg(tk )

)1−2/2∗

=
(∫

M
(ηkuk)

2∗
dvg(tk )

)2/2∗

,

so that

(B0(g(t0))− Bε(g(tk))+ ε0)

∫

M
η2

k u2
k dvg(tk ) ≤ c

∫

M
|∇g(tk )ηk |

2u2
k dvg(tk ) .
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This inequality imply

n − 2

4(n − 1)
K (n, 2)2

(
Scalg(t0) − Scalg(tk )

)
(x0)+ ε0 − ε

≤ c

∫
M\Bg(tk )(x0,δε/2)

u2
k dvg(tk )

∫
M u2

k dvg(tk )
.

Letting k → ∞ and using the step 3, one finds the desired contradiction, since
0 < ε < ε0 and

n − 2

4(n − 1)
K (n, 2)2

(
Scalg(t0) − Scalg(tk )

)
(x0) = o(1) . ¤

3 Proof of the Corollaries

Proof of Corollary 1.1. The Ricci flow g(t) develops a singularity in finite
time, i.e.

max
M

|Rm(g(t))| → ∞

as t ↑ T . Since Rg(t) satisfies

∂Rg(t)

∂t
≥ 1Rg(t) +

2

n
R2

g(t),

it follows from the maximum principle applied to parabolic equations that
Rg(t) ≥ minM Rg0 for all t ∈ [0, T ). So, maxM Rg(t) → +∞ as t ↑ T . Thus, by
[2], it follows that

B0(2, g(t)) ≥
n − 2

4(n − 1)
K (n, 2)2 max

M
Rg(t) → +∞

as t ↑ T . Furthermore, when the curvature operator of g0 is positive, Hamilton
[16] proved that it remains positive along the Ricci flow. In this case, there exists
a constant c(n) > 0, depending only on n, such that Rg(t) ≥ c(n)|Rm(g(t))|.
So,

B0(2, g(t))

maxM |Rm(g(t))|
≥

n − 2

4(n − 1)
K (n, 2)2 max

M

(
Rg(t)

|Rm(g(t))|

)
≥ a(n)

for all t ∈ [0, T ) and this concludes the proof. ¤

Proof of Corollary 1.2. The proof follows immediately from the part (b) of
Theorem 1.1. ¤
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Proof of Corollary 1.3. By [4] and [5], the normalized Ricci flow g(t) con-
verges to a metric g of constant sectional curvature K . If M is simply connected,
then (M, g) is isometric to (Sn

R, h0), where Sn
R is the n-sphere with radius R,

K = 1
R2 and h0 is the induced metric by the standard metric of Rn+1. So,

B0(2, g) = B0(2, h0). Consider the diffeomorphism ϕ : x 7→
√

Rx from the
unit n-sphere Sn onto Sn

R . It is easy to see that ϕ∗h0 = Rh, where h is the
standard metric on Sn . Hence,

ω
− 2

n
n = B0(2, h) = RB0(2, ϕ

∗h0) = RB0(2, h0)

and
B0(2, g(t)) → R−1ω

− 2
n

n .

Now, suppose that M is not simply connected. In this case, (M, g) is not con-
formally diffeomorphic to (Sn, h). As proved in [2] and [28],

inf
u∈H1,2(M)\{0}





∫
M |∇u|2 dvg + n−2

4(n−1) Rg
∫

M u2 dvg

(∫
M |u|2∗ dvg

) 2
2∗



 < K (n, 2)−2,

so that

B0(2, g) >
n − 2

4(n − 1)
K (n, 2)2 Rg .

From the part (b) of Theorem 1.1, it follows then that

B0(2, g(t)) >
n − 2

4(n − 1)
K (n, 2)2 Rg(t)

for all t large enough, so that the conclusion follows from [11]. ¤
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