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On the total curvatures of a tame function
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Abstract. Given a definable function f : Rn �→ R, enough differentiable, we study
the continuity of the total curvature function t → K (t), total curvature of the level
f −1(t), and the total absolute curvature function t → |K |(t), total absolute curvature
of the level f −1(t). We show they admits at most finitely many discontinuities.
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1 Introduction

One of the nicest feature of o-minimal structures expanding the ordered field of
real numbers is that taking the derivative of a definable function (in a given such
o-minimal structure) provides a definable function (in the same given o-minimal
structure). Unfortunately the inverse operation is somehow much more delicate,
integration and measure lead to problems even in some of their simplest aspects.

In the setting of subanalytic geometry some measure theoretical aspects, den-
sity, Lipschitz-killing curvatures, of the subanalytic sets had been studied [BB,
Com, Fu]. Still in this context, the k-dimensional volume of a global subanalytic
subset ofRn , lying in a globally subanalytic family of subsets ofRn of dimension
at most k, is, when finite, a log-analytic function in the parameter, as proved in
[LR, CLR]. This is already an issue since the logarithmic contribution cannot
be avoided and so the functions carrying the quantitative aspect of the variation
of the volume in the parameter of the family are already outside of the structure.

In theworld of non-polynomially bounded o-minimal structures expanding the
real numbers, almost nothing similar to the statement in the globally subanalytic

Received 27 July 2007.
*Partially supported by the European research network IHP-RAAG contract number HPRN-
CT-2001-00271 and partially supported by Deutsche Forschungs-Gemeinschaft in the Priority
Program Global Differential Geometry.



516 VINCENT GRANDJEAN

context is known in whole generality. Let us nevertheless mention the results
of [Le, Ka], proved independently, namely the definability of the set of the
parameters at which the 2-dimensional volume of a definable family of plane
definable subsets is finite.

Let us go closer to the goal of this note. Given a definable function f : Rn �→
R, that is Cl with l � 2, to each regular level t we associate two real numbers,
namely, K (t), the total curvature of the level f −1(t) oriented by the unitary
gradient field of f , and, |K |(t), the total absolute curvature of the level f −1(t).
When n is odd and f −1(t) is compact and connected, the Gauss-Bonnet-Chern
Theorem states that K (t) is just the Euler Characteristic of f −1(t) (modulo a
constant depending only on n). Somehow K (t) and |K |(t) have a connection
with the topological equisingularity type of f −1(t), even when f −1(t) is no
longer compact. Thus knowing the variation as a function of t of these total
curvatures functions could give some information about the equisingularity of
the family of the levels. This was the first motivation of this study (see [Gr] for
some results in this direction).

From the measure theoretical point of view, these total curvatures are just
weighted n−1-dimensional volumes of a definable 1-parameter family of subsets
of Sn−1. So how do the total curvature functions in the parameter behave? As
already said, for the level of generality we want to deal with, there is no hope
(yet!) to provide some quantitative information about the variation of these
functions of t . Nevertheless we propose in this note to study some qualitative
properties of the functions t → K (t) and t → |K |(t), and we will find some.
We actually proved

Theorem. Let f : Rn �→ R be a Cl , l � 2, definable function.

(1) the function t → |K |(t) admits at most finitely many discontinuities.
(2) If the function t → |K |(t) is continuous at a regular value c of f , so is

the function t → K (t).

The paper is organized as follows.
In Section 2 we provide some definitions, conventions and notations that will

be used in the rest of the note.
Section 3 recalls what the total curvature and the total absolute curvature of a

hypersurface are and what are the connections with linear orthogonal projections
onto oriented lines.

In Section 4 we just define the Gauss map of a given function and states some
of its elementary properties in the frame established in Section 3.
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Section 5 is devoted to Hausdorff limits of Gauss images since they will be
the key tool of our main result.

Theorem 6.4 and Proposition 6.6 are the main results of Section 6, and are
proved with the help of some preliminary work.

In Section 7 we state results of the same flavor as those of Section 6, but for
what we named the total λ-curvature and total absolute λ-curvature.

We finish this paper with some remarks in Section 8.

2 Notation – convention

LetRn be the real n-dimensional affine space endowedwith its Euclideanmetric.
The scalar product will be denoted by 〈·, ·〉.

Let Bn
R be the open ball of Rn centered at the origin and of radius R > 0.

Let Sn−1
R be the (n − 1)-sphere centered at the origin and of radius R > 0.

Let Sn−1 be unit ball of Rn endowed with the induced Euclidean metric and
let dS be the intrinsic distance function on Sn−1.

Let d vk be the k-dimensional Hausdorff measure of Rn with k ∈ {1, . . . , n}.
Let us recall briefly what an o-minimal structure is.
An o-minimal structure M expanding the ordered field of real numbers is a

collection (Mp)p∈N, whereMp is a set of subsets of Rp satisfying the following
axioms

1) For each p ∈ N,Mp is a boolean sub-algebra of subsets of Rp.

2) If A ∈Mp and B ∈Mq , then A × B ∈Mp+q .

3) If π : Rp+1 �→ R
p, is the projection on the first p factors, given any

A ∈Mp+1, π(A) ∈Mp.

4) The algebraic subsets of Rp belongs toMp.

5) M1 consists exactly of the finite unions of points and intervals.

So the smallest o-minimal structure is the structure of the semi-algebraic sub-
sets.

Assume that such an o-minimal structureM is given for the rest of this article.
A subset A of Rp is a definable subset (in the given o-minimal structure) of

R
p, if A ∈Mp.
A mapping g : X �→ R

q , where X ⊂ R
p, is a definable mapping (or just

definable, for short) if its graph is a definable subset of Rp+q .
The reader may refer to [Cos, vD1, vDM] to learn more on the properties of

definable subsets and definable mappings.

Bull Braz Math Soc, Vol. 39, N. 4, 2008



518 VINCENT GRANDJEAN

Let Z be a connected definable subset of Rn . The dimension of Z , dim Z , is
well defined.

A point z0 ∈ Z is smooth if there exists a neighborhood U ⊂ R
n of z0, such

that U ∩ Z is diffeomorphic to Rk , for an integer k � dim Z . The property of
being smooth of a given dimension is a locally open property once Z is equipped
with the induced topology.

A point z0 which is not smooth is called singular. The set of such points is
definable.

Let S1 and S2 be respectively C1 definable submanifolds of Rn and of Rp. Let
g : S1 �→ S2 be a C1 definable function. A point x0 is a smooth or regular point
of g if the rank dx0g is maximum in a neighborhood of x0.

A critical or singular point x0 of g is a point at which dx0g is not of maximum
rank. The set of such points is definable, denoted by crit(g).

By abuse of language, we will talk about the rank of the mapping g at a point
x0 to mean the rank of the differential dx0 g.
A definable familyE = (Et)t∈T of subsets of a definable submanifold S ⊂ Rn ,

with parameter space T ⊂ R
m does not only mean that Et is a definable subset

of S, but that the subset {(x, t) ∈ S × T : x ∈ Et} is definable. Equivalently
it means it is the family of the (projection onto S of the) fibers of a definable
mapping.

3 Total curvature and total absolute curvature of a connected orientable

hypersurface

Let M be a definable connected, C2 hypersurface ofRn . Assume M is orientable
and the orientation is given by a C1 map, M 	 x → νM(x) ∈ Sn−1. The map
νM is definable.

Let U ⊂ S
n−1 be defined as νM(M \ crit(νM)), where crit(νM) is the set of

critical points of νM . The subset U is a definable open subset and, when not
empty, for any u ∈ U, ν−1

M (u) is finite. By Gabrielov uniformity theorem, there
exists a positive integer NM , such that #ν−1

M (u) � NM for any u ∈ U.
Since U is a finite disjoint union of open definable subsets Ui , i = 1, . . . , d,

let
Mi = ν−1

M (Ui ) \ crit(νM)
which is a definable subset of M . Let s(i) be the number of points in a fiber
above any u ∈ Ui .

Let kM(x) be the Gauss curvature at x ∈ M , that is the value of the determi-
nant of the Jacobian matrix of νM . We make the convention that the (n − 1)-
dimensional volume of the empty set is 0.
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Proposition 3.1. The total absolute curvature of M is

|K |M :=
∫
M
|kM(x)| d vn−1(x) =

∑
i

s(i)voln−1(Ui ).

Proof. If the maximal rank of νM is at most n − 2, then crit(νM) = M and so
we deduce |K |M = 0.

So assume that the maximal rank of νM is n − 1.
Let us denote by Jac, the Jacobian of any mapping (when it makes sense).

Since the mapping νM is of maximal rank, the set of its critical values of νM , that
is νM(crit(νM)), is of codimension at least 1 in Sn−1. Each Ui is open and so is
each Mi in M .

We assume first that each connected component of Mi is simply connected.
Then Mi = M (1)

i 
 . . . 
 Ms(i)
i and νM induces a diffeomorphism from M ( j)

i
onto Ui , for each j = 1, . . . , s(i). Thus we find

voln−1(Ui ) =
∫
Ui

d vn−1 =
∫
M( j)

i

Jac(νM(x)) d vn−1(x), for each j.

Thus we deduce ∫
Mi

Jac(νM(x)) d vn−1(x) = s(i)voln−1(Ui ).

As another consequence of this fact, if we define M∗ as M \ (
i Mi ), then M∗
is definable, and since νM(M∗) is at most of dimension n − 2 (meaning that
Jac(νM) is zero on a definable dense open set of M∗ if dim M∗ = n − 1),
we obtain ∫

M∗
Jac(νM(x)) d vn−1(x) = 0.

Then

|K |M =
∫
M
Jac(νM(x)) d vn−1(x) =

∑
i

∫
Mi

Jac(νM(x)) d vn−1(x),

which is the desired result.
In the general situation, by the cylindrical decomposition theorem, there exists

a closed subset Ni of Mi of dimension at most n − 2, such that each connected
component of Mi \ Ni is simply connected. Then we do the same as above with
νM(Mi \ Ni ) instead ofUi . Since voln−1(νM(Ni )) = 0, the formula given is still
true in this general case. �
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For each i = 1, . . . ,m, let

σ+
i be #

(
ν−1
M (u) ∩ {det kM > 0}) and

σ−
i be #

(
ν−1
M (u) ∩ {det kM < 0}),

for any u ∈ Ui , since these numbers depend only on Ui . We deduce that s(i) =
σ+
i + σ−

i and thus

|K |M =
NM∑
i

(σ+
i + σ−

i )voln−1(Ui ).

Let σi = σ+
i − σ−

i . Note that σi = degu νM =: deg(νM |ν−1
M (Ui )

) the degree of
the mapping νM at any u ∈ Ui .

Proposition 3.2. The total curvature of M is

KM :=
∫
M
kM(x) d vn−1(x) =

NM∑
i=1

σivoln−1(Ui ).

Proof. It works exactly as in the proof of Proposition 3.1. �
Let us come to a more specific property of the Gauss map. For any u ∈ Sn−1,

let ϕu(x) := 〈x, u〉 be the orthogonal projection on the oriented vector line Ru.
Let us consider the following

Lemma 3.3. Let y ∈ M be a point at which the rank of dy νM is n − 1. Let
u = νM(y). Then the function ϕu|M has a Morse singular point at y, that is the
Hessian matrix Hessy(ϕu|M) is non degenerate.

Proof. Let us identify the hyperplane TyM with Rn−1 with coordinates x =
(x1, . . . , xn−1) centered at y and remember that dy νM can be seen as a reflexive
endomorphism of TyM = TuS

n−1. Since it is of rank n−1, it has exactly (n−1)
non-zero real eigenvalues.

By the definable implicit function theorem, there exist an open neighborhood
U of the origin in the hyperplane TyM and a C1-definable map φ : U �→ R such
that there exists a neighborhoodV of y inM such thatV = {xn = φ(x) : x ∈ U}.
Thus we find that ϕu|M(x) = φ(x). We thus rewrite νM as

νM(x) = νM(x) = ∇(xn − φ(x))

|∇(xn − φ(x))| .
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For any u ∈ TyM we find that

dy νM · ξ = 1

|∇(xn − φ(x))|
[
Hessy φ · ξ − 〈Hessy φ · ξ, u〉 u]

= 1

|∇(xn − φ(x))| Hessy φ · ξ,

where Hessy φ is the Hessian matrix of φ at y. Since dy νM is of rank n − 1, we
deduce that Hessy(ϕu|M) = Hessy φ, and thus is Morse at y. �

Thanks to Lemma 3.3 we can then define the following

Definition 3.4. The Morse index of M at x /∈ crit(νM) is the integer λM(x)
define as the Morse index at x of the function ϕu|M, with u = νM(x).

Obviously this definition depends on the choice of νM .
Let U be a connected component of U = νM(M) \ νM(crit(νM)). Thus νM

induces a finite Cl−1 covering

νM : M1 
 . . . 
 Md �→ U.

Proposition 3.5. With the previous notation, the function Mj 	 x → λM(x) is
definable and so is constant.

Proof. Each subset Mj is a definable and open in M . Given an ortho-
normal basis of Rn , let P(x; T ) ∈ R[T ] be the characteristic polynomial of
Hessx(ϕνM (x)|M). The coefficients of this polynomial are definable functions of
x ∈ M \ crit(νM) and Cl−1. As functions of x , the roots (counted with multi-
plicity) are continuous and definable and all non zero. Since Mj is connected,
the number of negative roots is constant and so is the index λM(x). �

There is a straightforward corollary of Lemma 3.3 and Proposition 3.5

Corollary 3.6. Let y ∈ M be a point at which the rank of dy νM is n − 1. Let
u = νM(y). Then the function Morse index of ϕu|M and the index of dy νM are
the same.

Thus we can also rewrite the total curvature as

KM =
∫
νM (M)\νM (crit(νM ))

⎛
⎜⎝ ∑

x∈ν−1
M (u)\crit(νM )

(−1)λM (x)

⎞
⎟⎠ d v(u),
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since the set of points ν−1
M (νM(crit(νM))) ∩ (M \ crit(νM)) is at most of

dimension n − 2.

4 On the Gauss map of a tame function

Let f : Rn �→ R, be a definable function, enough differentiable, say Cl , with
l � 2.

Let us denote by K0( f ) the set of critical values of f .
For each t , let Ft be the level f −1(t).
The Gauss map of the function f is the following mapping

ν f : R
n \ crit( f ) �→ S

n−1

x → ∇ f (x)
|∇ f (x)|

It is a definable and Cl−1 mapping. We will denote by νt the restriction
ν f |Ft , providing an orientation to each (connected component of the) level
Ft which is compatible with the transverse structure of the foliation (on Rn\
crit( f )) by the connected components of the (regular) levels of f . Note that
crit(ν f ) ∩ Ft = crit(νt).

The differential mapping of ν f at x /∈ crit( f ), is

dx ν f : ξ �→ 1

|∇ f (x)|
[
Hessx( f ) · ξ − 〈Hessx( f ) · ξ, ν f (x)〉ν f (x)

]
We recall that for any x ∈ Ft , the linear mapping dx νt = dx ν f |Tx Ft seen as

an endomorphism of Tν f (x)S
n−1 is reflexive.

Definition 4.1. Let x /∈ crit( f ) ∪ crit(ν f ). The tangent Gauss index of f at
x, denoted by λ f (x) is the index of the reflexive endomorphism dx ν f |Tx f −1(x).

Proposition 4.2. The function x → λ f (x) is a locally constant definable
mapping.

Proof. Assume a fixed orthonormal basis of Rn is given. Let P(x, T ) ∈ R[T ]
be the characteristic polynomial of the endomorphism dx ν f |Tx f −1(x). From the
computation of the differential dx ν f we deduce that the coefficients of this
polynomial are definable and Cl−2. Given x , let α1(x) � . . . � αn−1(x) be the
roots of this polynomial. For each i = 1, . . . , n − 1, the functions x → αi (x)
is continuous and definable. For this reason the number of negative roots (that
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is the tangent Gauss index) is constant on each connected components of Rn \
(crit( f )∪ crit(ν f )), that is x → λ f (x) is constant on Rn \ (crit( f )∪ crit(ν f )).

Since the mapping x → λ f (x) is constant on each connected component of
R

n \ (crit( f ) ∪ crit(ν f )), then its graph is a definable subset of Rn × R since
R

n \ (crit( f ) ∪ crit(ν f )) is a definable subset of Rn . �
This property will be very useful in Section 6.
When crit(ν f ) �= ∅, let us consider the following Cl−1 definable mapping:


 f : Rn \ (crit( f ) ∪ crit(ν f )) �→ S
n−1 × R defined as x → (ν f (x), f (x)).

This mapping is definable and Cl−1. It is also a local diffeomorphism at any
of the point of Rn \ (crit( f ) ∪ crit(ν f )), thus its image Ũ is open.

Definition 4.3. Let (u, t) ∈ Ũ. The tangent Gauss degree of f at (u, t),
denoted deg f (u, t) is the degree of 
 f at (u, t).

Then we get the following,

Proposition 4.4. The function (u, t) → deg f (u, t) is a locally constant defin-
able mapping.

Proof. This comes from the fact that 
 f is a local diffeomorphism at each
point of its definition domain. �

More interestingly we also have

Proposition 4.5. For any (u, t) ∈ Ũ,

deg(u,t) 
 f = degu νt =
∑

x∈ν−1
t (u)

(−1)λ f (x).

Proof. Let y ∈ 
−1
f (u, c). Let F := (v1, . . . , vn−1, vn), with vn = ν f , be a

C1 and direct orthonormal frame in a neighborhood Y of y. With such “coor-
dinates”, for any x ∈ Ft ∩ Y, both dx 
 f and dx νt are considered as endomor-
phisms. For x ∈ Ft ∩ Y, writing the matrices of dx 
 f and dx νt in this frame,
gives

det(MatF(x) dx 
 f ) · det(MatF(x) dx νt) > 0,

since the frame respects the orientations of Rn and of Tx Ft and where MatF(x)
denotes the matrix in the base F(x) := (v1(x), . . . , vn−1(x), vn(x)). Thus the
signs of these determinants are the same and so is proved the lemma. �
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5 Hausdorff limits of Gauss images

We use notations of Section 4.
We recall that Ũ = 
 f (R

n \ (crit( f ) ∪ crit(ν f ))) is open and definable in
S
n−1 × R and that for any (u, t) ∈ Ũ, 
−1

f (u, t) is finite.
From Gabrielov Uniformity theorem, there exists a positive integer N f such

that for any (u, t) ∈ Ũ, #
−1
f (u, t) � N f .

Let us define the following definable sets

Ũk = {(u, t) ∈ Ũ : #
−1
f (u, t) = k

}
.

Ut = {u ∈ Sn−1 : (u, t) ∈ Ũ} = νt
(
Ft \ crit(ν f )

) = νt
(
Ft \ crit(νt)

)
.

Uk,t = {u ∈ Sn−1 : (u, t) ∈ Ũk
}
.

The subsetsUt andUk,t are open in Sn−1.
Note that at any point of Rn \ (crit( f ) ∪ crit(ν f )), 
 f is a local diffeo-

morphism.
Let us remark that both families (Ut)t∈ f (Rn)\K0( f ) and (Uk,t)t∈ f (Rn)\K0( f )

are definable families of open subsets of Sn−1.
LetK(Rn) be the space of compact subsets of Rn .
Given Y and Z compacts subsets ofRn , the Hausdorff distance between Y and

Z , denoted by dK(Rn)(Y, Z), is defined as

dK(Rn)(Y, Z) = max

(
min
y∈Y

dist(y, Z), min
z∈Z

dist(z, Y )
)

= min
{
r � 0 : ∀y ∈ Y and ∀z ∈ Z , dist(y, Z) � r
and dist(z, Y ) � r

}
The space K(Rn) equipped with the Hausdorff distance dK(Rn) becomes a

complete metric space.
Bounded definable families of compacts subsets behave well under the Haus-

dorff limit, (see [Br, vD2, LS] for a general frame). Since we are only interested
in 1-parameter families of such subsets, the statement of the next result is given
in this context and in the form we will use it below in the rest of this paper.

Theorem 5.1 ([Br, vD2, LS]). Let (Ct)t∈[0,1[ be a definable family of closed
subsets of Rn. Assume there exists a compact subset Q such that Ct ⊂ Q for
each t ∈ [0, 1[. Then, the Hausdorff limit C1 := limt→1 Ct does exist and is a
definable subset of Rn contained in Q.
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Let (Ct)t∈I be a definable family of closed subsets of Sn−1. Since there exists
a constant C , such that given any u, v ∈ S

n−1, dS(u, v) � C |u − v|, taking
Hausdorff limits of closed subsets (Ct)t∈I of Sn−1, will provide exactly the same
Hausdorff limits of (Ct)t∈I considered as closed subsets of Rn .

Let us return to our topic. Given a value c let us denote respectively by V+
c

and by V−
c the following Hausdorff limits

V+
c := lim

t→c+
clos(Ut) and V−

c := lim
t→c−

clos(Ut).

For each k = 1, . . . , N f and for ∗ = +,−, let V ∗
k be the Hausdorff limit

limt→c∗ clos(Uk,t).

Proposition 5.2. Let U1, . . . ,Udc be the connected components of Uc. For
each i = 1, . . . , dc, there exist positive integers l− = l−(i) � s(i) and l+ =
l+(i) � s(i) such that Ui ∩V−

c ⊂ V−
l− and Ui ∩V+

c ⊂ V+
l+ .

Proof. Let u ∈ Sn−1. When not empty, the subset


−1
f
({u} × R) = {x /∈ crit( f ) ∪ crit(ν f ) : ν f (x) = u

}
is a Cl−1 definable curve since 
 f is a local diffeomorphism. Let � be a con-
nected component of
−1

f ({u})which intersects with Fc. Since the function f |�
is strictly monotonic, there exists ε > 0 such that for any t ∈]c−ε, c[∪]c, c+ε[,
the curve � also intersects with Ft , that is u ∈ Ut . Since the number of con-
nected components of 
−1

f ({u} × R) meeting Fc does depend only on Ui , the
Proposition is proved. �

As a consequence of Proposition 5.2 we obtain

Corollary 5.3. Let c be a value such thatUc �= ∅. ThenUc ⊂ V+
c ∩V−

c .

Proof. It is contained in the proof of Proposition 5.2. �
The statement of Corollary 5.3 would be wrong for a general definable family

(Ct)t of closed subsets of Sn−1. As read in the proof, the transverse structure
given by the function f is somehow also carried in the family (Ut)t , and thus
explain this result.

We end this section with an elementary result about the volume of a Hausdorff
limit of a 1 parameter definable family.
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Proposition 5.4. Let C := ∪t∈[0,1[Ct be a definable family of closed connected
subsets of dimension n of Q a compact subset of Rn or of Sn. Let C1 be the
Hausdorff limit limt→1 Ct , then

lim
t→1

voln(Ct) = voln(C1).

Proof. According to [LS, Theorem 1] there exist at most finitely many subsets
of K(Rn) that belong to clos(C) \ C ⊂ K(Rn). By [vD2, Proposition 3.2]),
C1 is well defined and definable, and its dimension is at most n. Note that C1 is
necessarily connected.

Assume first that Q ⊂ Rn .
Let Tε(Ct) be the ε-neighborhood of Ct in Rn for ε > 0.
Let r be the dimension of C1. Using a generalized Weyl-Steiner’s tube for-

mula for compact definable subsets ofRn ([BK]), we deduce that for small ε > 0
there exists a positive constant L such that∣∣∣∣volr (C1)− voln(TεC1)

σn−r,nεn−r

∣∣∣∣ < Lε,

where σn−r,n is the volume of the unit ball Bn−r of Rn−r .
By definition ofC1, for any ε > 0, there exists η = η(ε) such that for t > 1−η

we get dK(Rn)(Ct ,C1) < ε, that is Ct ⊂ Tε(C1).
If r = n, we deduce that voln(Ct) − voln(C1) → 0 as ε → 0, since Ct ⊂

Tε(C1).
When r < n we know voln(Tε(C1)) → 0 as ε → 0. So voln(Ct) must tend

to 0 as t → 1 (otherwise lim supt→1 voln(Ct) > 0, which would contradict
limε→0 voln(Tε(C1)) = 0).

Assume now Q ⊂ S
n . The generalized Weyl’s tube formula ([BB],[BK])

works also in spaces of constant curvatures. Thus the proof above in the flat
case, adapts almost readily to the case of Sn . �

6 Continuity of the total curvature and of the total absolute curvature of

a definable function

We use the notations of Section 4.
Given t /∈ K0( f ), let kt be the Gauss curvature of Ft with respect to the

orientation νt . Let Et be the set of the connected components of Ft .
When t /∈ K0( f ), we define the total absolute curvature of Ft as

|K |(t) :=
∑
E∈Et

|K |E ,
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and the total curvature of Ft as

K (t) :=
∑
E∈Et

KE .

Assume c is a value taken by f such thatUc is not empty. Let U1, , . . . ,Udc ,

be the connected components of Uc. For each i = 1, . . . , dc, let s(i) be the
number of points in the fiber ν−1

c (u) above any u ∈ Ui , that is Ui ⊂ Us(i),c, and
let σi (c) be the degree of νc on Ui (see Section 3). We recall that

|K |(c) =
N f∑
l=1

l · voln−1(clos(Ul,c)) =
dc∑
i=1

s(i)voln−1(clos(Ui )). (6.1)

K (c) =
dc∑
i=1

σi (c)voln−1(clos(Ui )) (6.2)

As a consequence of the result of the existence of definable Hausdorff Limits
([vD2],[LS]) and of the definition of the total curvature we deduce the following

Corollary 6.1. The following limits,

lim
t→c−

K (t), lim
t→c+

K (t), lim
t→c−

|K |(t) and lim
t→c+

|K |(t)
do exist, once given a value c.

Proof. It is just a consequence of the formulae for the total curvatures given
above and of Proposition 5.4. �

Let us recall that given ∗ = −,+, we denote by V ∗
c , the Hausdorff limit

limt→c∗ clos(Ut) and given any integer 1 � k � N f , V ∗
k stands for the Haus-

dorff limit limt→c∗ clos(Uk,t)

WecanwriteV−
c ∩V+

c as the partition∪0�k,l�N fVk,l , whereVk,l = V−
k ∩V+

l ,
if k, l are both positive,Vk,0 stands forV−

k if the intersection withV+
c is empty,

V0,l stands for V+
l if the intersection with V−

c is empty, and V0,0 = ∅.
Our goal is still to try to understand the continuity of the functions |K | and

K . Regarding the results of Sections 3 and 5, the non zero contribution to |K |(t)
only comes from the subsetUt .

Proposition 6.2. Let c be a value. Then

|K |(c) � min

{
lim
t→c−

|K |(t), lim
t→c+

|K |(t)
}
.
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Proof. If Uc is empty this means that |K |(c) = 0, and so the statement is
trivially true.

LetU1, . . . ,Udc be the connected components ofUc. For each i ∈ {1, . . . , dc}
and each ∗ = +,−, let l∗(i) be the corresponding integer of Proposition 5.2.
Observe that for ∗ = + and ∗ = −

|K |(c) =
∑
i

s(i)voln−1(Ui ) �
∑
i

l∗(i)voln−1(Ui ∩V ∗
c ),

and the right hand side term is �
∑

l lvoln−1(V ∗
l ). By Proposition 5.4, we

conclude the proof. �
The continuity of |K | at c implies that each of these inequalities is an equality.

Using notation of Proposition 5.2 we actually obtain

Corollary 6.3. If |K | is continuous at c, then
(1) for each pair k, l with k �= l, voln−1(Vk,l) = 0, or equivalently Vk,l is of

dimension at most n − 2.
(2) for each k and each ∗ = +,−, voln−1(V ∗

k ) = voln−1(Uk,c).

Proof. Using Proposition 5.2, equation 6.1 and Proposition 6.2, and writing
down the continuity at c provides the different statements. �

Now we can come to the first main result of this section

Theorem 6.4. The function |K | has at most finitely many discontinuities.

Proof. This is a consequence of Proposition 5.4 and Proposition 5.2.

Assume k is given. Let C := ∪t∈ f (R)\K0( f )Ct , where Ct = clos(Uk,t).
Assume first that f (R) \ K0( f ) is connected, so that we can assume that

f (R) \ K0( f ) =]0, 1[. Then C is a definable family of subsets of Sn−1, and
then is definable in K(Rn). Thus its closure clos(C) in K(Rn) consists of
C and finitely many closed definable subsets of Sn−1 by [LS, Theorem 1].
This means there exist at most finitely many c ∈ f (R)\K0( f ) =]0, 1[ such that
the Hausdorff limit limt→c− Ct or the Hausdorff limit limt→c+ Ct is not Cc. For
any value c ∈]0, 1[ such that limt→c− Ct = limt→c+ Ct = Cc, Proposition 5.4
states that the function t → voln−1(Ct) is continuous at such a c. Since there are
only finitely many k and finitely many connected components of f (R) \ K0( f ),
the theorem is proved. �
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Remark 6.5. Working with globally subanalytic functions only, Theorem 6.4
is then just a consequence of Lion-Rolin’s Theorem [LR].

Now let us investigate the continuity of K , t → K (t) = ∫Ft
kt .

Let us pick a value c. Let {Ui }dci=1 be the set of connected components of Uc.
We recall that degu νc, the degree of νc at u ∈ Ui is only dependent on i , and is
equal to σi (c). Thus K (c) =∑dc

i=1 σi (c)voln−1(Ui ).

Proposition 6.6. If |K | is continuous at c, then K is continuous at c.

Proof. If |K |(c) = 0, then we immediately get K (c) = 0, and so K is contin-
uous at 0.

Assume thatUc is not empty. Let Uc be a connected component ofUc. Then
for each u ∈ U , the number of connected components of 
−1

f ({u}×R)meeting
Fc is constant, say equal to l � 1. Let �1(u), . . . , �l(u) be these connected
components. Given u ∈ Uc, we know that there exists ε > 0 such that for any
t ∈]c − ε, c[∪]c, c + ε[, we get


−1
f
({u} × R) ∩ Ft = ∪l

i=1

(
�i (u) ∩ Ft

)
.

From Proposition 4.4, we know that the tangent Gauss degree of f , that is
the degree of νt at u is a locally constant function of (u, t). Thus for u ∈ Uc
given, there is ε > 0 as above such that for any t ∈]c− ε, ε[, degu νt = degu νc.
Let Ṽ be the connected component of Ũ that contains (u, c). Thus Ṽ ∩ Sn−1 ×
{c} = Uc × {c} is connected. So there exists ε > 0 such that for any t ∈
]c− ε, c+ ε[, Ṽ ∩Sn−1×{t} = Ut ×{t} is connected, soUt is connected. Since
|K | is continuous, this implies that limt→c voln−1(Ut) = voln−1(Uc). Since the
Gauss tangent degree is constant on Ṽ , this implies the continuity at c of the
function total curvature. �

The converse of this result is not true as shown in the following example: take
f (x, y) = y(2x2y2 − 9xy + 12) as a function on the real plane. Then we find
that

lim
t→c−

|K |(t) = lim
t→c+

|K |(t) = 2π, while |K |(0) = 0,

but K is continuous at 0.

Remark 6.7. Talking about the discontinuity of |K | or K makes only sense at
values c that are taken by the function f .

Bull Braz Math Soc, Vol. 39, N. 4, 2008



530 VINCENT GRANDJEAN

Let us return to the continuity of the curvature of f . Let c be a regular value.
For each l = 1, . . . , N f , the Hausdorff limit of limt→c∗ clos(Ul,c) is denoted
by V ∗

l , where ∗ = + or ∗ = −.

Proposition 6.8. Let c be a regular value at which |K | is not continuous. There
exists an open subsetU ⊂ Sn−1, such that for any u ∈ U, there exists a connected
component � of �+

u ( f ) := 
−1
f ({u} × R), such that � ∩ f −1(c) is empty and

one of the two cases below happens

(i) If c is the infimum of f along �, then for any ε > 0 small enough,
� ∩ f −1(]c, c + ε[) is not bounded.

(ii) If c is the supremum of f along �, then for any ε > 0 small enough,
� ∩ f −1(]c − ε, c[) is not bounded.

Proof. Assume that limt→c− |K |(t) > |K |(c). The other situation is abso-
lutely similar.

LetUc = 
dc
i=1Ui , where Ui is a connected component of Uc. For each i , we

have Ui ⊂ Us(i),c. Since |K |(t) =∑N f
l=1 lvoln−1(Ul,t), we thus find that

lim
t→c−

|K |(t) =
N f∑
l=1

lvoln−1(V−
l ).

For each i = 1, . . . , dc, there exists a positive integer l(i) � s(i) such that
Ui ⊂ V−

l(i)). Thus the following is happening:

either

(a) there exists i ∈ {1, . . . , dc} such that l(i) > s(i)
or

(b) there exists i ∈ {1, . . . , dc} such that voln−1(V−
l(i)) > voln−1(Ui ).

Assume that a phenomenon of type (a) contributes to the discontinuity of |K |
at c. Then for each u ∈ Ui , there exists ε > 0 such that �+

u ( f ) ∩ f −1(]c −
ε, c + ε[) has m(i) � l(i), connected components G1, . . . ,Gm(i) such that, for
j = 1, . . . , s(i), f (G j ) =]c − ε, c + ε[, for j = s(i) + 1, . . . , l(i), f (G j ) =
]c − ε, c[ and for j = l(i)+ 1, . . . ,m(i), f (G j ) =]c, c + ε[.

Let j ∈ {s(i)+ 1, . . . , l(i)}. If G j was bounded, its closure in Rn would then
be clos(G j ) = G j ∪ {xc−ε, xc}, where xc−ε ∈ Fc−ε and xc ∈ Fc. Since c is a
regular value, this would mean that ∇ f (xc) = u|∇ f (xc)|. Such a u is a regular
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value of ν f | f −1(]c−ε,c+ε[), thus G j could be extended to { f > c} to a regular
curve through xc, which would contradict f (G j ) =]c− ε, c[. So we get that G j
never meet f −1(c). The same works for j ∈ {l(i)+ 1, . . . ,m(i)}.

Case (b) is proved similarly.
There is a last thing to say about the case Uc is empty, meaning that νc is

of rank at most n − 2. In this situation the discontinuity of |K | is created by
phenomenon of type (b) only. �

When the discontinuity of |K | arises at a critical value c, it is almost imposs-
ible to say anything similar to the previous statement, in the general frame we
are given.

7 Total λ-curvature and total absolute λ-curvature

Given a compact connected manifold M of dimensionm, given aMorse function
g : M �→ R, let Cλ(g) be the set of critical points of index λ. The weak Morse
inequalities state

#Cλ(g) � bλ(M), the λ-th Betti number.

Let us consider now that M is an orientable connected definable Cl , l � 2,
hypersurface of Rn , with orientation map νM .

Using Definition 3.4, given λ ∈ {0, . . . , n − 1}, let us define
IM(λ) := {x ∈ M : λM(x) = λ}.

Since IM(λ) ⊂ M \ crit(νM), and M \ crit(νM) 	 x �→ λM(x) is definable
and locally constant, the subset IM(λ) is definable.

Now we can define

Definition 7.1. Given λ ∈ {0, . . . , n − 1},
(1) the total λ-curvature of M is KM(λ) :=

∫
IM (λ)

kM(x) d vn−1(x),

(2) the total absolute λ-curvature of M is |K |M(λ) :=
∫
IM (λ)

|kM |(x) d vn−1(x).

If M is compact then averaging on the restriction to M of all the oriented
linear projections we deduce

|K |M(λ) � voln−1(νM(IM(λ))) · bλ(M).

Now let us come to the case of definable functions. Let f : Rn �→ R still
be a Cl , definable function with l � 2. We use the notations of Section 4 and
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Section 5. Given any t /∈ K0( f ), let νt be the restriction of ν f to Ft , and let
kt(x) be the Gauss curvature at x ∈ Ft .

Let us define the open definable subset

I f (λ) :=
{
x /∈ crit( f ) ∪ crit(ν f ) : the index of dx ν f |Tx F f−1(x)

is λ
}

Let Et still be the set of connected components of Ft . Given t /∈ K0( f ) and
λ ∈ {0, . . . , n − 1}, let

It(λ) = ∪E∈Et IE(λ) = I f (λ) ∩ Ft .

The family (νt(It(λ))t /∈K0( f )) is a definable family of subsets of Sn−1.
We define two new functions of t , the total λ-curvature of f :

K (λ; t) :=
∑
E∈Et

KE(λ) =
∫
It (λ)

kt(x) d vn−1(x),

and the total absolute λ-curvature of f :

|K |(λ; t) :=
∑
E∈Et

|K |E(λ) =
∫
It (λ)

|kt |(x) d vn−1(x).

Now we can state the main result of this section

Theorem 7.2. Let λ ∈ {1, . . . , n − 1} be given.

(1) Let c be a value. Then lim
t→c−

K (λ; t), lim
t→c+

K (λ; t), lim
t→c−

|K |(λ; t) and
lim
t→c+

|K |(λ; t) exist.

(2) Let c be a value. Then

|K |(λ; c) � min
{
lim
t→c−

|K |(λ; t), lim
t→c+

|K |(λ; t)}.
(3) The function t → |K |(λ; t) admits at most finitely many discontinuities.

(4) If the function t → |K |(λ; t) is continuous at c, then so is the function
t → K (λ; t).

Proof. The proof of each point works as the proof of the similar statement
given for the functions t → K (t) and t → |K |(t). The reason for that is to
consider the function 
λ := 
 f |I f (λ), and then do exactly the same work as that
done in Section 5 and 6
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8 Remarks, comments and suggestions

In the introduction we mentioned that the original motivation was to try to find
some equisingularity conditions on the family of levels (Ft) that could be read
through the continuity of these total curvature functions. We were especially
interested in the problem caused by the regular values that are also bifurcation
values. This phenomenon is without any doubt caused by some curvature, in
the broader sense of Lipschitz-Killing curvature, accumulation at infinity (i.e.
on the boundary of the domain). Without any bound on the complexity of
the singularity phenomenon occurring at infinity, it would be very naive and
wrong to hope that the continuity of these curvature functions we dealt with is a
sufficiently fine measure of the equisingularity of the levels Ft nearby a regular
value. In some simple cases, see [Gr], they can provide sufficient conditions
to ensure the equisingularity in a neighborhood of a given regular asymptotic
critical value. But in whole generality we may also have to consider these higher
order curvatures.

Consider again the situation of Section 4: That is of f : Rn �→ R a definable
function enough differentiable. We have associated to each regular value t of f ,
two real numbers, namely K (t) and |K |(t).

Let t be a regular value of f and let x ∈ Ft . Let q ∈ {1, . . . , n− 1} be a given
integer. Let N be a q-dimensional sub-vector space of Tx Ft . Let us denotes
kt(N , x) the Gauss curvature at x of Ft ∩ (x + (Rνt(x)⊕ N )) a hypersurface of
the q + 1-dimensional affine subspace x + (Rνt(x)⊕ N ). The q-th Lipschitz-
Killing curvature of Ft at x is the real number

LKq(x) :=
∫
G(q,Tx Ft )

kt(N , x) d N ,

where dN is the volume form of G(q, Tx Ft) the Grassmann manifold of q-
dimensional sub-vector spaces of Tx Ft .

So we would like to define two real numbers:

− the total q-th Lipschitz-Killing curvature,

Lq(t) = cn,q
∫
Ft

LKq(x) d vn−1(x), and

− the total absolute q-th Lipschitz-Killing curvature, also called total q-th length

|L|q(t) = cn,q
∫
Ft

|LKq(x)| d vn−1(x),

where cn,q is a universal constant depending only on q and n.
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In general, once q < n−1, with the level Ft non compact, the number |L|q(t)
is likely to be infinite!

A more relevant question would be to estimate the first (and may be the sec-
ond) dominant term of the asymptotic of

|L|q(t; R) = cn,q
∫
Ft∩Bn

R

|LKq(x)| d vn−1(x)

Lq(t; R) = cn,q
∫
Ft∩Bn

R

LKq(x) d vn−1(x)

as R → +∞ and to see how these dominant terms varies in t or in (t, R). But
as already said, even in the subanalytic category where results from [CLR, LR]
provide some general information on the nature of such terms, it is likely to be
a very difficult question!
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