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Abstract. In this work we define operator-valued Fourier transforms for suitable in-

tegrable elements with respect to the Plancherel weight of a (not necessarily Abelian)

locally compact group. Our main result is a generalized version of the Fourier inver-

sion Theorem for strictly-unconditionally integrable Fourier transforms. Our results

generalize and improve those previously obtained by Ruy Exel in the case of Abelian

groups.
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1 Introduction

Let G be a locally compact Abelian group and let Ĝ be its Pontrjagin dual.

The classical Fourier inversion Theorem recovers, under certain conditions, a

continuous integrable function f : G → C from its Fourier transform via the

formula f (t) = ∫
Ĝ 〈χ | t〉 f̂ (χ) dt , where we write 〈χ | t〉 := χ(t) to emphasize

the duality betweenG and Ĝ. Here f̂ (χ) := ∫
G〈χ | t〉 f (t) dt denotes the Fourier

transform of f and we choose suitably normalized Haar measures dt and dχ

on G and Ĝ, respectively.

Ruy Exel [2] extended the classical Fourier inversion formula to operator-

valued maps f : G → L(H), where H is a Hilbert space and L(H) denotes
the space of all bounded linear operators on H . He considered basically two

generalized versions of Fourier’s inversion Theorem. The first one requires

f to be a positive definite, weakly continuous, compactly supported function.

The conclusion is that the Fourier transform f̂ – pointwise defined by the in-

tegral f̂ (χ) := ∫
G〈χ | t〉 f (t) dt with respect to the strong operator topology –
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is unconditionally integrable with respect to the strong topology and its strong

unconditional integral
∫
Ĝ 〈χ | t〉 f̂ (χ) dχ equals f (t) for all t ∈ G. The sec-

ond version requires f to be a positive definite, strictly continuous, compactly

supported function Ĝ → M(A), where A is now any C∗-algebra and M(A)
is the multiplier algebra of A. Again, as a conclusion one recovers f (t) from
the integral

∫
Ĝ 〈χ | t〉 f̂ (χ) dχ , but now all the integrals are interpreted as strict

unconditional integrals, that is, unconditional integrals with respect to the strict

topology inM(A).
Both versions of Fourier’s inversion Theorem considered above are equivalent.

Indeed, one of the main tools used in [2] is Naimark’s theorem on the structure of

positive definite maps (see [2, Theorem 3.2]). It says that any positive definite,

weakly continuous map f : G → L(H) has the form f (t) = S∗ut S, where
u is some strongly continuous unitary representation of G on a Hilbert space

Hu and S : H → Hu is some bounded linear operator. As a consequence any

such map is automatically bounded and strongly continuous. Moreover, it also

implies that f is strictly continuous if considered as a map G → M(K(H)
)
,

where K(H) denotes the algebra of compact operators on H and we identify

M(K(H)
) ∼= L(H) in the canonical way. Thus, if in addition f is compactly

supported, we can apply to f the second version of Fourier’s inversion Theorem
for strictly continuous maps mentioned above. Conversely, if f : G → M(A)
is a positive definite, strictly continuous, compactly supported map, then we

may view f as a strongly continuous map G → L(H) and apply the first

version, where H is some Hilbert space endowed with a faithful nondegenerate

representation of A.
What happens with the Fourier inversion Theorem if G is not Abelian? The

purpose of this paper is to answer this question. We extend Exel’s generalized

version of Fourier’s inversionTheorem to non-Abelian groups. The starting point

is to observe that the space of bounded, strictly continuous maps Ĝ → M(A)
can be naturally identified with the multiplier algebra M(

A ⊗ C∗r (G)
)
, where

C∗r (G) denotes the reduced group C∗-algebra of G. Here and throughout the

rest of this paper, the symbol ⊗ always denotes the minimal tensor product.
Next, using the Plancherel weight on C∗r (G) as a substitute for the classical

Haar measure on Ĝ if G is non-Abelian, we define an appropriate subspace

of integrable elements in M(
A ⊗ C∗r (G)

)
. For each integrable element a,

we define a (generalized) Fourier transform â which is a function on G tak-

ing values in M(A). As a conclusion, we prove that a can be recovered from

its Fourier transform via the strict unconditional integral a = ∫
G â(t) ⊗ λt dt ,

whenever this integral exists. The map t 	→ λt is the left regular representation

of G on the Hilbert space L2(G) of square-integrable measurable functions on
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G : λt(ξ)(s) := ξ(t−1s) for all ξ ∈ L2(G) and t, s ∈ G.

Our version of the Fourier inversion Theorem can be interpreted as a general-

ization of Exel’s version in [2]. Furthermore, our proof is considerably simpler

than the original one in [2]. While Exel’s proof uses strong results like Naimark’s

theorem on the structure of positive definite maps and Stone’s theorem on repre-

sentations of locally compact Abelian groups, our proof basically only uses the

definition.

2 Weight theory

One of the basic tools in this work is weight theory. In this section we recall

some basic concepts, mainly to fix the notation. We refer to [5] for a detailed

treatment. Recall that aweight on aC∗-algebraC is a map ϕ : C+ → [0,∞] that
is additive and positively homogeneous, where C+ denotes the set of positive

elements in C .

We say that a positive element x ∈ C+ is integrable with respect to ϕ if

ϕ(x) <∞. We writeM+ϕ for the set of positive integrable elements andNϕ for

the space {x ∈ C : x∗x ∈ M+ϕ } of square-integrable elements. LetMϕ be the

linear span ofM+ϕ . ThenMϕ is a ∗-subalgebra of C ,Nϕ is a left ideal of C and

Mϕ is the linear span ofN ∗
ϕNϕ = {x∗y : x, y ∈Nϕ}.

IfM+ϕ is dense inC+, then we say that ϕ is densely defined. We also denote by

ϕ the unique linear extension of ϕ toMϕ . We say that ϕ is lower semi-continuous
if {x ∈ C+ : ϕ(x) ≤ c} is closed for all c ∈ R+ or, equivalently, for every net

(xi ) in C+ and x ∈ C+, xi → x implies ϕ(x) ≤ lim inf
(
ϕ(xi )

)
.

Define the sets Fϕ := {ω ∈ C∗+ : ω(x) ≤ ϕ(x) for all x ∈ C+} and Gϕ :=
{αω : ω ∈ Fϕ, α ∈ (0, 1)} ⊆ Fϕ. If we endow Fϕ with the natural order of C∗+
then Gϕ is a directed subset of Fϕ , so that Gϕ can be used as the index set of a

net. If ϕ is lower semi-continuous, then ([5, Theorem 1.6])

ϕ(x) = sup
{
ω(x) : ω ∈ Fϕ

} = lim
ω∈Gϕ

ω(x) for all x ∈M+ϕ . (1)

Any lower semi-continuous weight ϕ can be naturally extended to the multiplier

algebraM(C) by setting

ϕ̄(x) := sup
{
ω(x) : ω ∈ Fϕ

}
for all x ∈M(C)+ ,

where each ω ∈ C∗ is extended toM(C) as usual. Then ϕ̄ is the unique strictly

lower semi-continuous weight onM(C) extending ϕ. We shall also denote the
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extension ϕ̄ by ϕ and use the notations M̄+ϕ =M+ϕ̄ , M̄ϕ =Mϕ̄ and N̄ϕ =Nϕ̄ .

Equation (1) can be generalized:

ϕ(x) = lim
ω∈Gϕ

ω(x) for all x ∈ M̄ϕ.

2.1 Slicing with weights

Let A and C be C∗-algebras. Given a bounded linear functional θ on A, we
write θ ⊗ id for the canonical slice map A ⊗ C → C . It is the unique bounded

linear map satisfying the relation (θ ⊗ id)(a ⊗ x) = θ(a)x for all a ∈ A and

x ∈ C . The map θ ⊗ id can be uniquely extended to a strictly continuous map

M(
A ⊗ C

)→M(
C
)
, also denoted by θ ⊗ id.

Definition 2.1. Let ϕ be a weight on C. We say that a positive element a ∈
M(

A ⊗ C
)+ is integrable (with respect to the weight ϕ), if there is b ∈ M(A)

such that for every positive linear functional θ ∈ A∗+, (θ ⊗ id)(a) ∈ M̄ϕ and
ϕ
(
(θ ⊗ id)(a)

) = θ(b).

By Propositions 3.9 and 3.14 in [5], a ∈ M(
A ⊗ C

)+
is integrable if and

only if a belongs to the set M̄+id⊗ϕ of elements a ∈ M(
A ⊗ C

)+
for which the

net
(
(id ⊗ ω)(x)

)
ω∈Gϕ converges strictly in M(A). Moreover, in this case the

element b ∈M(A) in Definition 2.1 is given by b = (id⊗ϕ)(a), where we write
(id ⊗ ϕ)(a) for the strict limit of

(
(id ⊗ ω)(a)

)
ω∈Gϕ . Let M̄id⊗ϕ be the linear

span of M̄+id⊗ϕ inM
(
A ⊗ C

)
. The map id ⊗ ϕ has a unique linear extension to

M̄id⊗ϕ , also denoted by id ⊗ ϕ. Elements in M̄id⊗ϕ are also called integrable.
Let us assume that C is commutative, that is, it has the form C = C0(X) for

some locally compact topological space X , and suppose that ϕ is the weight

coming from a Radon measure μ on X . In other words, ϕ is given by the integral

ϕ( f ) = ∫
X f (x) dμ(x) for all f ∈ C0(X)+. In this case, the notion of integrabil-

ity defined above recovers the usual notions of integrability for operator-valued

functions on X . Indeed, first of all we may identify M(A ⊗ C) with the C∗-
algebraCb(X,Ms(A))of bounded strictly continuous functions f : X →M(A).
Under this identification, we have the following result:

Proposition 2.2. With the notations above, let f be a positive element in
M(A ⊗ C) ∼= Cb(X,Ms(A)). Then the following assertions are equivalent:

(i) f is integrable in the sense of Definition 2.1;
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(ii) the net of strict Bochner integrals(∫ s

X
f (x)

dω

dμ
(x) dμ(x)

)
ω∈Gϕ

converges strictly in M(A). Here C∗+ = C0(X)∗+ is identified with the
space of positive bounded measures on X and, for each ω ∈ Fϕ , the
symbol dω

dμ
denotes the Radon-Nikodym derivative of ω with respect to

μ. Note that Fϕ consists of the positive bounded measures ω that satisfy
ω(E) ≤ μ(E) for every μ-measurable subset E ⊆ X. In particular, each
ω ∈ Fϕ is absolutely continuous with respect to μ so that the Radon-
Nikodym derivative dω

dμ
is well-defined. Note also that dω

dμ
is μ-integrable

and 0 ≤ dω
dμ
≤ 1. Conversely, any such function gives rise to an element

of Fϕ .
(iii) the net of strict Bochner integrals

(∫ s

X f (x)ωi (x) dμ(x)
)
i∈I converges

strictly in M(A) for any net (ωi )i∈I of compactly supported continuous
functions ωi : X → [0, 1] for which ωi (x) → 1 uniformly on compact
subsets of X;

(iv) the net of strict Bochner integrals
(∫ s

X f (x)ωi (x) dμ(x)
)
i∈I converges

strictly inM(A) for some net (ωi )i∈I as in (iii);
(v) f : X → M(A) is strictly-unconditionally integrable, that is, the net of

strict Bochner integrals
(∫ s

K f (x) dμ(x)
)
K∈C converges strictly inM(A),

where C is the set of all μ-measurable relatively compact subsets of X;
(vi) f : X →M(A) is strictly Pettis integrable, that is, for any μ-measurable

subset E ⊆ X, there is an element aE ∈ M(A) such that, for every
continuous linear functional θ ∈ A∗, the scalar valued function θ ◦ f is
μ-integrable on E in ordinary’s sense, and

∫
E θ( f (x)) dμ(x) = θ(aE);

(vii) there is a ∈ M(A) such that for any positive linear functional θ ∈ A∗+,
the scalar function θ ◦ f is μ-integrable on X in ordinary’s sense, and∫
X θ( f (x)) dμ(x) = θ(a).

In this event, we have

(id ⊗ ϕ)( f ) = s-lim
ω∈Gϕ

∫ s

X
f (x)ω(x) dμ(x) = s-lim

i∈I

∫ s

X
f (x)ωi (x) dμ(x)

=
∫ su

X
f (x) dμ(x) =

∫ sp

X
f (x) dμ(x) = a.

The symbol
∫ su

X above refers to strict unconditional integrals and
∫ sp

X refers to
strict Pettis integrals.
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Proof. As already noted above, (i) is equivalent to the fact that the net(
(id ⊗ ω)( f )

)
ω∈Gϕ converges strictly inM(A). Under the identification in (ii),

each (id ⊗ ω)( f ) corresponds to
∫ s

X f (x) dω
dμ
(x) dμ(x). Thus (i) is equivalent

to (ii). Item (vii) is just a reformulation of Definition 2.1 because, under the

identification M(A ⊗ C) ∼= Cb(X,Ms(A)), the element (θ ⊗ id)( f ) corre-
sponds to composition θ ◦ f . Hence (i) is also equivalent to (vii). If f is

strictly-unconditionally integrable, then so is the pointwise product ω · f for any
bounded measurable scalar function ω : X → C (see [2, Proposition 2.8]). In

particular, so is the restriction of f to a μ-measurable subset E ⊆ X . From this,

we see that (v) implies (vi). It is trivial that (vi) implies (vii). To see that (vii)

implies (v), observe that because f takes positive values,
(∫ s

K f (x) dμ(x)
)
K∈C

is an increasing net of positive elements inM(A). By [5, Lemma 3.12], this net

converges to some a ∈M(A) if and only if
(∫ s

K θ( f (x)) dμ(x)
)
K∈C converges

to θ(a) for all θ ∈ A∗+. And this condition is equivalent to (vii). We conclude

that (i)⇔(ii)⇔(vii) and (v)⇔(vi)⇔(vii). The equivalences (iii)⇔(iv)⇔(v) fol-

low from [1, Proposition 12]. The last assertion is an easy consequence, whence

the result. �

Remark 2.3. It has been already observed by Ruy Exel in [2, 3] that uncon-

ditional integrability is equivalent to Pettis integrability, at least for continuous

operator-valued functions. A detailed proof of this fact in a more general context

of functions defined on measure spaces and taking values in arbitrary Banach

spaces can be found in the dissertation of Patricia Hess [8, Teorema 4.14]. The

proof in [8] assumes σ -locality, which is a natural countability condition in

measure-theoretical settings. Note that our proof above does not assume any

countability condition. However, we are assuming strict continuity and positiv-

ity of our operator-valued function f : X →M(A), and in particular our proof

does not make sense in the general context of Banach spaces as in [8].

2.2 The Plancherel weight

Let G be a locally compact group. In this section, we collect some facts on the

Plancherel weight of the group von Neumann algebra L(G) of G. We refer to

[7, Section 7.2] or [10, Section VII.3] for a detailed construction. Recall that

the group von Neumann algebra of G is the von Neumann algebra L(G) =
C∗r (G)′′ ⊆ L

(
L2(G)

)
generated by the left regular representation of G.

A function ξ ∈ L2(G) is called left bounded if the map

L2(G) ⊇ Cc(G) � f 	→ ξ ∗ f ∈ L2(G)
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extends to a bounded operator on L2(G). In this case, we denote this operator

by λ(ξ). Note that λ(ξ) belongs to L(G) for every left bounded function ξ . The
Plancherel weight ϕ̃ : L(G)+ → [0,∞] is defined by the formula

ϕ̃(x) :=
{
‖ξ‖22 if x 1

2 = λ(ξ) for some left bounded function ξ ∈ L2(G),
∞ otherwise.

We are mainly interested in the restriction of ϕ̃ to C∗r (G)+, which we denote by
ϕ. It is a densely defined, lower semi-continuous weight on C∗r (G).
From the definition of ϕ̃ above it follows that

Nϕ̃ =
{
λ(ξ) : ξ ∈ L2(G) is left bounded

}
and (by polarization) ϕ̃

(
λ(ξ)∗λ(η)

) = 〈ξ | η〉 whenever ξ, η ∈ L2(G) are left

bounded. Here 〈· | ·〉 denotes the inner product on L2(G) (we assume it is linear

on the second variable). For functions ξ and η on G, we write ξ ∗ η and ξ ∗
for the convolution ξ ∗ η(t) := ∫

G ξ(s)η(s
−1t) ds and the involution ξ∗(t) :=

�(t)−1ξ(t−1) whenever the operations make sense. A short calculation shows

that (ξ ∗ ∗ η)(t) = 〈ξ |Vtη〉 for all ξ, η ∈ L2(G) and t ∈ G, where Vt(η)(s) :=
η(st). In particular, the function ξ ∗ ∗ η is continuous and (ξ ∗ ∗ η)(e) = 〈ξ |η〉,
where e denotes the identity element of G. Thus, if ξ, η ∈ L2(G) are left

bounded, the operator λ(ξ ∗ ∗η) = λ(ξ)∗λ(η) belongs toMϕ̃ and ϕ̃
(
λ(ξ ∗ ∗η)) =

〈ξ |η〉 = (ξ ∗ ∗ η)(e).We conclude that

Mϕ̃ = λ
(Ce(G)

)
,

where Ce(G) := span
{
ξ ∗ ∗ η : ξ, η ∈ L2(G) left bounded

}
, and ϕ̃ is given on

functions of Ce(G) by evaluation at e ∈ G. Since ϕ is the restriction of ϕ̃ to

C∗r (G), we have M̄ϕ ⊆Mϕ̃ and the same formula holds for ϕ.

Finally, let us we remark that ϕ̃ is a KMS-weight (see [5] for the definition of

KMS-weights). The modular automorphism group {σx}x∈R of ϕ̃ is determined

by σx(λt) = �(t)ixλt for all t ∈ G and x ∈ R, where � is the modular function

of G. In particular, this implies that λt is analytic with respect to σ – meaning

that the function x 	→ σx(λt) extends to an analytic function on C. Its analytic

extension is given by

σz(λt) = �(t)izλt for all z ∈ C and t ∈ G. (2)

Definition 2.4. Given an integrable element x ∈ Mϕ̃ , we define the Fourier

transform of x to be the function x̂ : G → C given by x̂(t) := ϕ̃(λ−1t x) for all
t ∈ G.
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Since λ−1t = λt−1 is analytic with respect to the modular group of ϕ̃, the

element λ−1t x belongs to Mϕ̃ whenever x ∈ Mϕ̃ (see [5, Proposition 1.12]).

This fact can be also proved directly from the definition of ϕ̃ (see [7, Proposition

2.8]). Thus the Fourier transform x̂ is well-defined.

If G is Abelian, then under the isomorphism L(G) ∼= L∞(Ĝ), the Plancherel
weight onL(G) corresponds to the usualHaar integral on L∞(Ĝ). In this picture,
Mϕ̃ is identifiedwith L∞(Ĝ)∩L1(Ĝ) and x̂ corresponds to the Fourier transform
of the associated function in L∞(Ĝ) ∩ L1(Ĝ).

Proposition 2.5. Let G be a locally compact group. Then the following prop-
erties hold:

(i) The Fourier transform x̂ belongs to Ce(G) for all x ∈Mϕ̃ . In particular,
x̂ is a continuous function.

(ii) The Fourier transform of λ( f ) is equal to f for all f ∈ Ce(G).
(iii) Ifwe equipCe(G)with the usual convolutionof functions and the involution

f ∗(t) := �(t−1) f (t−1), then Ce(G) becomes a ∗-algebra and the map

Mϕ̃ � x 	→ x̂ ∈ Ce(G)

is an isomorphism of ∗-algebras. The inverse is given by the map f 	→
λ( f ). In particular, we have

(xy)̂ = x̂ ∗ ŷ, and (x∗)̂ = x̂∗ for all x, y ∈Mϕ̃ .

(iv) Suppose that x ∈ Mϕ̃ and that the function t 	→ x̂(t)λt ∈ L
(
L2(G)

)
is

integrable in the weak topology of L(L2(G)
)
. Then∫ w

G
x̂(t)λt dt = x,

where the superscript “w" above stands for integral in the weak topology.

Proof. We already know that Mϕ̃ = λ
(Ce(G)

)
. Let x = λ( f ) with f ∈

Ce(G). Note that λ−1t x = λ−1t λ( f ) = λ( ft), where ft denotes the function

ft(s) := f (ts). Hence x̂(t) = ϕ̃
(
λ( ft)

) = ft(e) = f (t), that is, x̂ = f .
This proves (i) and (ii). If f, g, ξ, η ∈ L2(G) are left bounded, then ( f ∗ ∗ g) ∗
(ξ ∗ ∗ η) = (λ(g)∗ f )∗ ∗ (λ(ξ)∗η). Note that, given x ∈ L(G) and ζ ∈ L2(G)
left bounded, xζ ∈ L2(G) is left bounded and λ(xζ ) = xλ(ζ ). It follows that
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( f ∗∗g)∗(ξ ∗∗η) ∈ Ce(G). This shows thatCe(G) is an algebrawith convolution.
Note also that ( f ∗ ∗ g)∗ = g∗ ∗ f ∈ Ce(G), and therefore Ce(G) is a ∗-algebra.
It is easy to see that the map Mϕ̃ � x 	→ x̂ ∈ Ce(G) preserves the ∗-algebra
structures. For example, to prove that (xy)̂ = x̂ ∗ ŷ, take f, g ∈ Ce(G) such that
x = λ( f ) and y = λ(g). Then (xy)̂ = (

λ( f ∗ g))̂ = f ∗ g = x̂ ŷ. Item (ii) and

the fact that any x ∈Mϕ̃ has the form x = λ( f ) show that the map x 	→ x̂ has

f 	→ λ( f ) as its inverse. Finally, we prove (iv). Take ξ, η ∈ Cc(G). Then〈
ξ

∣∣∣(∫ w

G
x̂(t)λt dt

)
η

〉
=

∫
G
x̂(t)〈ξ |λt(η)〉 dt

=
∫
G

∫
G
x̂(t)ξ(s)η(t−1s) dt ds

=
∫
G
ξ(s)(x̂ ∗ η)(s) ds

= 〈ξ |λ(x̂)η〉 = 〈ξ | xη〉. �

3 The Fourier transform

Throughout the rest of this paper we fix a locally compact group G and a C∗-
algebra A.

Definition 3.1. Let a ∈M(
A⊗C∗r (G)

)
be an integrable element. The Fourier

coefficient of a at t ∈ G is the element â(t) ∈M(A) defined by

â(t) := (id ⊗ ϕ)
(
(1⊗ λ−1t )a

)
.

The map t 	→ â(t) from G toM(A) is called the Fourier transform of a.

As already observed, λs is an analytic element for all s ∈ G. This implies that

(1⊗ λs)x ∈ M̄id⊗ϕ whenever x ∈ M̄id⊗ϕ (see [5, Proposition 3.28]). Thus the

Fourier transform is well-defined.

Suppose that the group G is Abelian. Then there is a canonical isomorphism

M(
A ⊗ C∗r (G)

) ∼= Cb
(
Ĝ,Ms(A)

)
, the space of bounded, strictly continuous

functions Ĝ → M(A). Under this identification, we have
(
(1 ⊗ λt−1)a

)
(χ) =

〈χ | t〉a(χ) for all a ∈ Cb
(
Ĝ,Ms(A)

)
and χ ∈ Ĝ. Moreover, by Proposition 2.2,

a positive element a ∈ M(
A ⊗ C∗r (G)

)
is integrable if and only if there is

b ∈ M(A) such that the function t 	→ θ
(
a(χ)

)
is integrable (in ordinary’s

sense) and
∫
Ĝ θ(a(χ)) dχ = θ(b). It is also the content of Proposition 2.2 that

this notion of integrability is equivalent to Exel’s notion of strict unconditional

integrability (essentially this fact has been also observed by Marc Rieffel; see
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[9, Theorem 3.4, Proposition 4.4]). In other words, a ∈ M(
A ⊗ C∗r (G)

)+
is

integrable if and only if the corresponding function χ 	→ a(χ) inCb
(
Ĝ,Ms(A)

)
is strictly-unconditionally integrable. Furthermore, in this case (id ⊗ ϕ)(a)
coincides with the strict unconditional integral

∫ su

Ĝ a(χ) dχ .
We conclude that, if G is Abelian, then the Fourier transform of an integrable

element a ∈ M(
A ⊗ C∗r (G)

) ∼= Cb
(
Ĝ,Ms(A)

)
coincides with the Fourier

transform defined by Exel in [2]:

â(t) =
∫ su

Ĝ
〈χ | t〉a(χ) dχ.

4 Fourier inversion Theorem

We are ready to prove the main result of this paper:

Theorem 4.1 [The Fourier inversion Theorem]. Let G be a locally compact
group and let A be a C∗-algebra. Let a ∈ M(

A ⊗ C∗r (G)
)
be an integrable

element and suppose that the function G � t 	→ â(t)⊗ λt ∈M
(
A⊗C∗r (G)

)
is

strictly-unconditionally integrable. Then we have

a =
∫ su

G
â(t)⊗ λt dt.

Proof. Take any continuous linear functional θ ∈ A∗ on A and define the

element x := (θ⊗ id)(a) ∈M(
C∗r (G)

)
. Since a is integrable, we have x ∈ M̄ϕ .

Moreover,

(θ ⊗ id)

(∫ su

G
â(t)⊗ λt dt

)
=

∫ su

G
θ
(
â(t)

)
λt dt

=
∫ su

G
θ
(
(id ⊗ ϕ)

(
(1A ⊗ λ−1t )a

))
λt dt

=
∫ su

G
ϕ
(
λ−1t (θ ⊗ id)(a)

)
λt dt

=
∫ su

G
ϕ(λ−1t x)λt dt =

∫ su

G
x̂(t)λt dt.

Since strict convergence is stronger than weak convergence, the above equals

x = (θ ⊗ id)(a) by Proposition 2.5(iv). The result follows because θ ∈ A∗ is
arbitrary. �
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Theorem 4.1 extends Exel’s operator-valued version of Fourier’s inversion

Theorem in [2] to non-Abelian groups. Assume that G is Abelian. Then, under

the usual identificationM(
A⊗C∗r (G)

) ∼= Cb
(
Ĝ,Ms(A)

)
, the element â(t)⊗λt

corresponds to the function χ 	→ 〈χ | t〉â(t). Thus Theorem 4.1 says that∫ su

G
〈χ | t〉â(t) dt = a(χ)

whenever a is integrable and the strict unconditional integral above exists. The

Fourier transform â in this case is given by â(t) = ∫ su

Ĝ 〈η | t〉a(η) dη. Thus we
can rewrite the equation above in the form of a generalized Fourier inversion

formula: ∫ su

G
〈χ | t〉

(∫ su

Ĝ
〈η | t〉a(η) dη

)
dt = a(χ).

As already mentioned in the introduction, Exel’s version of Fourier’s inversion

Theorem starts with a compactly supported, strictly continuous, positive definite

function f : G → M(A). Apparently, our version requires no positivity con-

dition on the functions involved. However, we are in fact assuming a positivity

condition because integrable elements are defined in terms of positive elements.

In order to compare our versionwith Exel’s one, let us first recall that a function

f : G → M(A) is positive definite if for every finite subset {t1, . . . , tn} of G,

the matrix
(
f (t−1i t j )

)
i, j is positive in the C∗-algebra Mn

(M(A)
)
of n × n

matrices with entries inM(A). We may assume without loss of generality that

A is a nondegenerate C∗-subalgebra of L(H) for some Hilbert space H .

The following result characterizes operator-valued, positive definite, weakly

continuous functions.

Proposition 4.2. Let A be aC∗-algebrawhich is faithfully and nondegenerately
represented inL(H) for someHilbert space H. For aweakly continuous function
f : G →M(A) ⊆ L(H), the following assertions are equivalent:

(i) f is positive definite;

(ii) f has the form f (t) = S∗ut S for some strongly continuous unitary rep-
resentation u : G → L(K ) on some Hilbert space K and some bounded
linear operator S : H → K;

(iii) there is a strict completely positive map (see [6] for the precise definition)
F : C∗(G)→M(A) such that f (t) = F̃(t), where F̃ denotes the strictly
continuous extension of F toM(C∗(G)) and we identify G ⊆M(C∗(G))
in the usual way;
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(iv) f has the form f (t) = T ∗wt T for some strongly continuous unitary
representation w : G → L(E) on some Hilbert A-module E and some
adjointable operator T : A→ E.

In this case, f : G → M(A) is bounded and strictly continuous, f (e) is a
positive operator, f (t−1)∗ = f (t) and ‖ f (t)‖ ≤ ‖ f (e)‖ for all t ∈ G. More-
over, f : G → L(H) is left strongly-uniformly continuous, that is, for ξ ∈ H,
‖ f (ts)ξ − f (t)ξ‖ converges to zero uniformly in t as s converges to e.

Proof. The equivalence (i)⇔(ii) is Naimark’s theorem (see [2, Theorem 3.2]).

Assume that (ii) holds. Then we can define F(x) := S∗u(x)S for all x ∈
C∗(G), where we abuse the notation and write u : C∗(G) → L(K ) for the
integrated form of u : G → L(K ). Recall that u(x) = ∫

G x(t)ut dt for all

x ∈ L1(G). Note that F(x) ∈M(A) because f (t) ∈M(A) for all t ∈ G. Since

u is a nondegenerate representation of C∗(G), it follows that F : C∗(G) →
M(A) is a strict completely positive map [6, Proposition 5.5]. The strictly

continuous extensionof F is givenby F̃(x) = S∗ũ(x)S, where ũ : M(C∗(G))→
L(K ) denotes the strictly continuous extension of u. Hence F̃(t) = S∗ũ(t)S =
S∗ut S = f (t) for all t ∈ G. Thus (ii) implies (iii). Now assume that (iii) is true.

Theorem 5.6 in [6] implies that there is a Hilbert A-module E, a nondegenerate
∗-homomorphism w : C∗(G)→ L(E) and an adjointable operator T : A → E
such that F(x) = T ∗w(x)T for all x ∈ C∗(G). Defining wt := w̃(t) to be

the unitary representation of G corresponding to w, we get item (iv). Finally,

it is easy to see that any function f (t) = T ∗wt T as in (iv) is positive definite,

so that (iv) implies (i). Therefore all the four items are equivalent. The last

assertion follows directly from (iv). To prove the last assertion, take any ξ ∈ H .

Using (ii), we get

‖ f (ts)ξ − f (t)ξ‖ ≤ ‖S‖‖usη − η‖
for all t, s ∈ G, where η := Sξ ∈ H . Since u is strongly continuous, it follows

that ‖ f (ts)ξ − f (t)ξ‖ converges to zero uniformly in t as s converges to e. �

Remark 4.3. Let notation be as in Proposition 4.2. In general, it is not true that

a weakly continuous, positive definite function f : G → L(H) is right strongly-
uniformly continuous, that is, in general, given ξ ∈ H , ‖ f (st)ξ − f (t)ξ‖ does
not converge to zero uniformly in t as s converges to e. Indeed, note that any

unitary representation u : G → L(H) is a positive definite function. However,
the left regular representation λ : G → L(L2(G)) is not left strongly-uniformly

continuous, unless G has equivalent left and right uniform structures (see [4,
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20.30]). Of course, if the uniform structures of G are equivalent, then the notions

of left and right uniform continuity are equivalent, and we only speak of uniform

continuity in this case meaning both left and right uniform continuity. Moreover,

in this case, an analogous argument to that given in the proof of Proposition 4.2

shows that any strictly continuous, positive definite function f : G → M(A)
is automatically (left and right) strictly-uniformly continuous, that is, for every

a ∈ A, all the expressions ‖ f (ts)a− f (t)a‖, ‖ f (st)a− f (t)a‖, ‖a f (ts)−a f (t)‖
and ‖a f (st)− a f (t)‖ converge to zero uniformly in t as s converges to e.

Let f ∈ Cc(G) and let ρ( f ) denote the operator on L2(G) given by right

convolution with f : ρ( f )ξ := ξ ∗ f . Then f is positive definite if and only the
operator ρ( f ) is positive (see [7, Proposition 7.1.9]). Moreover, it is easy to see

that ρ( f ) = Jλ(J f )J , where J is the anti-unitary operator on L2(G) defined
by Jξ(t) := �(t)− 1

2 ξ(t−1). It follows that f is positive definite if and only if

λ(J f ) is a positive operator. Note that J f = �− 1
2 · f if f is positive definite. In

particular, ifG is unimodular, f is positive definite if and only if λ( f ) is positive.
In general, λ( f ) is positive if and only if � 1

2 · f is positive definite.

Lemma 7.2.4 in [7] shows that a function f ∈ Cc(G) is positive definite if and
only if f = η ∗ η̃, where η is some right bounded function in L2(G) and

η̃(t) := η(t−1) for all t ∈ G.

Recall that a function η ∈ L2(G) is called right bounded if the map L2(G) ⊇
Cc(G) � g 	→ g ∗ η ∈ L2(G) extends to a bounded operator on L2(G). Al-

ternatively, η is right bounded if and only if Jη is left bounded. This follows

from the relation J (g ∗ η) = (Jη) ∗ (Jg). Using the easily verified relation

J (η ∗ η̃) = (Jη)∗ ∗ (Jη) and the fact that η is right bounded if and only if Jη
is left bounded, we get that λ( f ) is a positive operator if and only if f = ξ ∗ ∗ ξ
for some left bounded function ξ ∈ L2(G). In particular, f ∈ Ce(G) so that

λ( f ) ∈Mϕ . This proves the following result:

Proposition 4.4. Let f be a function in Cc(G). If �
1
2 · f is a positive definite

function, that is, if λ( f ) is a positive operator on L2(G), then λ( f ) is integrable
with respect to the Plancherel weight ϕ, that is, λ( f ) ∈Mϕ .

Remark 4.5. Given f ∈ Cc(G), it is not true in general that λ( f ) ∈ Mϕ .

Indeed, assume that G is compact so that Cc(G) = C(G). Then the inclusion

λ
(C(G)) ⊆ Mϕ ⊆ λ

(Ce(G)
)
implies Ce(G) = C(G) because we always have

Ce(G) ⊆ C(G). SinceG is compact, L2(G) ⊆ L1(G) and therefore any function
in L2(G) is left bounded. Thus Ce(G) equals the linear span of L2(G) ∗ L2(G).
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Therefore, the inclusion λ
(C(G)) ⊆ Mϕ implies that C(G) equals the linear

span of L2(G) ∗ L2(G). This is true if only if G is finite [4, 34.40]. Hence, if G
is a compact infinite group, λ

(C(G)) is not contained inMϕ .

Proposition 4.4 can be generalized to operator-valued functions. First, we have

to extend the left regular representation to operator-valued functions: given a C∗-
algebra A, there is a canonical map λA from Cc

(
G,Ms(A)

)
intoM(

A⊗C∗r (G)
)

that coincides with the left regular representation λ : Cc(G) → L(L2(G)) if
A = C. In fact, assume that A is a nondegenerate C∗-subalgebra of L(H), so
that A⊗C∗r (G) – and so alsoM

(
A⊗C∗r (G)

)
– is a nondegenerateC∗-subalgebra

of L(H ⊗ L2(G)
) ∼= L(L2(G, H)

)
. The map λA is then given by(

λA( f )ξ
)
(t) = ( f ∗ ξ)(t) :=

∫
G

f (s)ξ(s−1t) ds

for all f ∈ Cc
(
G,Ms(A)

)
, ξ ∈ Cc(G, H) and t ∈ G.

Proposition 4.6. Let f be a function in Cc
(
G,Ms(A)

)
. Then λA( f ) is a

positive operator if and only if the pointwise product � 1
2 · f is a positive definite

function. Moreover, in this case a := λA( f ) ∈M
(
A⊗C∗r (G)

)
is an integrable

element and â = f . In particular, we have the following formula for λA( f ):

λA( f ) =
∫ su

G
f (t)⊗ λt dt.

Proof. If θ ∈ A∗+ is a positive linear functional on A, then a straightforward

calculation shows that (θ⊗id)(λA( f )
) = λ(θ ◦ f ), where (θ ◦ f )(t) := θ

(
f (t)

)
.

Hence, λA( f ) ≥ 0 if and only if (θ ⊗ id)
(
λA( f )

) = λ(θ ◦ f ) ≥ 0 for all

θ ∈ A∗+. By the discussion preceding Proposition 4.4, λA( f ) is positive if and
only if�

1
2 · (θ ◦ f ) = θ ◦ (� 1

2 · f ) is positive definite for all θ ∈ A∗+. And this is
equivalent to �

1
2 · f being positive definite. This proves the first assertion. By

Proposition 4.4, (θ ⊗ id)(a) = λ(θ ◦ f ) ∈Mϕ for all θ ∈ A∗+, and

ϕ
(
(θ ⊗ id)(a)

) = ϕ
(
λ(θ ◦ f )

) = (θ ◦ f )(e) = θ
(
f (e)

)
.

This shows that a is integrable and (id ⊗ ϕ)(a) = f (e). Moreover, Proposi-

tion 2.5(ii) yields

θ
(
â(t)

) = θ
(
(id ⊗ ϕ)((1⊗ λ−1t )a)

) = ϕ
(
(θ ⊗ id)((1⊗ λ−1t )a)

)
= ϕ

(
λ−1t (θ ⊗ id)(a)

) = ϕ
(
λ−1t λ(θ ◦ f )

) = (θ ◦ f )(t) = θ
(
f (t)

)
.

Since θ is arbitrary, we get â = f . The final assertion follows from Theorem 4.1

because f is strictly Bochner integrable and hence also strictly-unconditionally

integrable. �

Bull Braz Math Soc, Vol. 39, N. 4, 2008



A GENERALIZED FOURIER INVERSION THEOREM 569

5 Further properties of the Fourier transform

In this section we analyze some additional properties of the Fourier transform

t 	→ â(t) of an integrable element a ∈ M(
A ⊗ C∗r (G)

)
. We prove that â

is always a strictly continuous function and that �
1
2 · â is a positive definite

function if a is a positive integrable element.

First, we need some preparation. We say that a ∈M(
A ⊗ C∗r (G)

)
is square-

integrable (with respect to the Plancherel weight ϕ) if a∗a is an integrable ele-

ment. Let N̄id⊗ϕ be the space of square-integrable elements inM(
A⊗C∗r (G)

)
.

Then N̄id⊗ϕ is a right ideal inM(
A ⊗ C∗r (G)

)
and the space of integrable ele-

ments M̄id⊗ϕ is the linear span of

N̄ ∗
id⊗ϕN̄id⊗ϕ =

{
a∗b : a, b ∈ N̄id⊗ϕ

}
.

Recall that a GNS-construction for a weight ϕ on a C∗-algebra C is a triple

(K , π,�), where K is some Hilbert space, � : Nϕ → K is a linear map with

dense image satisfying ϕ(a∗b) = 〈�(a) |�(b)〉 for all a, b ∈Nϕ , and π : C →
L(K ) is a ∗-representation of C satisfying π(a)�(b) = �(ab) for all a ∈ C
and b ∈ Nϕ . A GNS-construction always exists and is unique up to unitary

transformation.

There is a canonical GNS-construction for the Plancherel weight ϕ on C∗r (G)
given by (L2(G), ι,�), where ι denotes the inclusion mapC∗r (G) ↪→ L(L2(G)

)
and�(λ(ξ)) = ξ for every left bounded function ξ ∈ L2(G)withλ(ξ) ∈ C∗r (G).
We always use the GNS-construction (L2(G), ι,�) for ϕ.
The GNS-map � : Nϕ → L2(G) can be naturally extended to a linear map

id⊗� : N̄id⊗ϕ → L(A, L2(G, A)
)
. Here L2(G, A) ∼= A⊗ L2(G) denotes the

Hilbert A-module defined as the completion ofCc(G, A)with respect to the inner
product 〈 f |g〉A :=

∫
G f (t)∗g(t) dt and the canonical right A-action. The space

L(A, L2(G, A)
)
is set of all adjointable maps A→ L2(G, A), where we view A

as a Hilbert A-module in the obvious way. The map id ⊗� is characterized by

the equation (id⊗�)(a)∗(b⊗�(x)) = (id⊗ ϕ)(a∗(b⊗ x)
)
for all a ∈ N̄id⊗ϕ ,

b ∈ A and x ∈ Nϕ . We refer to [5] for more details on the construction and

properties of the map id ⊗�. One of its basic properties is the relation

(id ⊗�)(a)∗(id ⊗�)(b) = (id ⊗ ϕ)(a∗b) for all a, b ∈ N̄id⊗ϕ. (3)

Proposition 5.1. Let a ∈ M(
A ⊗ C∗r (G)

)
be an integrable element and let
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bi , ci ∈M
(
A⊗ C∗r (G)

)
be square-integrable elements with a =

n∑
i=1

b∗i ci . Then

â(t) =
n∑

i=1
(id ⊗�)(bi )∗Vt(id ⊗�)(ci ) for all t ∈ G,

where V : G → L(L2(G, A)
)
is the representation of G defined by Vt( f )(s) :=

f (st) for all f ∈ Cc(G, A) and t, s ∈ G.

Proof. It is enough to consider a of the form a = b∗c with b, c square-

integrable. Equation (3) yields

â(t) = (id ⊗ ϕ)
(
(b(1⊗ λt))

∗c
) = (id ⊗�)

(
b(1⊗ λt)

)∗
(id ⊗�)(c).

Since λt is analytic with respect to the modular automorphism group σ of ϕ

(see Section 2.2), it follows from [5, Proposition 3.28] that b(1⊗ λt) is square-

integrable and (id ⊗ �)
(
b(1 ⊗ λt)

) = (1 ⊗ Jσ i
2
(λt)

∗ J )(id ⊗ �)(b), where
J is the modular conjugation of ϕ in the GNS-construction (L2(G), ι,�). It

remains to show that 1 ⊗ Jσ i
2
(λt)J = Vt for all t ∈ G. Equation (2) implies

σ i
2
(λt) = �(t)− 1

2λt . The modular conjugation is given by

(Jξ)(s) = �(s)−
1
2 ξ(s−1)

for all ξ ∈ L2(G) and s ∈ G. The desired relation 1 ⊗ Jσ i
2
(λt)J = Vt now

follows. �

Corollary 5.2. Let a ∈ M(
A ⊗ C∗r (G)

)
be an integrable element. Then the

Fourier transform â is a strictly continuous function G →M(A).
If a is positive, then the pointwise product� 1

2 · â is a positive definite function.
In general, � 1

2 · â is a linear combination of positive definite functions.

Proof. Note that ρt := �(t) 12 Vt is the right regular representation of G on

L2(G, A). Any integrable element is, by definition, a linear combination of

positive integrable elements. If a is a positive integrable element, then a = b∗b
for some square-integrable element b ∈M(

A ⊗ C∗r (G)
)
; take for instance b =

a 1
2 . Proposition 5.1 implies that�(t) 12 ·â(t) = S∗ρt S, where S := (id⊗�)(b) ∈
L(A, L2(G, A)

)
. Since ρ is a strongly continuous unitary representation of G,

functions of the form t 	→ S∗ρt S are positive definite and strictly continuous.�
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Corollary 5.3. Assume that A is faithfully and nondegerately represented in
L(H) for someHilbert space H. If a ∈M(A⊗C∗r (G)) is an integrable element,
then �

1
2 · â : G → M(A) ⊆ L(H) is a left strongly-uniformly continuous

function. Moreover, if G has equivalent uniform structures, then â is a strictly-
uniformly continuous function G →M(A).

Proof. By Corollary 5.2, �
1
2 · â is a linear combination of strictly continuous

positive definite functions G → M(A). Proposition 4.2 yields the first asser-

tion. The final assertion follows from Remark 4.3. Note that G is unimodular if

it has equivalent uniform structures [4, 19.28]. �
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