

Regular interval Cantor sets of S^1 and minimality

Aldo Portela*

Abstract. It is known that not every Cantor set of S^1 is C^1 -minimal. In this work we prove that every member of a subfamily of what we here call *regular interval Cantor set* is not C^1 -minimal. We also prove that no member of a class of Cantor sets that includes this subfamily is $C^{1+\epsilon}$ -minimal, for any $\epsilon > 0$.

Keywords: Cantor sets, C^1 -minimal sets.

Mathematical subject classification: 37E10, 37C45.

1 Introduction

If $f: S^1 \to S^1$ is a diffeomorphism without periodic points, there exists a unique set $\Omega(f) \subset S^1$ minimal for f (we say that $\Omega(f)$ is C^1 -minimal for f). In this case $\Omega(f)$ is either a Cantor set or S^1 . The C^1 -minimal Cantor sets known up to now are the Denjoy examples and its conjugates. On the other hand, we know that some families are not C^1 -minimal. For example, in [2] Mc Duff shows that the usual middle thirds Cantor set is not C^1 -minimal and gives some conditions for a Cantor set not to be C^1 -minimal. In [6] we can find other conditions that also imply they are not C^1 -minimal. In [5] A. Norton shows that the affine Cantor sets are not C^1 -minimal. In this work we construct new families of Cantor sets that are not C^1 -minimal and other families of Cantor sets that are not $C^{1+\epsilon}$ -minimal, for any $\epsilon > 0$.

1.1 Regular interval Cantor sets

The regular interval Cantor set construction imitates the procedure used to obtain the usual middle thirds Cantor set. Given two sequences $\{m_i\}$ and $\{\theta_i\}$ with m_i a positive integer and $0 < \theta_i < 1$, we proceed as follows. First we remove from

Received 21 June 2006.

^{*}Partially supported by CNPq-Brasil and PEDECIBA-Uruguay.

the circle m_1 open intervals with the same measure, distributed in the same way, obtaining the closed set $K_1 = \bigcup \Delta_{i_1}$ $(i_1 = 1, ..., m_1)$ with Lebesgue measure $|K_1| = \theta_1$, where Δ_{i_1} are the connected components of K_1 . In the second step, we remove from each connected component Δ_{i_1} , m_2 open intervals of the same measure, distributed in the same way, obtaining the closed set $K_2 = \bigcup \Delta_{i_1i_2}$ $(i_2 = 1, ..., m_2 + 1)$ with measure $|K_2| = \theta_2 |K_1|$, where $\Delta_{i_1i_2}$ are the connected components of K_2 . Proceeding like this, we obtain, for each n, a closed set $K_n \subset S^1$, contained in K_{n-1} , with measure $|K_n| = \theta_n |K_{n-1}|$, and $K_n = \bigcup \Delta_{i_1...i_n}$ $(i_n = 1, ..., m_n + 1)$, where $\Delta_{i_1...i_n}$ are connected components of K_n . We define $K = \bigcap K_n$. This set is a Cantor set, and we will call **regular interval Cantor set** every set K constructed in this way.

1.2 Quasi regular interval Cantor sets

Now we are going to construct a family of Cantor sets that contains the regular interval Cantor sets. Given a sequence $\{n_i\}$ of positive integers with $\sum_{i < j} n_i \le n_j$, we proceed as follows. First we remove from S^1 , n_1 open intervals of the same measure, obtaining a closed set $K_1 = \bigcup \Delta_{1i_1}$ $(i_1 = 1, \ldots, n_1)$, where Δ_{1i_1} are the connected components of K_1 . In the second step, we remove from K_1 , n_2 open intervals of the same measure, removing at least an interval of each connected component of K_1 , obtaining the closed set $K_2 = \bigcup \Delta_{2i_2}$ $(i_2 = 1, \ldots, n_1 + n_2)$, where Δ_{2i_2} are the connected components of K_2 . We do not require the intervals removed to be likewise distributed. Inductively, for each mwe obtain a closed set $K_m \subset S^1$ contained in K_{m-1} and we write $K_m = \bigcup \Delta_{mi_m}$ $(i_m = 1, \ldots, n_1 + \cdots + n_m)$ where Δ_{mi_m} are the connected components of K_m . Then, we define $K = \bigcap K_m$. The set K is a Cantor set if, and only if,

$$\nu_m = \max\left\{|\Delta_{mi_m}|: i_m = 1, \dots, n_1 + \dots + n_m\right\} \to 0$$

when $m \to \infty$. We will call **quasi regular interval Cantor set** every Cantor set *K* constructed in this way. Note that with this procedure we do not obtain all Cantor sets of S^1 . If

$$\mu_m = \min \{ |\Delta_{mi_m}| : i_m = 1, \dots, n_1 + \dots + n_m \},\$$

the number $\delta = \inf\{\mu_m / \nu_m : m \in \mathbf{N}\}$ gives an idea of the irregularity of the Cantor set *K*. This number depends on the set *K* as well as on the procedure to obtain *K*. Then, we define the regularity of *K* as the supreme of the set of $\delta's$, taken over all the possible procedures to obtain *K*. Note that if the Cantor set *K* is a regular interval Cantor set, its regularity is 1.

2 Main results

Theorem 1. If the Cantor set K is C^1 -minimal for a diffeomorphism f, and K^c has only one orbit of wandering intervals, then K is not a quasi regular interval Cantor set.

Theorem 2. If K is a quasi regular interval Cantor set of regularity different from 0, then K is not $C^{1+\epsilon}$ -minimal for any $\epsilon > 0$.

As all regular interval Cantor sets have regularity 1 then, from the previous theorem, we have the following result.

Corollary 1. If K is a regular interval Cantor set, then K is not $C^{1+\epsilon}$ -minimal for any $\epsilon > 0$.

If the regular interval Cantor set K has positive measure and we suppose that it is C^1 -minimal for f we obtain several conditions for f'. Let m_i be the number of intervals removed in the step i of the construction of K.

Theorem 3. If K is a regular interval Cantor set of positive measure and the sequence $\{m_i\}$ is not bounded, then K is not C^1 -minimal.

Definition 2.1. If *K* is a regular interval Cantor set, for each prime integer we define $A_q = \{i \in \mathbb{N} : m_i + 1 = 0 \pmod{q}\}.$

For the case that A_q is an infinite set we denote its elements by t_n ($n \in \mathbb{N}$), with $t_n < t_{n+1}$. Now we can state the following result.

Theorem 4. If K is a regular interval Cantor set of positive measure and there exists a prime integer q such that A_q is infinite and $t_{n+1} - t_n \rightarrow \infty$, then K is not C^1 -minimal.

3 Generalities

The following lemmas are going to be very useful in the proofs of the main results.

Definition 3.1. If $f: S^1 \to S^1$ is a diffeomorphism, then for each $x \in S^1$ and for each positive integer *n* we define

$$F(x, n) = \sum_{i=0}^{n-1} \log f'(f^i(x)) = \log(f^n)'(x).$$

ALDO PORTELA

Lemma 3.1. If the Cantor set K is C^1 -minimal for f, then there exists $x \in K$ such that $F(x, n) \ge 0$, for all positive integer n.

Proof. Assume that for all $x \in K$ there exists m_x such that $F(x, m_x) < 0$. By the continuity of f', for each $x \in K$ there exists $\delta_x > 0$ such that for every point y in the interval $(x - \delta_x, x + \delta_x)$, $F(y, m_x) < 0$. As the family of intervals $(x - \delta_x, x + \delta_x)$ with $x \in K$ is a covering of K, and K is a Cantor set, then there exists a finite refinement $\{I_i, i = 1, ..., p\}$ of this covering of open intervals, pairwise disjoint, that is a covering of K. So, for each I_i there exists $m_i \in \mathbb{N}$ such that for all $y \in I_i$ we have $F(y, m_i) < 0$. Besides, $S^1 \setminus \bigcup_{i=1}^p I_i$ is a finite union of closed intervals, each of which is contained in a connected component of K^c that we call J_i , with i = 1, ..., p. We consider $m = \max\{m_i : i = 1, ..., p\}$ and $M \ge 1$ the maximum of f'. We consider a wandering interval T of the past of J_1 such that $|T|M^m < \min\{|J_1|, ..., |J_p|\}$. Now we will show that if j is a positive integer then $|f^j(T)| < |J_1|$, getting a contradiction. By the choice of T, we know that T is contained in I_i for some i.

$$|f^{m_i}(T)| = |T|(f^{m_i})'(\theta).$$

As $F(\theta, m_i) < 0$, we have $(f^{m_i})'(\theta) < 1$ and so

 $|f^{m_i}(T)| < |T|.$

We can repeat this process with $f^{m_i}(T)$ instead of T. Inductively we conclude that there exists a sequence $v_1, v_2, ..., v_k, ...$ with $v_k \in \{m_1, ..., m_p\}$ such that for all positive integer r

$$|f^{\sum_{k=1}^{\prime}\nu_k}(T)| < |T|.$$

As for all *j* there exists $r_0 \ge 0$ such that

$$\sum_{k=1}^{r_0} \nu_k \le j < \sum_{k=1}^{r_0+1} \nu_k,$$

we have

$$|f^{j}(T)| = |f^{j - \sum_{k=1}^{r_{0}} \nu_{k}}(f^{\sum_{k=1}^{r_{0}} \nu_{k}}(T))| \le M^{m}|T| < |J_{1}|.$$

Let *K* be a Cantor set of the circle and let $K^c = \bigcup I_j$, where I_j are the connected components of K^c . We define the spectrum of *K* (E_K) as the ordered set $\{\lambda_i\}$ ($\lambda_{i+1} < \lambda_i$), with λ_i the length of I_j , for some *j*.

Lemma 3.2. If the Cantor set K is C^1 -minimal for f and $\lambda_n/\lambda_{n+1} \neq 1$, there exists $\eta > 0$ and $x \in K$ such that $F(x, m) \leq -\eta$, for all positive integer m.

Proof. As $\lambda_n/\lambda_{n+1} \neq 1$, there exist $\epsilon_0 > 0$ and a sequence $\{n_k\}$ such that $1 + \epsilon_0 \leq \frac{\lambda_{n_k}}{\lambda_{n_k+1}}$. Let I_{n_k} be a connected component of K^c such that $|I_{n_k}| \geq \lambda_{n_k}$ and for all j > 1, $|f^j(I_{n_k})| \leq \lambda_{n_k+1}$. By the choice of I_{n_k} we have that $|I_{n_k}| \to 0$ when $k \to \infty$. Let x be an accumulation point of the set of the intervals I_{n_k} ($x \in K$) and $\{k_i\}$ a sequence such that $d(x, I_{n_{k_i}}) \to 0$ when $i \to \infty$. Therefore, for every $m \geq 1$, there exists *i* sufficiently large such that

$$1 + \epsilon_0 \le \frac{\lambda_{n_{k_i}}}{\lambda_{n_{k_i}+1}} \le \frac{|I_{n_{k_i}}|}{|f^m(I_{n_{k_i}})|}$$

Then

$$F(x,m) = \log(f^{m})'(x) = \log\left(\lim_{i \to \infty} \frac{|f^{m}(I_{n_{k_{i}}})|}{|(I_{n_{k_{i}}})|}\right) \le -\log(1 + \epsilon_{0}). \quad \Box$$

Lemma 3.3. If the Cantor set K is C^1 -minimal for f and $\lambda_n/\lambda_{n+1} \not\rightarrow 1$ then for every point $x \in K$, F(x, m) is not bounded.

Proof. By the transitivity of *K* (for *f*), it is enough to prove the property for any point of *K*. Let *x* and the number η be as in lemma 3.2 and suppose by contradiction that F(x, m) is bounded. Therefore if $y = \inf\{F(x, m) : m \in \mathbb{N}\}$, there exists a positive integer *p* such that $|F(x, p) - y| < \eta/2$. So

$$F(f^{p}(x), m) = F(x, m + p) - F(x, p)$$

= $F(x, m + p) - y - (F(x, p) - y) > \frac{-\eta}{2}$ (1)

for all positive integer *m*. We consider $\{n_k\}$ such that $f^{p+n_k}(x)$ has limit *x* when $k \to \infty$. From the uniform continuity of f' we have that

$$|F(f^{p}(x), p + n_{k}) - F(x, p + n_{k})|$$

$$\leq \sum_{i=0}^{p-1} |\log f'(f^{p+n_{k}+i}(x)) - \log f'(f^{i}(x))|$$

$$= \delta(n_{k}) \to 0$$

when $k \to \infty$. Then

$$F(f^p(x), p+n_k) < F(x, p+n_k) + \delta(n_k) < -\eta + \delta(n_k),$$

so using (1) we have a contradiction.

Bull Braz Math Soc, Vol. 40, N. 1, 2009

 \square

4 Geometric rigidity

In this section we are going to prove two geometric properties for the quasi regular interval Cantor sets and that if, we suppose that a Cantor set K of this family is C^1 -minimal for f, we obtain rigidity conditions for f'.

Lemma 4.1. If K is a quasi regular interval Cantor set, $\mu_n < \frac{2\pi}{2^{n-1}}$, for all integer n > 1.

Proof. We are going to prove that if

$$\mu_n < \frac{2\pi}{2^{n-1}}, \quad \mu_{n+1} < \frac{2\pi}{2^n}.$$

As a result of this, $\mu_1 < 2\pi$ and we would have proved the lemma. From the construction of *K* we know that there exist integers j_1 , j_2 and j_3 such that $\Delta_{nj_1} < \frac{2\pi}{2^{n-1}}$ and such that Δ_{n+1,j_2} and Δ_{n+1,j_3} are contained in Δ_{nj_1} . Therefore

$$\min\left\{|\Delta_{n+1,j_2}|, |\Delta_{n+1,j_3}|\right\} \le \frac{|\Delta_{n,j_1}|}{2} < \frac{2\pi}{2^n},$$

and from here the lemma follows.

Lemma 4.2. If K is a quasi regular interval Cantor set then $\lambda_n/\lambda_{n+1} \neq 1$.

Proof. Let $\{l_i\}$ be the sequence where l_i is the length of the open intervals removed in the step *i* of the construction of *K*. From the construction of *K* we have that the open intervals removed in the step *n* are contained in K_{n-1} , so from the previous lemma we have that $l_n < 2\pi/2^{n-2}$ for n > 2. Then, for n > 2 we have

$$\# \left(\{ \log \lambda_i \} \cap \left[-(n-2) \log 2 + \log 2\pi, 0 \right] \right) < n.$$
(2)

Suppose that $\lambda_n/\lambda_{n+1} \to 1$. Then for all $\epsilon > 0$ there exists $n_0 > 0$ such that for all $n \in \mathbb{N}$

 $0 < \log \lambda_{n_0+n-i} - \log \lambda_{n_0+n+1-i} < \log(1+\varepsilon)$

with i = 0, ..., n, so

 $0 > \log \lambda_{n_0+n} > \log \lambda_{n_0} - n \log(1+\varepsilon).$

Then

$$#(\{\log \lambda_i\} \cap [\log \lambda_{n_0} - n \log(1 + \varepsilon), 0]) \ge n_0 + n.$$
(3)

Bull Braz Math Soc, Vol. 40, N. 1, 2009

Applying the inequalities (2) and (3) we have

$$#(\{\log \lambda_i\} \cap [-(n-2)\log 2 + \log 2\pi, 0]) < n < n_0 + n \\ \le #(\{\log \lambda_i\} \cap [\log \lambda_{n_0} - n \log(1 + \epsilon), 0]).$$

Therefore

$$-(n-2)\log 2 + \log 2\pi \ge \log \lambda_{n_0} - n\log(1+\epsilon).$$

As this inequality is true for all $n \in \mathbb{N}$ and for all $\epsilon > 0$, taking ϵ such that $\log(1 + \epsilon) < \log 2$ we get contradiction.

Lemma 4.3. If a quasi regular interval Cantor set K is C^1 -minimal for f, there exists $x \in K$ such that f'(x) > 1.

Proof. From the previous lemma, we know that there exists $\epsilon_0 > 0$ and an increasing sequence of positive integers $\{n_j\}$ such that $\lambda_{n_j}/\lambda_{n_j+1} > 1 + \epsilon_0$, for all n_j . Let *I* be a connected component of K^c . Then, the family $\{f^{-n}(I)\}$ with $i \in \mathbb{N}$ is a family of open intervals, pairwise disjoint, so $|f^{-n}(I)| \to 0$ when $n \to \infty$. Therefore, if *j* is sufficiently large there exists $p(j) \in \mathbb{N}$ such that $|f^{-p(j)}(I)| \le \lambda_{n_j+1}$ and $|f^{-p(j)+1}(I)| \ge \lambda_{n_j}$. Then, we have

$$\frac{|f^{-p(j)+1}(I)|}{|f^{-p(j)}(I)|} \ge \frac{\lambda_{n_j}}{\lambda_{n_j+1}} > 1 + \epsilon_0.$$
(4)

Applying the Mean Value Theorem, there exists a point $\theta_{p(j)} \in f^{-p(j)}(I)$ such that

$$|f^{-p(j)+1}(I)| = f'(\theta_{p(j)})|f^{-p(j)}(I)|$$

so

$$\frac{|f^{-p(j)+1}(I)|}{|f^{-p(j)}(I)|} = f'(\theta_{p(j)}).$$
(5)

From (4) and (5) we have

$$f'(\theta_p) > 1 + \varepsilon_0. \tag{6}$$

If x is an accumulation point of the set $\{f^{-p(j)}(I)\}$, it is an accumulation point of the set $\{\theta_{p(j)}\}$ too and, as $f \in C^1$, we have that $f'(\theta_p) \to f'(x)$ when $j \to \infty$, so from (6) we obtain that f'(x) > 1.

If *K* is a quasi regular interval Cantor set and $y \in K$ we denote by K_n^y the connected component of K_n that contains *y*. The following remarks will be useful for the proofs of the next lemmas.

1. If *K* is a quasi regular interval Cantor set, C^1 -minimal for *f*, for all $\epsilon > 0$ there exists a positive integer $n(\epsilon)$ such that if $n > n(\epsilon)$ and x_1, x_2 belong to the same connected component of K_n ,

$$\frac{1}{1+\varepsilon} < \frac{f'(x_1)}{f'(x_2)} < 1+\varepsilon.$$

2. For all positive integer *n* and all point $x \in K$ there exists a positive number υ such that if λ is an element of the spectrum of *K*, smaller than υ , there exists a connected component of K^c , of length λ , contained in $K_n^{f(x)}$ such that its preimage is contained in K_n^x .

Lemma 4.4. Let K be a quasi regular interval Cantor set that is C^1 -minimal for f and x any point in K. For any $\epsilon > 0$, any integer n and any small enough I, connected component of K^c , there exists a connected component I^* of K^c such that

$$\frac{(f'(x))^m}{1+\varepsilon} < \frac{|I^*|}{|I|} < (f'(x))^m (1+\varepsilon).$$

Proof. First we suppose that $m \ge 0$. We consider $\epsilon_1 > 0$ sufficiently small and $n = n(\epsilon_1)$ as in remark 1. Let K_n be as in the construction of K. If I is a short enough connected component of K^c , there exists another connected component I_1 of K^c , contained in K_n^x such that its length is |I|. From the Mean Value Theorem we have that there exists $\theta \in I_1$ such that

$$|f(I_1)| = f'(\theta)|I_1| = f'(\theta)|I|.$$

As $\theta \in K_n^x$, by remark 1 we have

$$\frac{f'(x)}{1+\epsilon_1} < \frac{|f(I_1)|}{|I|} < f'(x)(1+\epsilon_1).$$

If *I* is sufficiently small we can repeat this procedure with $f(I_1)$ instead of *I*. Then there exists I_2 , connected component of K^c , such that

$$\frac{f'(x)}{1+\epsilon_1} < \frac{|f(I_2)|}{|f(I_1)|} < f'(x)(1+\epsilon_1).$$

By induction we conclude that there exist I_3, \ldots, I_m , connected components of K^c , such that

$$\frac{f'(x)}{1+\epsilon_1} < \frac{|f(I_{i+1})|}{|f(I_i)|} < f'(x)(1+\epsilon_1),$$

with i = 1, ..., m - 1. So

$$\frac{(f'(x))^m}{(1+\epsilon_1)^m} < \frac{|f(I_m)|}{|I|} < (f'(x))^m (1+\epsilon_1)^m.$$
(7)

Given $\epsilon > 0$ we choose $\epsilon_1 > 0$ such that $(1 + \epsilon_1)^m < 1 + \epsilon$. Then, from (7) the lemma follows. In the case m < 0 we proceed as follows. If I is a connected component of K^c , sufficiently small, there exists I_1 , connected component of K^c too, of length |I|, contained in $K_n^{f(x)}$ such that $f^{-1}(I_1)$ is contained in K_n^x . Therefore, there exists $\theta \in I_1$ such that

$$|f^{-1}(I_1)| = (f^{-1})'(\theta)|I_1| = \frac{|I_1|}{f'(f^{-1}(\theta))}$$

As $f^{-1}(\theta) \in K_n^x$, from remark 1 we have

$$\frac{1}{(1+\epsilon_1)f'(x)} < \frac{|f^{-1}(I_1)|}{|I_1|} = \frac{1}{f'(f^{-1}(\theta))} < \frac{1+\epsilon_1}{f'(x)}$$

So, as in the first case, we obtain the desired result.

Lemma 4.5. If the quasi regular interval Cantor set K is C^1 -minimal for f, then f' takes finitely many values. Moreover, if the set of values of f' restricted to K is $\{a_1, \ldots, a_n\}$, then $\log a_i / \log a_j \in \mathbb{Q}$ $(a_j \neq 1)$.

Proof. Let ϵ_0 and $\{n_j\}$ be as in the proof of lemma 4.3. We need to prove that $A = \{f'(x) : x \in K\}$ is a finite set. Assume that A is infinite. As f' is continuous in S^1 , the set A has an accumulation point. We conclude that there exist $a, b \in K, a \neq b$, such that

$$\frac{1}{1+\epsilon_0} < \frac{f'(a)}{f'(b)} < 1.$$
 (8)

Let ϵ_1 be a positive number such that

$$1 + \epsilon_1 < \min\left\{\sqrt{\frac{f'(b)}{f'(a)}}, \sqrt{(1 + \epsilon_0)\frac{f'(a)}{f'(b)}}\right\}$$

From remark 1 we have that there exists $n(\varepsilon_1)$ such that if x_1 and x_2 are in the same connected component of $K_{n(\varepsilon_1)}$, then

$$\frac{1}{1+\epsilon_1} < \frac{f'(x_1)}{f'(x_2)} < 1+\epsilon_1.$$
(9)

Bull Braz Math Soc, Vol. 40, N. 1, 2009

 \square

Let I_1 be a connected component of K^c contained in the connected component of $K_{n(\epsilon_1)}$ that contains the point *a*. From the construction of *K* we have that $K_{n(\epsilon_1)}^c$ only contains a finite number of connected components of K^c . By the Mean Value Theorem, there exists $\theta_1 \in I_1$ such that

$$|f(I_1)| = |I_1|f'(\theta_1).$$

By (9), as θ_1 and *a* are in the same connected component of $K_{n(\epsilon_1)}$, we have

$$\frac{|I_1|f'(a)}{1+\epsilon_1} < |f(I_1)| < |I_1|(1+\epsilon_1)f'(a).$$
(10)

If $|I_1|$ is sufficiently small there exists I_2 , connected component of $S^1 \setminus K$, of length $|f(I_1)|$, such that $f^{-1}(I_2)$ is in the connected component of $K_{n(\varepsilon_1)}$ that contains *b* (remark 2). By the Mean Value Theorem there exists $\theta_2 \in I_2$ such that

$$|f^{-1}(I_2)| = |I_2|(f^{-1})'(\theta_2) = \frac{|I_2|}{f'(f^{-1}(\theta_2))}$$

From the choice of I_2 we have that $f^{-1}(\theta_2)$ and b are in the same connected component of $K_{n(\varepsilon_1)}$; so applying (9) we obtain

$$\frac{|f(I_1)|}{f'(b)} \frac{1}{1+\epsilon_1} \le |f^{-1}(I_2)| \le \frac{|f(I_1)|}{f'(b)} (1+\epsilon_1).$$

From this last inequality and (10) we have

$$\frac{|I_1|}{(1+\epsilon_1)^2} \frac{f'(a)}{f'(b)} \le |f^{-1}(I_2)| \le |I_1|(1+\epsilon_1)^2 \frac{f'(a)}{f'(b)},$$

and therefore, by the choice of ϵ_1 , we have

$$1 < \frac{|I_1|}{|f^{-1}(I_2)|} < 1 + \epsilon_0.$$

Summarizing, we have proved that if *I* is a connected component of $S^1 \setminus K$ with sufficiently small length, there exists another connected component I^* of K^c such that

 $1 < |I|/|I^*| < 1 + \epsilon_0.$

Taking *I* of length λ_{n_i} sufficiently small we have

$$1 + \epsilon_0 > \frac{|I|}{|I^*|} \ge \frac{\lambda_{n_j}}{\lambda_{n_j+1}} > 1 + \epsilon_0$$

and this is a contradiction. Then, A is finite.

Now, assume that there exist *i* and *j* such that $\log a_i / \log a_j \notin \mathbb{Q}$. We are going to prove (as in the previous case) that if *I* is a short enough connected component of K^c , there exists another connected component I^* of K^c such that

$$1 < |I|/|I^*| < 1 + \varepsilon_0$$

and we get a contradiction. As $\log a_i / \log a_j \notin \mathbb{Q}$ then for all $\epsilon_1 > 0$ there exist integers *m* and *n* such that

$$-\epsilon_1 < m \log a_i - n \log a_i < 0$$

so there exist $x, y \in K$ such that

$$e^{-\epsilon_1} < (f'(x))^m (f'(y))^{-n} < 1.$$
(11)

From lemma 4.4 we have that given $\epsilon_2 > 0$ and *I* a sufficiently small connected component of K^c , there exist I^* and I^{**} such that

$$\frac{(f'(x))^m}{1+\epsilon_2} < \frac{|I^{**}|}{|I|} < (f'(x))^m (1+\epsilon_2)$$
(12)

and

$$\frac{(f'(x))^{-n}}{1+\epsilon_2} < \frac{|I^*|}{|I^{**}|} < (f'(x))^{-n}(1+\epsilon_2)$$
(13)

By equations (11), (12) and (13) we have

$$\frac{(f'(x))^{-m}(f'(y))^n}{(1+\epsilon_2)^2} < \frac{|I|}{|I^*|} < \frac{(1+\epsilon_2)^2}{e^{-\epsilon_1}}.$$
(14)

We take ϵ_2 such that

$$\frac{(f'(x))^{-m}(f'(y))^n}{(1+\epsilon_2)^2} > 1,$$

and ϵ_1 such that

$$\frac{(1+\epsilon_2)^2}{e^{-\epsilon_1}} < 1+\epsilon_0$$

So, by (14) we have proved what we want.

5 **Proof of the theorem 1**

Remark 1. Let $R_{\theta}: S^1 \to S^1$ be the rotation of angle θ (irrational in π). Take $x \in S^1$ and m a positive integer. There exist n > m such that the set $A_n = \{R_{\theta}^i(x): i = 0, ..., n\}$ determines the intervals $T_1, ..., T_p$ (with the same length) and $J_1, ..., J_q$ (with the same length) such that $f(T_i) = T_{i+1}$ and $f(J_j) = J_{j+1}$. This can be easily deduced from basic facts about the combinatorics of rotations.

 \square

Remark 2. If $f: S^1 \to S^1$ is a continuous function and R_{θ} is the rotation of irrational angle θ , for all point $x \in S^1$ we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{0 \le i \le n} f(R^i_{\theta}(x)) = \int_{S^1} f \, dx.$$

This follows from the fact that f is continuous in S^1 applying Birkhoff theorem (see [4]).

Now we prove theorem 1.

Proof. Assume, that there exists a quasi regular interval Cantor set K, C^1 -minimal for f, and that K^c has only one orbit of wandering intervals. Let $h: S^1 \to S^1$ be the semiconjugate such that $h \circ f = R_\theta \circ h$, with $R_\theta: S^1 \to S^1$ the rotation of angle θ (irrational in π). From lemma 4.5 we have that there exists a covering of K formed by pairwise disjoints closed intervals H_1, \ldots, H_r , such that $f'/H_i \cap K = a_i$. It is possible to choose the intervals H_i so that each connected component of the complement of $\bigcup_{i=1}^r H_i$ is a connected component of K^c . If L_1, \ldots, L_r are the connected components of the complement of $\bigcup_{i=1}^r H_i$, then the image of each L_i by h is a point y_i . As f has only one orbit of wandering intervals, then the points y_i are in the same orbit in the rotation R_θ . Let $A_m, T_1, \ldots, T_p, J_1, \ldots, J_q$ be as in remark 1 such that $\{y_1, \ldots, y_r\} \subset A_m$. Now, we define

$$g\colon \bigcup_{1}^{p} T_{i} \cup \bigcup_{1}^{q} J_{j} \to \mathbb{R}$$

such that $g(x) = f'(h^{-1}(x))$ (note that g is well defined even in the case that $h^{-1}(x)$ is an interval). By the choice of the intervals T_i and J_j we have that g is constant in each of them. Even more, if y is a point of S^1 such that h(y) does not belong to $\bigcup_{j \in \mathbb{N}} R_{\theta}^{-j}(A_m)$ (preorbit of the end points of the intervals T_i and J_j) then

$$F(y, n) = \sum_{i=0}^{n-1} \log(g(R_{\theta}^{i}(h(y)))).$$

Claim. $\int_{(\bigcup T_i)\cup(\bigcup J_j)} \log g \, dx = 0.$

Assume that $\int_{(\bigcup T_i)\cup(\bigcup J_i)} \log g \, dx \neq 0$. Supposing that

$$\int_{(\bigcup T_i)\cup(\bigcup J_j)}\log g\,dx>0,$$

we have that there exists a continuous function $g_1: S^1 \to S^1$ such that $g_1 < g$ and $\int_{S^1} \log g_1 dx > 0$. So, by remark 2 we have that given $x \in S^1$ and k > 0there exists n = n(x, k) such that

$$\sum_{i=0}^{n-1} \log\left(g_1(R^i_\theta(x))\right) > k.$$

Therefore, if $x \in K$ and $h(x) \notin \bigcup_{j \in \mathbb{N}} R_{\theta}^{-j}(A_m)$ we have that for each k > 0 there exists a positive integer *n* such that

$$F(x,n) = \sum_{i=0}^{n-1} \log\left(g(f^i(x))\right) \ge \sum_{i=0}^{n-1} \log\left(g_1(R^i_\theta(h(x)))\right) > k.$$
(15)

As for each point $x \in K$ there exists a positive integer *s* such that $h(f^s(x))$ does not belong to $\bigcup_{j\in\mathbb{N}} R_{\theta}^{-j}(A_m)$, taking *k* sufficiently large and applying (15) for the point $h(f^s(x))$, we have that there exists a positive integer *n* such that

$$F(x,n) > 0.$$

Therefore, the result obtained contradicts lemma 3.2. If

$$\int_{S^1} \log g \, dx < 0,$$

working in analogous form we have that for every $x \in K$ there exists a positive integer *n* such that F(x, n) < 0. This result contradicts lemma 3.1. Then we have proved the claim. Now, we are going to prove that

$$\int_{\bigcup T_i} \log g \, dx = \int_{\bigcup J_j} \log g \, dx = 0.$$
(16)

We denote $a_i = g/T_i e b_j = g/J_j$. Then

$$\int_{(\bigcup T_i)\cup(\bigcup J_j)} \log g \, dx = \sum |T_i| \log a_i + \sum |J_j| \log b_j$$

= $|T_1| \sum \log a_i + |J_1| \sum \log b_j = 0.$ (17)

If $\sum \log a_i \neq 0$, from lemma 4.5 we have $\sum \log b_j / \sum \log a_i \in \mathbb{Q}$. So, by (17) we have that $|T_1|/|J_1| \in \mathbb{Q}$ and this is a contradiction because the end points of the intervals T_i and J_j share an orbit of the irrational rotation R_{θ} . Then

$$\sum \log b_j = \sum \log a_i = 0.$$

Now, let $y \in K$ be such that $x = h(y) \in T_1$. From the construction of the intervals T_i and J_j we have that $R_{\theta}^{p+1}(x)$ belongs to T_1 or J_1 . If $R_{\theta}^{p+1}(x)$ belongs to T_1 , then $R_{\theta}^{2p+1}(x)$ belongs to T_1 or J_1 . If $R_{\theta}^{p+1}(x)$ belongs to J_1 , then $R_{\theta}^{p+q+1}(x)$ belongs to T_1 or J_1 . Inductively, we have that there exists an increasing sequence n_k such that $n_{k+1} - n_k$ only takes values p and q and $R_{\theta}^{n_k+1}(x)$ belongs to T_1 or J_1 . Therefore, from (16) we have that $F(y, n_k) = 0$, for all k. Finally, given a positive integer n there exists k_0 such that $n_{k_0} \le n < n_{k_0+1}$ and therefore,

$$F(y, n) = F(y, n_{k_0}) + F(f^{n_{k_0}}(y), n - n_{k_0}) = F(f^{n_{k_0}}(y), n - n_{k_0}).$$

As $n - n_{k_0}$ is bounded, F(y, n) is also bounded and this contradicts lemma 3.3, so the proof is finished.

6 Covering and levels

Note that if the quasi regular interval Cantor set K is C^1 -minimal for f, for each positive integer n we have that if I is a connected component of K^c , as small as necessary, I and f(I) are contained in K_n .

Definition 6.1. The positive integer *s* is the level of an interval $I \subset S^1$, if *I* was removed from the construction of *K* in step *s* (we denote $s = \mathcal{L}(I)$).

Lemma 6.1. If $\{\mathcal{T}_{ij}\}$, with $j \in \mathbb{N}$ and i = 1, ..., n, is a family of closed intervals contained in S^1 such that $v_j = \max\{|\mathcal{T}_{ij}|; i = 1, ..., n\}$ has limit 0 when $j \to \infty$, there exist a positive integer k and a finite set of pairwise disjoint intervals $\{\mathcal{J}_t\}$, contained in S^1 , such that $\mathcal{A} = \bigcup \mathcal{J}_t \supset \bigcup_{i=1}^n \mathcal{T}_{ik}$ and every interval of \mathcal{A}^c has a greater measure than the measure of \mathcal{A} .

Proof. For the proof we will work by induction in *n*. If n = 1 it is immediate. Assume the property is true for $n \ge 1$. We are going to prove that the property is true for n + 1. For each $j \in \mathbf{N}$, we denote by $\mathcal{B}_j = \bigcup_{i=1}^{n+1} \mathcal{T}_{ij}$ and by \mathcal{Y}_{sj} $(s = 1, \ldots, n_j, \text{ with } n_j \le n+1)$ the connected components of the complement of \mathcal{B}_j . Consider two cases. First, suppose that $a_j = \min\{|\mathcal{Y}_{kj}|; k = 1, \ldots, n_j\}$ does not have limit 0 when $j \to \infty$. Then, there exist $\epsilon > 0$ and an increasing sequence $\{j_t\}$ such that $a_{j_t}, > \epsilon$ for all *t*. By assumption we know that $v_j \to 0$ when $j \to \infty$, then there exists $r \in \mathbf{N}$ such that $v_{j_r} < \epsilon/(n+1)$, so

$$|\mathcal{B}_{j_r}| \leq \sum_{i=1}^{n+1} |\mathcal{T}_{ij_r}| < (n+1)\frac{\epsilon}{n+1} = \epsilon.$$

As $a_{j_r} > \epsilon$, we have that every interval of the complement of \mathcal{B}_{j_r} has length greater than $|\mathcal{B}_{j_r}|$. If we define the intervals \mathcal{J}_t as the connected components of \mathcal{B}_{j_r} , we have proved the inductive step in this case. Now, we suppose that $a_j \to 0$ when $j \to \infty$. We denote by \mathcal{Y}_j^* one of the connected components of the complement of \mathcal{B}_j such that its length is a_j . We can suppose, without loss of generality, that \mathcal{Y}_j^* is the interval $\operatorname{Arc}(\mathcal{T}_{1j}, \mathcal{T}_{2j}) \setminus (\mathcal{T}_{1j} \cup \mathcal{T}_{2j})$ (considering *j* sufficiently large and reordering the intervals \mathcal{T}_{ij} as necessary). Now we consider the family of intervals \mathcal{T}_{ij}^* defined as follows. We take

$$\mathcal{T}_{1j}^* = \mathcal{T}_{1j} \cup \mathcal{Y}_j^* \cup \mathcal{T}_{2j}$$

and for $i = 2, \ldots, n$

$$\mathcal{T}_{i,j}^* = \mathcal{T}_{i+1,j}.$$

Then by induction there exist a number k and a family of intervals \mathcal{J}_t that satisfy the lemma for the intervals \mathcal{T}_{ij}^* . The number k and the family of intervals \mathcal{J}_t obtained for the family of intervals \mathcal{T}_{ij}^* satisfy the thesis of the lemma for the family of intervals \mathcal{T}_{ij} . The proof is therefore finished.

If the point x is the end point of a connected component of K^c of level s_0 , for each integer $s > s_0$ we denote by I_s the connected component of K^c closest to x. Note that if s is sufficiently large then I_s is unique.

Definition 6.2. Let x be the end point of a connected component of K^c of level s_0 . For each integer $s > s_0$ we define

$$\varphi_x(s) = s - \mathcal{L}(f(I_s)).$$

Lemma 6.2. If the quasi regular interval Cantor set K, has regularity different from 0, is C^1 -minimal for f and x is the end point of a connected component of K^c of level s_0 , then φ_x is upper bounded.

Proof. As the regularity of *K* is not 0, there exists a procedure that determines *K* such that $\delta = \inf\{\mu_m/\nu_m \colon m \in \mathbb{N}\} > 0$. We suppose that for each k > 0 there exists a positive integer s_k , such that $\varphi(s_k) = s_k - \mathcal{L}(f(I_{s_k})) > k$. We denote $r_k = \mathcal{L}(f(I_{s_k}))$. By the construction of *K* we have that $\mu_{s_k} \leq 2^{-k}\mu_{r_k}$. If $I_{s_k} = (a_k, b_k)$, with a_k between *x* and b_k , we have that there exists $\theta_k \in [x, a_k]$ such that $d(f(x), f(a_k)) = f'(\theta_k)d(x, a_k)$. So

$$d(f(x), f(a_k)) \leq f'(\theta_k) v_{s_k} \leq f'(\theta_k) \frac{\mu_{s_k}}{\delta} \leq \frac{f'(\theta_k)}{\delta} 2^{-k} \mu_{r_k}$$
$$\leq \frac{f'(\theta_k)}{\delta} 2^{-k} d(f(x), f(a_k)).$$

From here it follows that $f'(\theta_k) \to \infty$ when $k \to +\infty$, and this is a contradiction.

7 **Proof of the theorem 2**

Proof. Assume that there exists $\epsilon > 0$ and a diffeomorphism f, of class $C^{1+\epsilon}$ such that K is minimal for f.

First, we will show that it is possible to choose a set $A = \{\lambda^1, \lambda^2, ..., \lambda^r\} \subset E_K$, with $r \leq q$, and $\nu > 0$ such that the set $\{\lambda^i \nu^m : m \in N^+, i \in \{1, ..., r\}\}$ is close as necessary from E_K . Then, applying lemma 6.1, we will show that E_K satisfies the Mc Duff's condition (see [2]), getting a contradiction.

By lemmas 4.5 and 4.3 we have that there exist a positive integer n_0 and an end point *x* of a connected component of K^c , such that:

1. the restriction of f' to K is constant in each connected component of K_{n_0} .

2.
$$f'(x) = v > 1$$
.

3. by the continuity of f' we have that if n_0 is sufficiently large, for every connected component I of K^c , contained in $K^x_{n_0}$ (connected component of K_{n_0} that contains x), we have that |f(I)| > |I|, so f(I) and I have different level.

Given a positive integer *n* we denote by $I_n = (a_n, b_n)$ the interval of level $n + n_0$ contained in $K_{n_0}^x$ nearest to *x*. We fix *m* and for each integer n > m we consider the family of intervals $\{I_n^j\}_{j \in \mathbb{N}}$ with the following properties:

- 1. the interval $I_n^0 = I_n$.
- 2. the interval I_n^j is the connected component of K^c with the same level that the level of $f(I_n^{j-1})$ closest to x (in the proof we are going to work only with a finite number of the I_n^j).

Let $q = \max\{\mathcal{L}(I) - \mathcal{L}(f(I))\}$ be the integer given by lemma 6.2. We define $p_n = \min\{j : \mathcal{L}(I_n^j) \le \mathcal{L}(I_{m+q-1}) = n_0 + m + q - 1\}$. We need to prove that the set $D_n = \{j : \mathcal{L}(I_n^j) \le \mathcal{L}(I_{m+q-1})\}$ is not empty. Assume that D_n is empty. Then, for all j we have that $|I_n^{j-1}| < |I_n^j|$ and that I_n^j is between x and I_{m+q-1} and this is a contradiction. So D_n is not empty. Now, we consider the finite family $\{I_n^j\}$ with $j = 1, \ldots, p_n$. By lemma 6.2 follows that $n_0 + m + q > \mathcal{L}(I_n^{p_n}) \ge n_0 + m$. So the set $A = \{I_n^{p_n}\}$ has r elements with $r \le q$. By the

Mean Value Theorem we know that there exist $\theta_j \in I_n^j$, $j = 0, ..., p_n - 1$ such that $|f(I_n^j)| = f'(\theta_j)|I_n^j| = |I_n^{j+1}|$. Therefore,

$$|I_n| = \frac{|I_n^{p_n}|}{f'(\theta_0)\dots f'(\theta_{p_n-1})}.$$
(18)

We denote $r_j = \mathcal{L}(I_n^j)$, with $j = 0, ..., p_n - 1$. Note that as $i \neq j, r_i \neq r_j$ and $r_j \ge m + n_0$, for every j. For every j, we have that θ_j and x are in the same connected component of K_{r_j-1} , so from lemma 4.1 and if r_j is sufficiently large we have

$$|\theta_j - x| < \frac{2}{\delta 2^{r_j - 2}}.$$

Therefore, as f is the class $C^{1+\varepsilon}$ (this is $|f'(x) - f'(y)| \le \widetilde{k}|x - y|^{\varepsilon}$) we have

$$1 - \frac{k}{\nu} \frac{1}{2^{(r_j - 2)\epsilon}} < \frac{f'(\theta_j)}{\nu} < 1 + \frac{k}{\nu} \frac{1}{2^{(r_j - 2)\epsilon}},\tag{19}$$

where $k = \widetilde{k}(\frac{2}{\delta})^{\epsilon}$. From (18) e (19) we have

$$\frac{|I_n^{p_n}|}{\nu^{p_n}}\prod_{i=0}^{p_n-1}\left\{1+\frac{k}{\nu}\left(\frac{1}{2^{r_i-2}}\right)^{\epsilon}\right\}^{-1} \le |I_n| \le \frac{|I_n^{p_n}|}{\nu^{p_n}}\prod_{i=0}^{p_n-1}\left\{1-\frac{k}{\nu}\left(\frac{1}{2^{r_i-2}}\right)^{\epsilon}\right\}^{-1}.$$

Therefore,

$$\log |I_n^{p_n}| - p_n \log \nu - P_2(m) \le \log |I_n| \le \log |I_n^{p_n}| - p_n \log \nu - P_1(m)$$
(20)

where

$$P_1(m) = \sum_{j=m+n_0}^{\infty} \log\left\{1 - \frac{k}{\nu} \left(\frac{1}{2^{j-2}}\right)^{\epsilon}\right\} \le \log\prod_{i=0}^{p_n-1} \left\{1 - \frac{k}{\nu} \left(\frac{1}{2^{r_i-2}}\right)^{\epsilon}\right\} < 0$$

and

$$P_2(m) = \sum_{j=m+n_0}^{\infty} \log\left\{1 + \frac{k}{\nu} \left(\frac{1}{2^{j-2}}\right)^{\epsilon}\right\} \ge \log\prod_{i=0}^{p_n-1} \left\{1 + \frac{k}{\nu} \left(\frac{1}{2^{r_i-2}}\right)^{\epsilon}\right\} > 0.$$

For each *m* we define the set $A_m = \{\log |I_r|; r > m\}$ (the difference between this set and the set $\{\log \lambda_i\}$ is a finite number of elements). Now, we consider the quotient $A_m / \log \nu \cdot \mathbb{R} = A_m$ as a subset of the affine manifold $S = \mathbb{R} / \log \nu \cdot \mathbb{R}$ that is isomorphic to S^1 . From the inequality (20) we have that for each *m* there exists a finite number of closed intervals \mathcal{T}_{mj} , j = 1, ..., q, contained in *S* such that $\bigcup_{j=1}^{q} \mathcal{T}_{mj} \supset \mathcal{A}_m$ and $a_m = \max\{|\mathcal{T}_{mj}|; j = 1, ..., q\} = P_2(m) - P_1(m)$. By the definitions of $P_1(m)$ and $P_2(m)$, a_m has limit 0 when $m \to \infty$. By lemma 6.1 we know that there exist m_0 and a family of intervals \mathcal{J}_k contained in *S*, with k = 1, ..., h, such that

$$\mathcal{A}_{m_0} \subset \bigcup_{j=1}^q \mathcal{T}_{m_0 j} \subset \bigcup \mathcal{J}_k = \mathcal{M}$$

and every connected component of the complement of \mathcal{M} has length greater than $|\mathcal{M}|$. If we consider the lifting of the previous sets we have that there exist a number $\delta > 0$ and a family of intervals $[\alpha_s, \beta_s]$, with $\alpha_s \leq \beta_s$ e $\beta_{s+1} < \alpha_s, s = 1, \ldots, \infty$ (they are the lifting of the intervals \mathcal{J}_t) such that $A_{m_0} \subset \bigcup_{s=1}^{\infty} [\alpha_s, \beta_s]$ and $\alpha_s - \beta_{s+1} < \beta_s - \alpha_s + \delta$. It is easy to see that this condition implies the Mc Duff condition and this is a contradiction (see Proposition 4.2 in [2]).

8 **Proof of the theorems 3 and 4**

We will start by proving certain lemmas that will be useful in the proofs of theorems 3 and 4. If *I* and *J* are sets contained in $S^1 \setminus K$, we denote by Arc(I, J) the smaller arch that contains *I* and *J*.

Lemma 8.1. Let K be a regular interval Cantor set and let I_1 , I_2 , I_3 and I_4 be connected components of $S^1 \setminus K$, pairwise disjoint, removed in steps n_1 , n_2 , n_3 and n_4 of the construction of K, respectively. If $n_4 \ge \max\{n_1, n_2, n_3\}$ and $\operatorname{Arc}(I_3, I_4) \setminus (I_3 \cup I_4)$ is a connected component of K_{n_4} , there exists a positive integer m such that $|K \cap \operatorname{Arc}(I_1, I_2)| = m|K \cap \operatorname{Arc}(I_3, I_4)|$.

Proof. From the construction of K, we know that $I_1, I_2, I_3, I_4 \subset S^1 \setminus K_{n_4}$, so $\operatorname{Arc}(I_1, I_2) \cap K_{n_4}$ is a union of m connected components of K_{n_4} , that we denote by $K_{n_4}^1, \ldots, K_{n_4}^m$. Then

$$\operatorname{Arc}(I_1, I_2) \cap K = (\operatorname{Arc}(I_1, I_2) \cap K_{n_4}) \cap K = \left(\bigcup_{i=1}^m K_{n_4}^i\right) \cap K.$$

Therefore, $|\operatorname{Arc}(I_1, I_2) \cap K| = \sum_{i=1}^m |K_{n_4}^i \cap K|$. So, by the construction of K, we have

$$|\operatorname{Arc}(I_1, I_2) \cap K| = m |K_{n_4}^1 \cap K|.$$
 (21)

As Arc(I_3 , I_4) \ ($I_3 \cup I_4$) is a connected component of K_{n_4} then

$$|K_{n_4}^1 \cap K| = |(\operatorname{Arc}(I_3, I_4) \setminus (I_3 \cup I_4)) \cap K| = |\operatorname{Arc}(I_3, I_4) \cap K|.$$
(22)

Then from (21) e (22) we have

$$|K \cap \operatorname{Arc}(I_1, I_2)| = m|K \cap \operatorname{Arc}(I_3, I_4)|.$$

Lemma 8.2. If the regular interval Cantor set K, of positive measure, is C^{1} -minimal for f and f'(x) > 1 for $x \in K$, then f'(x) is a positive integer.

Proof. Let ϵ_0 , $\{n_j\}$ and $\{\lambda_{n_j}\}$ be as in the proof of lemma 3.2, and we consider $\epsilon_1 = \min\{\epsilon_0, f'(x) - 1\}$. By lemma 4.5 and the construction of K we know that there exists a positive integer n such that f' is constant in the intersection of K with each connected component of K_n and if n is sufficiently large, by the continuity of f' we have

$$\frac{1}{1+\epsilon_1} < \frac{f'(x_1)}{f'(x_2)} < 1+\epsilon_1$$

with x_1 and x_2 in the same connected component of K_n . Without loss of generality, we can suppose that x is an end point of a connected component I of K^c such that I and f(I) are contained in $S^1 \setminus K_n$. We consider j_0 such that $\lambda_{n_{j_0}}$ is smaller than the length of some connected components of K^c contained in K_n . For each $j > j_0$ we consider I_j as the connected component K^c contained in K_n^x (connected component of K_n that contains x) nearest to x and $|I_j| \ge \lambda_{n_j}$. Then, we have that $|I_j| \to 0$ and $d(x, I_j) \to 0$ when $j \to \infty$. This implies that there exists a positive integer j_1 such that if $j \ge j_1$ then $f(I_j)$ is contained in $K_n^{f(x)}$. By the choice of ϵ_1 we have that

$$d(f(x), f(I_j)) > \frac{f'(x)}{1 + \epsilon_1} d(x, I_j) \ge d(x, I_j).$$
(23)

Now, we will prove that if $j \ge j_1$ there does not exist another connected component of K^c with length $|f(I_j)|$, contained in $K_n^{f(x)}$ and within f(x) and $f(I_j)$. We suppose that there exists I^* in the previous conditions. Then $f^{-1}(I^*)$ is between x and I_j . By the Mean Value Theorem we know that there exists $\theta^* \in f^{-1}(I^*)$ and $\theta_j \in I_j$ such that

$$|f^{-1}(I^*)| = \frac{|I^*|}{f'(\theta^*)}$$
 and $|f(I_j)| = f'(\theta_j)|I_j|,$

so $|f^{-1}(I^*)| = \frac{f'(\theta_j)}{f'(\theta^*)} |I_j|$. As θ^* and θ_j are in the same connected component of K_n , we have

$$\frac{|I_j|}{1+\epsilon_1} < |f^{-1}(I^*)| < |I_j|(1+\epsilon_1)$$

so

$$|f^{-1}(I^*)| > \frac{|I_j|}{1+\epsilon_1} > \frac{|I_j|}{1+\epsilon_0} \ge \frac{\lambda_{n_j}}{1+\epsilon_0} > \lambda_{n_j+1}.$$

From here we conclude that $|f^{-1}(I^*)| \ge \lambda_{n_j}$ and this contradicts the definition of I_j . Moreover, utilizing (23) we have that if $f(I_j)$ was removed in the step n_1 and I_j was removed in the step n_2 , $n < n_1 < n_2$. This observation allows us to apply lemma 8.1, so there exists $p \in \mathbb{N}$ such that

$$|K \cap \operatorname{Arc}(f(x), f(I_j))| = p|K \cap \operatorname{Arc}(x, I_j)|.$$
(24)

As f' restrict to $K \cap \operatorname{Arc}(x, I_j)$ is constant, then

$$|f(K \cap \operatorname{Arc}(x, I_j))| = f'(x)|K \cap \operatorname{Arc}(x, I_j)| = |K \cap \operatorname{Arc}(f(x), f(I_j))|.$$
(25)

Therefore, from (24) e (25) and utilizing that |K| > 0 we have that $1 < f'(x) = p \in \mathbb{N}$ and this concludes the proof.

Now we prove theorem 3.

Proof. We suppose, that *K* is C^1 -minimal for *f* and $\{m_i\}$ is not bounded. By lemmas 4.3 and 8.2 we know that there exists an end point of a wandering interval *I*, that we call *x*, such that $f'(x) = p \in \mathbb{N}$ with p > 1. Therefore, by the uniform continuity of *f'* and by lemma 4.1 we know that there exists $n_0 \in \mathbb{N}$ such that $f'/(K \cap K_{n_0}^x) = p$, where $K_{n_0}^x$ is the connected component of K_{n_0} that contains *x*. As $\{m_i\}$ is not bounded, there exists i_0 sufficiently large such that $m_{i_0} > p + 2$. Let J_{i_0} be the interval of level i_0 closest to *x* and $K_{i_0}^x = [x, y_{i_0}]$ (connected component of K_{i_0} that contains *x*). As *f'* restricted to $K \cap K_{n_0}^x$ is *p*, then

$$|f(K \cap K_{i_0}^x)| = |K \cap [f(x), f(y_{i_0})]| = p|K \cap K_{i_0}^x|.$$

As *K* has positive measure we have that the interval $[f(x), f(y_{i_0})]$ contains exactly *p* connected components of K_{i_0} . As f(x) is an end point of f(I) (its level is greater than i_0 , if i_0 is sufficiently large) and in step i_0 we removed more than p+2 intervals, the level of $f(J_{i_0})$ is i_0 . Therefore $|J_{i_0}| = |f(J_{i_0})|$. Besides, we have that $J_{i_0} \subset K_{i_0-1}$ and $|K_{i_0-1}| \to 0$ when $i_0 \to \infty$. But then, by the continuity of f', we know that if i_0 is sufficiently large $|J_{i_0}| < |f(J_{i_0})|$, and this is a contradiction.

The following lemmas will be useful in proving theorem 4.

Lemma 8.3. If the regular interval Cantor set K, of positive measure, is C^1 -minimal for f, and there exists $x \in K$ and a positive integer p (p > 1) such that f'(x) = p, then p is multiple of $m_i + 1$ for large enough i.

Proof. From lemma 4.5 we can suppose that *x* is an end point of a connected component of K^c . We denote by $I_i = (a_i, b_i)$ the connected component of K^c of level *i* nearest to *x* (if *i* is large enough, I_i is determined). Then, $f([x, a_i])$ contains exactly *p* connected components of K_i , so the level of $f(I_i)$ is less than or equal to *i*. If *i* is sufficiently large we have that $|f(I_i)| > |I_i|$, so the level of $f(I_i)$ is less than *i*. Therefore, the quantity of connected components of K_i that contains $f([x, a_i])$ is multiple of $m_i + 1$.

Lemma 8.4. If K is a regular interval Cantor set of positive measure, then $\frac{l_n}{\sigma_n} \rightarrow 0$ when $n \rightarrow \infty$, where σ_n is the length of the connected components of K_n and l_n is the length of the open intervals removed in step n of the construction of K.

Proof. By the construction of *K* we have that $|K| = \lim_{n\to\infty} \theta_1 \dots \theta_n > 0$, so $\theta_n \to 1$. If *x* is an end point of some open interval that was removed in step *j*, then for all n > j + 1 we have

$$\theta_n = \frac{|K_n|}{|K_{n-1}|} = \frac{|K_n^x|(m_n+1)}{|K_{n-1}^x|} = \frac{|K_n^x|(m_n+1)}{|K_n^x|(m_n+1) + m_n l_n},$$

0 when $n \to +\infty$.

so $\frac{l_n}{|K_n^x|} \to 0$ when $n \to +\infty$.

Now we prove theorem 4.

Proof. We suppose by contradiction that *K* is C^1 -minimal for *f*. Let *x*, *I*, *p* and n_0 be as in the proof of theorem 3. For each $i > n_0$, we denote by $J_i = (y_i, z_i)$ the wandering interval of level *i* closest to f(x). By hypothesis, there exists a positive integer n_0 such that if $n \ge n_0$, $t_{n+1} - t_n > 3p$.

Claim 1: For all $i > t_{n_0}$, if $f^{-1}(J_i)$ is the interval of level j closest to x then $f^{-1}(J_j)$ is not the interval of level $k = \mathcal{L}(f^{-1}(J_j))$ nearest to x. We suppose by contradiction that $f^{-1}(J_j)$ is not in the desired conditions. Therefore $[x, f^{-1}(y_i)]$ is a connected component of K_j and $[x, f^{-1}(y_j)]$ is a connected component of K_k . Then $(m_{i+1} + 1) \dots (m_j + 1) = p$ and $(m_{j+1} + 1) \dots (m_k + 1) = p$. Utilizing lemma 8.2 and that q is a prime number we have that there exist less than two elements of the set $\{(m_{i+1} + 1), \dots, (m_j + 1), \dots, (m_k + 1)\}$ that are multiple of q. As this set doest not have more than 2p elements, if i is large enough we have a contradiction. Then we have demonstrated claim 1.

Claim 2: If *i* is large enough there exists k > i such that

$$\frac{|J_k|}{|K_k^{f(x)}|} > \frac{3}{2} \frac{|J_i|}{|K_i^{f(x)}|}$$

By the Mean Value Theorem, for all *i*, there exist θ_1 and θ_2 (they depend on *i*) contained in $[x, f^{-1}(z_i)]$ such that

$$|J_i| = |f^{-1}(J_i)|f'(\theta_1)$$
 and $|(f(x), y_i)| = |(x, f^{-1}(y_i))|f'(\theta_2).$

Then

$$\frac{|J_i|}{|K_i^{f(x)}|} = \frac{|J_i|}{|(f(x), y_i)|} = \frac{f'(\theta_1)}{f'(\theta_2)} \frac{|f^{-1}(J_i)|}{|(x, f^{-1}(y_i))|} \to \frac{|f^{-1}(J_i)|}{|(x, f^{-1}(y_i))|}, \quad (26)$$

when $i \to \infty$. We have two possibilities.

1. If $f^{-1}(J_i)$ is the interval closest to x of level $j = \mathcal{L}(f^{-1}(J_i))$, from claim 1, we have that $f^{-1}(J_j)$ is not the interval of level $k = \mathcal{L}(f^{-1}(J_j))$ closest to x, therefore $|(x, f^{-1}(y_j))| > 2 \cdot |K_k^x|$. Then, by (26),

$$\frac{|J_i|}{|K_i^{f(x)}|} \to \frac{|J_j|}{|K_j^{f(x)}|} \to \frac{|J_k|}{|(x, f^{-1}(y_j))|} < \frac{|J_k|}{2|K_k^{f(x)}|},$$

when $i \to \infty$. So, claim 2 follows.

2. If $f^{-1}(J_i)$ is not the interval closest to x of level $k = \mathcal{L}(f^{-1}(J_i))$, then $|(x, f^{-1}(y_i))| > 2 \cdot |K_k^x|$. So the proof follows in analogous form to the previous item.

From claim 2 we have that $\frac{|J_n|}{|K_n^{f(x)}|} \neq 0$ when $n \to \infty$ and this contradicts lemma 8.4.

Acknowledgment. This work is part of my PHD thesis. I would like to thank my Advisor, Edson de Faria, not only for helpful discussions and his many useful remarks on mathematical structure and style, but also for his constant encouragement. I would also like to thank Alvaro Rovella and Jorge Iglesias, for helpful discussions.

References

- A. Denjoy. Sur les courbes défines par les équations différentielles à la surface du tore. J. de Math Pure et Appl., 9(11) (1932), 333–375.
- [2] D. McDuff. C¹-minimal subset of the circle. Ann. Inst. Fourier, Grenoble, 31 (1981), 177–193.
- [3] M.R. Herman. Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Publ. Math. I.H.E.S., **49** (1979), 5–234.
- [4] R. Mañé. *Introdução à teoria ergódica*. Projeto Euclides, 14. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, (1983).
- [5] A. Norton. *Denjoy minimal sets are far from affine*. Ergod. Th. & Dynam. Sys., 22 (2002), 1803–1812.
- [6] A. Portela. New examples of Cantor sets in S^1 that are not C^1 -minimal. Bull. Braz. Math. Soc., New Series, **38**(4) (2007), 623–633.

Aldo Portela

Instituto de Matemática y Estadística Facultad de Ingeniería CC30, CP 11300 Universidad de la Republica Montevideo URUGUAY

E-mail: aldo@fing.edu.uy