
Bull Braz Math Soc, New Series 39(4), 597-616
© 2008, Sociedade Brasileira de Matemática

Islands at infinity on manifolds of asymptotically
nonnegative curvature

Sérgio Mendonça* and Detang Zhou*

The first author dedicates this paper to his parents José Martiniano and Zoraide

Abstract. We introduce an invariant which measures the R-eccentricity of a point in
a complete Riemannian manifold M and show that it goes to zero when the point goes
to infinity, if M has asymptotically nonnegative curvature. As a consequence we show
that the isometry group is compact if M has asymptotically nonnegative curvature and
a point with positive sectional curvature.
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0 Introduction

In this paper, we will study the “islands” (geodesic balls with all sectional
curvatures bounded from below by a positive constant) at infinity on complete
Riemannian manifolds with asymptotically nonnegative curvature. This paper
was motivated by our intuition that a complete manifold with asymptotically
nonnegative curvature should have, in some sense, sectional curvatures close to
zero at the infinity. For example, it should not admit sequences of uniformly
large balls going to infinity with uniform positive lower bound. For a better
presentation, we introduce the following definition, which relates the radius of
an island and the positive lower bound of its curvature.

Definition 1. Let p ∈ M. We call the number

hR(p) = sup
r∈(0,R]

{r2 inf{K (q) : q ∈ Bp(r)}}
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as the R-eccentricity of p. Here K (q) is the infimum of the sectional curvatures
at p, R is a positive constant and Bp(r) is the ball of radius r centered at p.

It is easy to see that r2 inf{K (q) : q ∈ Bp(r)} is invariant under a positive
constant scaling of metric. We consider the asymptotic behavior of hR(p) on
complete noncompact manifolds. Recall (see [Ab1]) that the curvature of a com-
plete manifold M is asymptotically nonnegative if there exists a nonincreasing
function κ : [0,+∞)→ [0,+∞) such that

∫ +∞
0 tκ(t)dt < +∞, and K (x) ≥

−κ(d(o, x)), for a fixed point o. Under this assumption we obtain:

Theorem 1. Let M be a complete manifold with asymptotically nonnegative
curvature. Then for any constant R > 0 we have

lim
p→∞ hR(p) = 0.

In other words, the theorem says that on a complete manifold with asymptoti-
cally nonnegative curvature any sequence qk →∞, with K ≥ δk > 0 in Bqk (rk),
and rk ≤ R, for a fixed number R, satisfies r2k δk → 0.

It should be noticed that on the universal covering of a torus with a nonflat
metric there exists a sequence of points qk →∞ such that hR(qk) = constant >
0 for some R > 0. So some suitable integrability conditions about curvatures
are reasonable and the asymptotically nonnegative curvature condition has been
studied extensively by Abresch ([Ab1], [Ab2]).

Remark 0.1. We present an example (see Example 3.4 in the third section)
which shows that there exists a complete manifold M with nonnegative curva-
ture and a sequence of points pk →∞ and {rk} ⊂ R+ such that hrk (pk) ≥ 1/128
for all k. So the condition on the finiteness of R is essential in Theorem 1,
even if K ≥ 0.

Remark 0.2. A trivial consequence of conditions in Theorem 1 is that
lim inf p→∞ K (p) = 0. In general we don’t have lim p→∞ K (p) = 0. Proposi-
tion 3.2 in section 3 shows that there exists a surface with nonnegative curvature
and lim supp→∞ K (p) = +∞.

Remark 0.3. Let M be a complete two-dimensional Riemannian manifold
with finite integral of the negative part of Gaussian curvature. The theorems of
Cohn-Vossen ([CV]) and Huber ([Hu]) assert that

∫
M KdV ≤ 2πX(M), where

X(M) is the Euler characteristic of M . Let {Dk, k = 1, 2, · · · } be a sequence of
disjoint domains in M with area A(Dk) ≥ A0 and μk the infimum of Gaussian

Bull Braz Math Soc, Vol. 39, N. 4, 2008



ISLANDS AT INFINITY 599

curvature in Dk . Then lim infk→+∞ μk ≤ 0. Otherwise there exists a constant
μ0 > 0 and a subsequence of {Dk} which we still denote by {Dk} such that
μk ≥ μ0. Then the positive part of Gaussian curvature satisfies

∫
M

K+dV ≥
∫
⋃+∞

k=1 Dk

K+dV ≥
+∞∑
k=1

∫
Dk

μ0dV = +∞.

Since the integral of the negative part of the curvature is finite and the integral
of the curvature is finite, the positive part of K must have finite integral, which
leads to a contradiction. This provides in dimension 2 a phenomenon similar to
Theorem 1.

We can use Theorem 1 to study the isometry group of a noncompact Rieman-
nian manifold. Let Isom(M) be the isometry group of M with the topology of
uniform convergence on compact subsets. We have

Corollary 2. Let M be a complete and noncompact manifold with asymp-
totically nonnegative curvature. Assume that M contains a point with positive
sectional curvature. Then Isom(M) is compact. Moreover, if we take a sequence
{ f k} for some isometry f , then, for any point p of positive curvature, there exists
a convergent subsequence f ki → g such that g(p) = p.

We would like to remark that the hypothesis of existence of a point with
positive curvature in Corollary 2 cannot be removed. For example, Isom(R2) is
not compact.

The rest of this paper is organized as follows. Since the proof of Theorem 1 is
quite long we divide it into two sections: in Section 1 we give some estimate for
distance function in manifolds of positive curvature which is needed in the proof
of Theorem 1. Then in the second section we prove Theorem 1 and Corollary 2.
In the third section we present some examples mentioned in the introduction.

1 The Distance Function in Manifolds of Positive Curvature

Let M be a complete Riemanian manifold. All geodesics unless otherwise stated
are assumed to be normalized. Recall that a connected set C is convex if, given
p ∈ C , there exists a ball Bp(ε) such that the set U = Bp(ε) ∩ C is strongly
convex (this means that given any two points x, y ∈ U , there exists a unique
minimizing geodesic γ in M joining x and y, and γ is contained in C). If C is
also closed, Theorem 1.6 in [CG] says that C is a k-dimensional submanifold
with smooth and totally geodesic interior int(C) and a boundary ∂C of C0 class.
We assume that ∂C 	= ∅. Given p ∈ int(C)we say that a normal geodesic σ is a
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C-minimal connection to ∂C if the distance dC(p, ∂C) = L(σ ), where L(σ ) is
the length of σ and dC is the intrinsic distance of C . Let γ : [0, a] → int(C) be
a geodesic. Let θ(s) be the angle between γ ′(s) and the C-minimal connection
to ∂C . Set ϕ = dC ◦ γ . When the sectional curvature of M is nonnegative, by
Theorem 1.10 in [CG] ϕ is concave (The original statement of Theorem 1.10
in [CG] refers to the distance d instead of dC . It is shown in Example 3.5 in
the third section that this modification is necessary.) and, given s0 ∈ [0, a], it
holds that

ϕ(s) ≤ ϕ(s0)− (s − s0) cos θ(s0)

for sufficiently small |s−s0|. In the following result we show that, if K ≥ δ > 0,
then the graph of ϕ stays below a parabola.We say that C is γ -convex if, for any
C-minimal connection σs : [0, ϕ(s)] → C between γ (s) and ∂C , it holds that
any geodesic τ : [0,+∞) → M with τ ′(0) ⊥ σ ′s(ϕ(s)) has τ(u) /∈ int(C) for
small u ≥ 0.

Proposition 1.1. Assume that C is γ -convex. Suppose that there exists a con-
stant δ > 0 such that the sectional curvatures ≥ δ along all C-minimal connec-
tions between γ (s) and ∂C. Then

ϕ(s) ≤ ϕ(0)− s cos θ(0)− d̄λδ
2

s2

for all s, where λ = min{sin2 θ(0), sin2 θ(a)} and d̄ = min{ϕ(0), ϕ(a)}.
To prove the proposition we need some notations and prove several technical

lemmas. For a geodesic τ : [0, b] → M , set f[ν, τ ,L](t, s) = expτ(t) sPtν,
(t, s) ∈ L where Ptν is the parallel transport of ν along τ and L ⊂ [0, b] × R.
Let D be a compact neighborhood of γ and εD > 0 be such that for any p ∈ D
the ball Bp(εD) of center p and radius εD is a normal geodesic ball. By de-
creasing εD if necessary, we can assume that Bγ (s)(εD) ⊂ D, for all s ∈ [0, a].
Let σ s be some C-minimal connection between γ (s) and ∂C .

Lemma 1.2 below follows easily from the continuous differentiability of the
exponential map, the continuity of the function K (x), and from Lemmas 1.4 and
1.7 in [CG]. Note that by Lemma 1.4 in [CG], given any point p ∈ ∂C there
exists a small ball U = Bp(ε) such that any point x ∈ int(C) ∩U is joined to p
by a unique minimal geodesic contained in int(C).

Lemma 1.2. Given ε > 0, there exists μ > 0 such that, for any s0 ∈ [0, a]
and any ν ⊥ σ ′s0(0), |ν| = 1, if we set f = f [ν, σs0, L], where L = [0, ϕ(s0)]×
[0, μ], then the geodesic s �−→ f (t, s) is free of focal points to σs0(t), for all
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ISLANDS AT INFINITY 601

t ∈ [0, ϕ(s0)], the geodesic s �−→ f
(
ϕ(s0), s

)
is entirely away from int(C), and

it holds that K ≥ δ − ε on the image of f .

The following result is an elementary fact about the geometry of spheres.

Lemma 1.3. Consider the sphere S2(δ) = {(x, y, z) ∈ R3
∣∣ x2 + y2 + z2 =

R2}, R = 1/
√
δ. Let σ : [0, d] → S2(δ) be a geodesic. Take a unitary tangent

vector v orthogonal to σ ′(0). Set f = f [v, σ, L], where L = [0, d] × Rπ/2.
Consider the curve fs(t) = f (t, s). Then the length L( fs) = d · cos(s√δ).
Lemma 1.4. Take s and s0 so that s > s0 and θ(s0) < π/2. Let τ be a C-
minimal connection between γ (s) and σs0 , with τ(0) = σs0(t) and τ(u) = γ (s).
Take in the plane the triangle (s − s0, t, u) with corresponding angles (α̃, β̃, θ̃ ).
Given ε > 0, there exists μ = μ(γ, ε) > 0 so that if s − s0 < μ then sin θ̃ >

sin θ(s0)/
√
1+ ε.

Proof of Lemma 1.4. Note that by Toponogov Theorem (see for example [S])
we have θ̃ ≤ θ(s0). Let K0 be an upper bound of the sectional curvatures in D.
By construction of τ , it holds that u ≤ (s − s0). Then the greatest side of the
triangle

(
γ| [s0,s], (σs0)| [0.t], τ

)
does not exceed 2(s − s0). Suppose that

0 < s − s0 < min

{
εD

2
,

π

2
√

K0

}
.

The geodesics of the triangle are minimizing and contained in normal balls
centered at each of the three vertices. Since 0 < s − s0 < π/(2

√
K0), its peri-

meter does not exceed 2π/
√

K0. As it is observed in [Gv], p. 197, the Rauch
Comparison Theorem implies that there exists a small triangle� = (s− s0, t, u)
in S2(K0) with corresponding angles (α′, β ′, θ ′), that satisfy α̃ ≤ α′, β̃ ≤ β ′
and θ̃ ≤ θ ′.

Let E ⊂ S2(K0) be the set bounded by � and that has the smallest area. By
using Gauss-Bonnet Theorem in E we have that

π − θ̃ = α̃ + β̃ ≤ α′ + β ′ = π − θ ′ +
∫
E
K0 dS,

where dS represents the element of area of S2(K0). Let ψ(�) be the area
of the equilateral triangle of side � in S2(K0). Therefore π − θ̃ ≤ π − θ ′ +
K0 ψ

(
2(s − s0)

)
. Then θ(s0) − θ̃ ≤ θ ′ − θ̃ ≤ K0 ψ

(
2(s − s0)

)
. Lemma 1.4

follows easily from this. �
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Proof of Proposition 1.1. The proof has a local part, in which we show that
for the geodesic γ as in the statement of Proposition 1.3 there exists μ > 0 such
that if |s − s0| < μ, then

ϕ(s) ≤ hs0(s) := ϕ(s0)− (s − s0) cos θ(s0)− d̄λ(δ − ε)

2(1+ ε)3
(s − s0)2.

We prove later that for all s ∈ [0, a], it holds that

ϕ(s) ≤ h0(s) = ϕ(0)− s cos θ(0)− d̄λ(δ − ε)

2(1+ ε)3
s2.

By making ε→ 0, we obtain the desired inequality.

A. Local part of the proof

Fix an ε > 0 such that ε < δ. There are three cases: θ(s0) = π/2, θ(s0) > π/2
and θ(s0) < π/2. First we obtain that, for s sufficiently close to s0 and such
that s ≥ s0, it holds that

ϕ(s)≤ fs0(s) = ϕ(s0) cos
(s − s0)

√
δ − ε sin θ(s0)
1+ ε

− (s − s0) cos θ(s0).

The case that s < s0 is reduced to the other one by changing the orientation of γ
and replacing θ(s0) by π − θ(s0). We note also that the local part is clearly true
if θ(s0) = 0 or θ(s0) = π . So we always assume that 0 < θ < π . The local part
of the proof will be completed by showing that fs0(s) ≤ hs0(s) for s sufficiently
close to s0. For simplicity of notation along the proof of the local part we set

d = ϕ(s0), θ = θ(s0), σ = σs0 .

Claim 1. Let s0 ∈ [a, b]. For s sufficiently close to s0 it holds that ϕ(s0) ≤
fs0(s).

Case 1. θ = π/2.

Take μ > 0 given by Lemma 1.2. Set F = f [γ ′(s0), σ, L], with L =
[0, d] × [0, μ]. Set Ft(s) = Fs(t) = F(t, s − s0). By hypothesis the geodesic
Fd is entirely away from int(C). Thus we have ϕ(s) ≤ L(Fs). Because of
Lemmas 1.2 and 1.4, and the Berger’s extension of the Rauch Theorem (see for
example [Gv], p. 194) we have

ϕ(s)≤ L(Fs)≤d cos
(
(s − s0)

√
δ − ε

) ≤ d cos
(s − s0)

√
δ − ε

1+ ε
= fs0(s).
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Case 2. θ > π/2.

In the plane determined by γ ′(s0) and σ ′(0), consider a vector E ⊥ σ ′(0)
with |E | = 1 and such that the angle �

(
E, γ ′(0)

)
< π/2. Take μ given

by Lemma 1.2. Set F = F[(sin θ)E, σ, L], with L = [0, d] × [0, μ]. Set
Ft(s) = Fs(t) = F(t, s − s0). As in Case 1, the geodesic Fd is entirely away
from int(C) and so we have

d
(
F0(s), ∂C

) ≤ L(Fs) ≤ d cos
(
(s − s0)

√
δ − ε sin θ

)
.

By the triangle inequality we have

ϕ(s) ≤ d
(
F0(s), ∂C

)+ d
(
γ (s), F0(s)

)
.

Set x = d
(
γ (s), F0(s)

)
. We only need to prove that x ≤ −(s − s0) cos θ .

Assume that s − s0 < εD . Consider in the plane the triangle � of sides s − s0,
(s − s0) sin θ and angle θ − π/2 between them. By Toponogov Theorem (see
[S]) the value x does not exceed the third side of �. Furthermore we have
sin θ = cos(θ − π/2), hence � is in fact a right triangle. So it’s third side is
equal to (s − s0) sin(θ − π/2) = −(s − s0) cos θ, as we wanted to prove.

Case 3. θ < π/2.

First we prove that

ϕ(s) ≤ gs0(s) =
(
d − (s − s0) cos θ

)
cos

(s − s0)
√
δ − ε sin θ√

1+ ε
.

After this we obtain that gs0(s) ≤ fs0(s).

Step 1. For small s − s0 we have ϕ(s) ≤ gs0(s).

Let μ be as in Lemma 1.2. Assume further that μ < εD . Let τ : [0, us] → V
be a normal geodesic that realizes the distance between the geodesic σ and the
point γ (s). Set ts > 0 such that τ(0) = σ(ts). We have τ(us) = γ (s). By
taking f [τ ′(0), σ, L] with L = [0, d] × [0, μ], we obtain as above

ϕ(s) ≤ (d − ts) cos
(
us
√
δ − ε

)
. (1.1)

Set α = π/2 = �
(−σ ′(ts), τ ′(0)) and β = �

(
τ ′(us), γ

′(s)
)
. Consider in

the plane the triangle (s − s0, ts, us) with corresponding angles (α̃, β̃, θ̃ ). By
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Toponogov Theorem (see [S]) it holds that α ≥ α̃, β ≥ β̃ and θ ≥ θ̃ . We have
ts = (s − s0) cos θ̃ + us cos α̃. Since α̃ ≤ α = π/2 we obtain

ts ≥ (s − s0) cos θ̃ ≥ (s − s0) cos θ. (1.2)

Let H be the height relative to the side ts . Then

us ≥ H = (s − s0) sin θ̃ . (1.3)

By (1.1), (1.2) and (1.3) we obtain

ϕ(s) ≤ (
d − (s − s0) cos θ

)
cos

(
(s − s0)

√
δ − ε sin θ̃

)
.

By Lemma 1.4, for sufficiently small μ we have ϕ(s) ≤ gs0(s) and we conclude
the proof of Step 1.

Step 2. There exists η = η(δ, ε, d̄) > 0, such that if 0 < s − s0 < η then
gs0(s) ≤ fs0(s), where d̄ = min{ϕ(0), ϕ(a)}.

Note that by the concavity of ϕ we have d ≥ d̄. Set

u = s − s0, A =
√
δ − ε sin θ

1+ ε
.

Then we have

fs0(s)−gs0(s) = d
(
cos uA−cos uA

√
1+ ε

)−u cos θ
(
1−cos uA

√
1+ε)

= 2 sin2 uA
√
1+ε
2

(
d

(
1− sin2 uA

2

sin2 uA
√
1+ε

2

)
−u cos θ

)

≥ 2 sin2 uA
√
1+ ε

2

(
d̄

(
1− sin2 uA

2

sin2 uA
√
1+ε
2

)
− u

)
.

We have |uA| ≤ u
√
δ − ε

1+ ε
. Since

lim
x→0

(
1− sin2 x

sin2 x
√
1+ ε

)
= ε

1+ ε
> 0,

it is easy to conclude Step 2. So we have proved that in all cases (θ = π/2,
θ > π/2 and θ < π/2), if |s − s0| is sufficiently small, then

ϕ(s) ≤ fs0(s) = d cos
(s − s0)

√
δ − ε sin θ

1+ ε
− (s − s0) cos θ.
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To complete the Local Part of the proof of Proposition 1.1 it suffices to prove

Claim 2. There exists η = η(δ, ε, d̄, λ) > 0 such that

fs0(s) ≤ hs0(s) = d − (s − s0) cos θ − d̄λ(δ − ε)

2(1+ ε)3
(s − s0)2,

if |s − s0| < η, where λ = min{sin2 θ(0), sin2 θ(a)}.
It is an easy consequence of the concavity of the distance function ϕ that

θ(s1) ≥ θ(s2), if s1 < s2. So we conclude that sin2 θ ≥ λ. We have:

fs0(s0) = hs0(s0) = d, f ′s0(s0) = h′s0(s0) = − cos θ,

hs0
′′(s) = − d̄λ(δ − ε)

(1+ ε)3
,

fs0
′′(s) = −d(δ − ε) sin2 θ

(1+ ε)2
cos

(s − s0)
√
δ − ε sin θ

1+ ε

≤ − d̄λ(δ − ε)

(1+ ε)2
cos
|s − s0|

√
δ − ε

1+ ε
.

Since

lim
x→0

cos
x
√
δ − ε

1+ ε
= 1,

it is easy to conclude that for certain η = η(δ, ε, d̄, λ) > 0 we have f ′′s0(s) ≤
h′′s0(s), if |s − s0| < η. So Claim 2 is proved and the local part of the proof of
Proposition 1.1 is completed.

B. Global part of the proof

By the local part, there exists η > 0 such that if |s − s0| < η then

ϕ(s) ≤ hs0(s) = ϕ(s0)− (s − s0) cos θ(s0)− d̄λ(δ − ε)

2(1+ ε)3
(s − s0)2.

To conclude the proof of Proposition 1.1 we must prove that for all s ∈ [0, a],

ϕ(s) ≤ h0(s) = ϕ(0)− s cos θ(0)− d̄λ(δ − ε)

2(1+ ε)3
s2. (1.4)
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Consider numbers 0 = s0 < s1 < s2 < . . . < sm = a such that, for all
i ∈ {1, 2, . . . ,m}, it holds that si − si−1 < η. Then

s ∈ [si−1, si+1] ⇒ ϕ(s) ≤ hsi (s), for i = 1, 2, . . . ,m − 1.

For s ∈ [0, s1], it holds that ϕ(s) ≤ h0(s).

Claim 1. Let i, j ∈ {0, 1, . . . ,m}. It occurs exactly one of the three condi-
tions below:

(a) hsi and hs j coincide;

(b) the graphs of hsi and hs j have no intersection;

(c) the graphs of hsi and hs j have exactly one intersection.

In fact, the functions hsi and hs j are quadratic functions with the same second
derivative. The intersection of their graphs is obtained by a linear equation.
Claim 1 follows from this.

Claim 2. Let 1 ≤ i ≤ m − 1. It holds that

s ≥ si ⇒ hsi (s) ≤ hsi−1(s).

In fact we have
hsi−1(si−1) = ϕ(si−1) ≤ hsi (si−1), (1.5)

and
hsi (si ) = ϕ(si ) ≤ hsi−1(si ). (1.6)

By (1.5) and (1.6) there exists a point s ′ ∈ [si−1, si ] such that

hsi−1(s
′) = hsi (s

′). (1.7)

By (1.6) and (1.7) it follows from Claim 1 that

s ≥ si ⇒ hsi (s) ≤ hsi−1(s),

and Claim 2 is proved.

Claim 3. For s ∈ [0, a], it holds that ϕ(s) ≤ h0(s).
If s ∈ [0, s1], the assertion is true. Assume that s ∈ [si , si+1], with 1 ≤ i ≤

m − 1. By applying successively Claim 2 we obtain

ϕ(s) ≤ hsi (s) ≤ hsi−1(s) ≤ hsi−2(s) ≤ ... ≤ hs0(s) = h0(s).

So the inequality (1.4) is proved. By making ε → 0 we conclude the proof of
Proposition 1.1. �
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2 Balls Going to Infinity

In this section we will finish the proofs of Theorem 1 and corollary 2 stated
in the introduction. We say that a normal geodesic γ : [0,∞)→ M is a ray if
d
(
γ (0),γ (t)

) = t , for all t . It is easy to see that for all p ∈ M there exists a ray
starting at p. Let 
p be the set of all rays which start at p. Set St = ∂Bo(t).
We define as in [W] the function

Fo(x) = lim
t→+∞

(
t − d(x, St)

)
.

Set Ct = {x ∈ M |Fo(x) ≤ t}. It follows from [W] that Fo is a well defined
Lipschitz function satisfying

Fo(x) ≤ d(o, x), and d(x, ∂Ct) = t − Fo(x) if Fo(x) < t. (2.1)

Furthermore, if σ j (0)→ p, σ ′j (0)→ v and σ j is a minimal connection between
σ j (0) and St j , where t j →+∞, then γ (t) := expp tv is a ray satisfying

Fo
(
γ (t)

) = Fo(p)+ s. (2.2)

Lemma 1.4 in [K] implies that limx→∞ Fo(x) = +∞ and that, given ε > 0,
there exists r > 0 such that, if Fo(x) > r and γ ∈ �p satisfies (2.2), then the
angle between γ ′(0) and any minimal connection between x and o is greater
than π − ε. This implies by standard arguments of [C] that for t > r the
complement M\int(Ct) is a finite union of ends U of the form ∂U × [0,+∞),
where ∂U is connected. From now on we assume by contradiction that there
exists a sequence qk going to infinity with K ≥ δk > 0 in the ball Bqk (rk) and
such that δkr2k ≥ η > 0, and rk ≤ R. We can assume that qk is contained
in some end U . Take any sequence pk →∞, with pk ∈ U . If s is sufficiently
large we have Ss ∩ ∂U = ∅. For each large k take a minimal connection σk
between pk and Ss . The geodesic σk is contained in a minimal geodesic σ̃k
joining o and pk . By taking a subsequence we obtain a ray γ : [0,+∞)→ M
starting at o such that γ (t) ∈ U for t ≥ s.

Lemma 2.1. Let o be the base point of M. Let γ : [0,+∞) → M be a ray
starting at o such that γ (t) ∈ U for t ≥ s. Then for sufficiently large k we have
d(qk, γ ) > rk/2.

Proof. By [Ab1] we know that
∫ +∞
0 κ(t)dt < +∞. Since K

(
γ (t)

) ≥ −κ(t)
we obtain that the improper integral

∫ +∞
0

(
K (γ (t)

)
dt is well defined. By [Am]
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or [MZ2] we conclude that
∫ +∞
0

(
K (γ (t)

)
dt < +∞. So for sufficiently large s

we have

max

{∫ +∞
s

(
K (γ (t)

)
dt,

∫ +∞
s

κ(t)dt
}
<

η

2R
.

Assume by contradiction that there exists some subsequence, which we still
denote by qk , such that d(qk, γ ) ≤ rk/2. Thus it is easy to obtain an interval
Ik ⊂ [s,+∞) of length rk such that γ (Ik) ⊂ Bqk (rk). Since δkrk ≥ η/R we
have

η

2R
>

∫ +∞
s

K
(
γ (t)

)
dt ≥ η

R
−

∫
[s,+∞)\Ik

κ(t)dt >
η

2R
.

This contradiction proves Lemma 2.1. �

Lemma 2.2. Take qk as above. Choose q̃k ∈ Bqk (rk/3). Assume that q̃k ∈
∂Ctk . Given a geodesic σ of length � ≤ rk/3, if σ(0) = q̃k and σ(�) ∈ ∂Ctk ,
then for sufficiently large k we have σ ⊂ Ctk .

Proof. Since tk = Fo(q̃k)→+∞, for sufficiently large k we can assume that∫ +∞
tk

κ(t)dt <
η

6R
.

Assume by contradiction that there exists pk in the image of σ such that
pk 	∈ Ctk . Then there exists ε > 0 and s0 > 0 such that if s ≥ s0 then
s − d(pk, Ss) ≥ tk + ε. So there exists pks in the image of σ such that
d(pks, Ss) is minimal. We still have s − d(pks, Ss) ≥ tk + ε. By taking a
subsequence, a minimal geodesic joining pks and Ss converges to a ray τ , where:

τ(0) = p, Fo(p) ≥ tk + ε, d
(
τ(s), σ

) = s, Fo
(
τ(s)

) = Fo(p)+ s.

For 0 ≤ s ≤ rk/3 we have τ(s) ∈ Bqk (rk), hence K
(
γ (s)

) ≥ δk . For all
s ≥ 0 we have d

(
o, τ (s)

) ≥ Fo
(
τ(s)

) = Fo(p)+ s > tk + s, hence K
(
τ(s)

) ≥
−κ(tk + s). So we obtain∫ S

0
K ◦ τ ≥ δkrk

3
−

∫ S

rk/3
κ(tk + s)ds ≥ η

3R
−

∫ tk+S

tk+rk/3
κ(u)du ≥ η

6R
.

Then

lim inf
S→+∞

∫ S

0
K
(
τ(s)

)
ds > 0,

which contradicts Corollary 1 in [MZ1], since d
(
τ(s), σ

) = s, for all s ≥ 0.
Lemma 2.2 is proved. �
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Consider the solution f of the equation{
f ′′(r)− κ(r) f (r) = 0

f (0) = 0, f ′(0) = 1
(2.3)

for r ≥ 0. Now let M̃ be the plane equipped with the metric

ds2 = dr2 + f (r)2dθ2.

This metric was studied by Abresch in [Ab1], and he proved a version of
Toponogov Theorem comparing triangles with vertex o in M with triangles
with vertex õ := (0, 0) in M̃ . The curvature of M̃ is

K (r) = − f ′′(r)
f (r)

= −κ(r).

Of course õ is a pole. In [GW] it is proved that there exists

F = lim
r→+∞ f ′(r) ≥ 1.

We prove now a simple result about M̃ .

Lemma 2.3. Let γ̃ , σ̃ be rays starting at õ ∈ M̃ with an angle �
(
γ̃ ′(0),

σ̃ ′(0)
) = θ̃ . Let V be the region defined by γ̃ , σ̃ and θ̃ . Then∫

V
K = θ̃ (1− F).

Proof. Set Vt = {expõ sv|0 ≤ s ≤ t, v ∈ I } where I is the arc in the unit
tangent circle of angle θ̃ which joins γ̃ ′(0) and σ̃ ′(0). For any t > 0 we have

∫
Vt

K =
∫ θ̃

0
dθ

∫ t

0
−κ(r) f (r)dr = θ̃

∫ t

0

(− f ′′(r)
)
dr = θ̃

(
1− f ′(t)

)
.

When we let t →+∞ we obtain the desired equality. �
From now on we denote by τxy any minimal geodesic joining x and y. Let

qk ∈ M be a sequence as above and set tk = Fo(qk). Again we have that
U ∩ (

M\int(Ctk )
)
is homeomorphic to (U ∩ ∂Ctk )× [0,+∞), where U ∩ ∂Ctk

is connected. From Lemma 2.1 and the connectedness of U ∩ ∂Ctk we can
choose a point q̃k ∈ U ∩ ∂Ctk with d(qk, q̃k) = rk/10.
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Lemma 2.4. Take ε > 0. For sufficiently large k, any τ = τqk q̃k , and any
minimal connection σ between qk and ∂Ct ′ with 0 < t ′ − tk < rk/10 satisfies

π

2
≤ �(

σ ′(0), τ ′(0)
)
<

π

2
+ ε. (2.4)

Proof. Because of Lemma 2.2, the same proof of Lemma 1.7 in [CG] implies
that Ct ′ is τ -convex. Thus the left inequality in (2.1) is an easy consequence of
the first variation formula together with (1.1). Let us prove the right inequality.
Take μ = τoq̃k and set � = L(μ). Let γ = τoqk and set t = L(γ ). By (4.1) we
have �, t ≥ tk . Set: αk = �

(−γ ′(t), τ ′(0)
)
, βk = �

(
μ′(�), τ ′(rk/10)

)
.

Consider in M̃ the comparison triangle (�, t, rk/10) with corresponding
angles (α̃k, β̃k, θ̃k), where õ is the vertex opposite to rk/10. By the extension of
the Toponogov Theorem due to Abresch (see [Ab1]) we have αk ≥ α̃k, βk ≥ β̃k .
Since M̃ satisfies K ≤ 0 and rk/tk ≤ R/tk → 0 we can consider a triangle
in the plane with the same lengths and conclude easily that θ̃k → 0 by the
extension of the Rauch Comparison Theorem (see [Gv], p. 197). So for suffi-
ciently large k we have θ̃F < ε/3.

Claim 1. For sufficiently large k it holds that βk < π/2+ ε/3.

By Lemma 1.4 in [K], if k is sufficiently large then any minimal connection
ρ between q̃k and ∂Ct ′ satisfies �

(
ρ ′(0), μ′(�)

)
< ε/3. Then

βk = π − �(−τ ′(rk/10), μ′(�))
≤ π − [

�
(−τ ′(rk/10), ρ ′(0))− �(

ρ ′(0), μ′(�)
)]

= π − �(−τ ′(rk/10), ρ ′(0)
)+ �(

ρ ′(0), μ′(�)
)
.

By the left inequality in (4.4) applied to τ and ρ instead of τ and σ we have
�
(−τ ′(rk/10), ρ ′(0)) ≥ π/2. So we obtain

βk < π − π

2
+ ε

3
= π

2
+ ε

3
,

and Claim 1 is proved.

Claim 2. αk > π/2− 2 ε/3.

By Claim 1 and Lemma 2.3 we have

αk ≥ α̃k ≥ π − β̃k − θ̃k + θ̃k(1− F)

≥ π − βk − θ̃k F > π −
(π
2
+ ε

3

)
− ε

3
= π

2
− 2

ε

3
.
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Conclusion of the proof. By Lemma 1.4 in [K], if k is large enough then
�
(
γ ′(t), σ ′(0)

)
< ε/3. So by Claim 2 we obtain

�
(
τ ′(0), σ ′(0)

) ≤ �(
τ ′(0), γ ′(t)

)+ �(
γ ′(t), σ ′(0)

)
= π − αk + �

(
γ ′(t), σ ′(0)

)
< π −

(π
2
− 2

ε

3

)
+ ε

3
= π

2
+ ε.

This concludes the proof. �
We are now ready to prove the following equivalent version of Theorem 1.

Theorem 2.5. Let M be a complete manifold with asymptotically nonnegative
curvature. Then for any sequence qk → ∞, with K ≥ δk > 0 in Bqk (rk), and
rk ≤ R, for a fixed number R, satisfies r2k δk → 0.

Proof of Theorem 1. Take a sequence qk as above. Set �k = rk/10. Let ε > 0
be a constant such that

sin ε

cos2 ε
<

η

200
. (2.5)

Let tk = Fo(qk). There exists a point q̃k ∈ ∂Ctk , such that the distance
d(qk, q̃k) = �k . Let τk = τqk q̃k . Consider a minimal connection σs between
τk(s) and ∂C(tk+�k ), for s ∈ [0, �k]. Set θ(s) = �(τ ′k(s), σ ′s(0)) and ϕ(s) =
d(τk(s), ∂C(tk+�k )). By Lemma 2.2 it is easy to see that τk([0, �k]) ⊂ Ctk .
As above the set Ctk+�k is τk-convex. So we can apply Proposition 1.3, ob-
taining that

ϕ(�k) ≤ ϕ(0)− �k cos θ(0)− d̄λδk
2

�2k .

By Lemma 2.4, for sufficiently large k we have π/2 ≤ θ(0) < π/2 + ε, and
π/2 ≤ π − θ(�k) < π/2 + ε. So we obtain λ ≥ min{sin2 θ(0), sin2 θ(�k)} ≥
cos2 ε, because of the monotonicity of the function θ(s). We obtain also that
− cos θ(0) ≤ − cos(π/2+ε) = sin ε. Note thatϕ(0) = �k . Since τk is contained
in Ctk , by (2.1) we obtain ϕ(s) ≥ �k for all s ∈ [0, �k], hence d̄ = ϕ(0) = �k
and �k ≤ ϕ(�k). Thus we conclude that

�k ≤ ϕ(�k) ≤ �k + �k sin ε − �3k(cos
2 ε)δk

2
.

Replacing �k by its value we obtain

sin ε

cos2 ε
≥ �2k δ

2
≥ η

200
,

which contradicts (2.5) and proves the theorem. �
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Let us prove our corollary stated in the introduction.

Proof of Corollary 2. Assume that K (p) > 0. So there exists r > 0 such that
K ≥ K (p)/2 in the ball B = Bp(r). Let fk be a sequence of isometries of M .
Because of Theorem 1 there exists S > 0 such that fk(B) ⊂ Bp(S), for all k.
So by triangle inequality we have

d
(
x, fk(x)

) ≤ d(x, p)+ d
(
p, fk(p)

)+ d
(
fk(p), fk(x)

)
≤ 2d

(
x, p)+ S ≤ 2T + S,

if x ∈ Bp(T ). So the family of equicontinuous maps fk sends the compact ball
Bp(T ) into the compact ball Bp(3T + S). By the Ascoli-Arzela Theorem there
exists a subsequence fki which converges uniformly on Bp(T ). Now consid-
ering balls Bp(s), s ∈ N, and using the classical diagonal argument as in the
proof of the Ascoli-Arzela Theorem, we obtain the existence of a subsequence
of { fk} which is convergent along each ball Bp(s). Since Isom(M) is closed,
so it is compact.

Now assume that fk = f k , for some isometry f . We want to find some
subsequence converging to g with g(p) = p. First we assert that there exists a
subsequence f ki such that f ki (p)→ p. Otherwise there exists ε > 0 such that
d
(
f k(p), p

) ≥ ε, for all k ≥ 1. Decreasing ε if necessary, we can assume that
K ≥ K (p)/2 in B = Bp(ε/4). Then it is easy to see that all balls f k(B) are
mutually disjoint, so they cannot be contained in a compact set. This contradicts
Theorem 1. So we know that there exists a subsequence f si such that f si (p)→
p. Passing again to a subsequence we can assume that f si → g uniformly on
compact subsets. Trivially we have g(p) = p. Corollary 2 is proved. �

3 Examples

We give here some examples stated in the introduction. To prove Proposition
3.2 below, we need the following Lemma.

Lemma 3.1. Take ε > 0. Fix a, b ∈ R with a < b. There exists a C∞ function
f : R → R which satisfies: f (x) = ax if x ≤ −ε; f (x) = bx if x ≥ ε;
f ′′(x) ≥ 0 for all x ∈ R; given A > 0, there exist suitable choices of ε and
c ∈ (−ε, ε) so that f ′′(c) > A.

Proof. Let h : R→ R be a C∞ function so that h(x) = a if x ≤ −ε, h(x) = b
if x ≥ ε, and h − (a + b)/2 is a nondecreasing odd function. In particular we
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have
∫ ε

−ε h(x)dx = ε(a + b). Define f : R→ R by f (x) = −aε+ ∫ x
−ε h(t)dt .

Then f (x) = ax if x ≤ −ε, and f (x) = bx if x ≥ ε. Since f ′′ = h′ we have
f ′′ ≥ 0. By the Mean Value Theorem there exists c ∈ (−ε, ε), such that

f ′′(c) = h′(c) = h(ε)− h(−ε)
2ε

= b − a
2ε

.

Thus if we choose ε <
b − a
2A

Lemma 3.1 follows. �

Proposition 3.2. There exist a complete surface of revolution M2 with K ≥ 0
and a sequence (pk) ⊂ M, pk →∞ such that lim K (pk) = +∞.

Proof. Take g : [0,+∞)→ R satisfying g(x) = akx + bk, if x ∈ [k, k + 1],
where the sequences (ak) and (bk) satisfy a0 = b0 = 0, (ak) is increasing and
ak → 1, bk+1 is chosen in such a way that g is continuous at x = k + 1, that is,
ak(k + 1)+ bk = ak+1(k + 1)+ bk+1.

From Lemma 3.1 we can obtain sequences (εk)k≥0, (ck)k≥1 with ε0 = 0, 0 <

εk < 1/2, if k ≥ 1, ck ∈ (k − εk, k + εk), and a C∞ function f : [0,+∞) →
[0,+∞), so that f (x) = g(x) if x ∈ [k + εk, k + 1 − εk+1], f ′′ ≥ 0 and
f ′′(ck) > k(k−1). The surface M given by the rotation of the graph of f around
the y-axis furnishes the desired example, as we see next. It is straightforward
to verify that

K
(
x, f (x), 0

) = f ′′(x)
x

f ′(x)(
1+ (

f ′(x)
)2)2 .

Since the function f ′ is nondecreasing we have ak−1 ≤ f ′(ck) ≤ ak , hence

f ′(ck)(
1+ (

f ′(ck)
)2)2 → 1

4
.

Since f ′′(ck) ≥ k(k − 1) it is easy to see that K
(
ck, f (ck), 0

) →+∞, thus
concluding the proof. �

Lemma 3.3. Let f (r) be a smooth function on [0,+∞) and r0 be a positive
constant such that f ′′(r) ≤ 0 for any r ∈ [r0,+∞) and 0 < f ′(r0) < 1. Then
there exists a smooth function g(r) on [0,+∞) such that g′′(r) ≤ 0 and

g(r) =
{
r, r ≤ r0
f (r)+ c, r ≥ 2r0,

(3.1)

where c is a constant.
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Proof. Define a function h(r) on [0,+∞) as h(r) := α(r)+ (1−α(r)) f ′(r),
with

α(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, r ≤ r0

1− β

∫ r

r0
e−

1
(t−r0)(t−2r0) dt, r ∈ (r0, 2r0)

0, r ≥ 2r0,
where

β =
(∫ 2r0

r0
e−

1
(t−r0)(t−2r0) dt

)−1
.

Note that f ′(r) ≤ h(r) ≤ 1.

So we have for all r ≥ 0

h′(r) = α′(r)(1− f ′(r))+ (1− α(r)) f ′′(r) ≤ 0,

here we have used the condition 0 < f ′(r0) < 1 which implies that f ′(r) < 1
for all r ≥ r0. Let g(r) := ∫ r

0 h(t) dt . We have g′(r) = f ′(r) when r ≥ 2r0
and satisfies the desired condition. It is easy to see that the constant c in (5.1)
is determined by

c = g(2r0)− f (2r0) = r0 +
∫ 2r0

r0
h(t)dt − f (2r0) ≤ 2r0 − f (2r0). �

Here we are ready to give an example to show that the boundness of {rk} in
Theorem 1 cannot be deleted in general.

Example 3.4. There exist a Riemannian manifold (M, g) with nonnegative
curvature, a sequence of points qk →∞, and positive numbers rk such that

r2k inf
{
K (x) : x ∈ Bqk (rk)

}
>

1

128
> 0. (3.2)

Proof. Let f (r) = r 1
2 and r0 = 1. Let g be the function obtained as in Lemma

5.1. Since g′′(r) ≤ 0 on [0,+∞), and g′(r) > 0 for r ∈ [0, 1] ∪ [2,+∞) we
know that g(r) is always positive on (0,+∞). We note also that here 0 ≤ c ≤ 1.

Define M = (Rn, ds2)with the metric ds2 = dr2+g2(r)dθ2 for the spherical
coordinates. It is well-known and straightforward to verify that

K (r) = −g′′(r)
g(r)

= −h′(r)
g(r)

≥ 0,
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where r = r(x) is the distance function from origin. So we get

K (x) = 1

4(r2 + cr 3
2 )
≥ 1

8r2
, for r ∈ [2,+∞).

So we can choose qk = (k + 2, 0, · · · , 0) and rk = k. It follows that

k2K ≥ k2K (2k + 2) ≥ k2

8(2k + 2)2
≥ k2

8(2k + 2k)2
= 1

128
in Bqk (rk),

and this shows (3.2). The proof is complete. �
Now we present a very simple example, which shows that the distance

function from the boundary of closed convex sets on nonnegatively curved
manifolds may not be concave.

Example 3.5. Consider a smooth curve α : R→ R
3 satisfying

α(r) =

⎧⎪⎨
⎪⎩
(0,−1,−t), t ≤ −1
(0, 1, t), t ≥ 1(
0, t, f (t)

)
, −1 ≤ t ≤ 1,

where f is a convex smooth even function with a minimum at f (0) = 0. If we
rotate α around the z-axis we obtain a complete surface S with K ≥ 0. Let C =
α([−2, 20]). ClearlyC is a closed convex set with ∂C = {(0,−1, 2), (0, 1, 20)}.
Set ϕ(t) = d

(
α(t), ∂C

)
, t ∈ [−2, 20]. Clearly ϕ admits a local strict minimum

at t = 2, hence ϕ cannot be concave. Because of this we needed to consider
dC instead of d in Proposition 1.1 above.
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