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Regular interval Cantor sets of S1 and minimality

Aldo Portela∗

Abstract. It is known that not every Cantor set of S1 is C1-minimal. In this work we

prove that every member of a subfamily of what we here call regular interval Cantor set
is not C1-minimal. We also prove that no member of a class of Cantor sets that includes

this subfamily is C1+ε-minimal, for any ε > 0.
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1 Introduction

If f : S1→ S1 is a diffeomorphism without periodic points, there exists a unique

set �( f ) ⊂ S1 minimal for f (we say that �( f ) is C1-minimal for f ). In this

case�( f ) is either a Cantor set or S1. The C1-minimal Cantor sets known up to

now are the Denjoy examples and its conjugates. On the other hand, we know

that some families are not C1-minimal. For example, in [2] Mc Duff shows that

the usual middle thirds Cantor set is not C1-minimal and gives some conditions

for a Cantor set not to beC1-minimal. In [6] we can find other conditions that also

imply they are notC1-minimal. In [5] A. Norton shows that the affine Cantor sets

are not C1-minimal. In this work we construct new families of Cantor sets that

are not C1-minimal and other families of Cantor sets that are not C1+ε-minimal,

for any ε > 0.

1.1 Regular interval Cantor sets

The regular interval Cantor set construction imitates the procedure used to obtain

the usual middle thirds Cantor set. Given two sequences {mi } and {θi } with mi
a positive integer and 0 < θi < 1, we proceed as follows. First we remove from
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the circle m1 open intervals with the same measure, distributed in the same way,

obtaining the closed set K1 = ∪�i1 (i1 = 1, . . . ,m1) with Lebesgue measure

|K1| = θ1, where �i1 are the connected components of K1. In the second step,

we remove from each connected component �i1 , m2 open intervals of the same

measure, distributed in the same way, obtaining the closed set K2 = ∪�i1i2
(i2 = 1, . . . ,m2+1) with measure |K2| = θ2|K1|, where�i1i2 are the connected

components of K2. Proceeding like this, we obtain, for each n, a closed set

Kn ⊂ S1, contained in Kn−1, with measure |Kn| = θn|Kn−1|, and Kn = ∪�i1...in
(in = 1, . . . ,mn+1 ), where�i1...in are connected components of Kn . We define

K = ⋂ Kn . This set is a Cantor set, and we will call regular interval Cantor

set every set K constructed in this way.

1.2 Quasi regular interval Cantor sets

Now we are going to construct a family of Cantor sets that contains the regular

interval Cantor sets. Given a sequence {ni } of positive integers with
∑

i< j ni ≤
n j , we proceed as follows. First we remove from S1, n1 open intervals of the

same measure, obtaining a closed set K1 = ⋃�1i1 (i1 = 1, . . . , n1), where

�1i1 are the connected components of K1. In the second step, we remove from

K1, n2 open intervals of the same measure, removing at least an interval of

each connected component of K1, obtaining the closed set K2 = ⋃�2i2 (i2 =
1, . . . , n1 + n2), where �2i2 are the connected components of K2. We do not

require the intervals removed to be likewise distributed. Inductively, for each m
we obtain a closed set Km ⊂ S1 contained in Km−1 and we write Km =⋃�mim
(im = 1, . . . , n1 + · · · + nm) where �mim are the connected components of Km .

Then, we define K =⋂ Km . The set K is a Cantor set if, and only if,

νm = max
{|�mim | : im = 1, . . . , n1 + · · · + nm

}→ 0

when m → ∞. We will call quasi regular interval Cantor set every Cantor

set K constructed in this way. Note that with this procedure we do not obtain all

Cantor sets of S1. If

μm = min
{|�mim | : im = 1, . . . , n1 + · · · + nm

}
,

the number δ = inf{μm/νm : m ∈ N} gives an idea of the irregularity of the

Cantor set K . This number depends on the set K as well as on the procedure to

obtain K . Then, we define the regularity of K as the supreme of the set of δ′s,
taken over all the possible procedures to obtain K . Note that if the Cantor set K
is a regular interval Cantor set, its regularity is 1.
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2 Main results

Theorem 1. If the Cantor set K is C1-minimal for a diffeomorphism f , and
K c has only one orbit of wandering intervals, then K is not a quasi regular
interval Cantor set.

Theorem 2. If K is a quasi regular interval Cantor set of regularity different
from 0, then K is not C1+ε-minimal for any ε > 0.

As all regular interval Cantor sets have regularity 1 then, from the previous

theorem, we have the following result.

Corollary 1. If K is a regular interval Cantor set, then K is not C1+ε-minimal
for any ε > 0.

If the regular interval Cantor set K has positive measure and we suppose that

it is C1-minimal for f we obtain several conditions for f ′. Let mi be the number

of intervals removed in the step i of the construction of K .

Theorem 3. If K is a regular interval Cantor set of positive measure and the
sequence {mi } is not bounded, then K is not C1-minimal.

Definition 2.1. If K is a regular interval Cantor set, for each prime integer we
define Aq = {i ∈ N : mi + 1 = 0(mod q)}.

For the case that Aq is an infinite set we denote its elements by tn (n ∈ N),

with tn < tn+1. Now we can state the following result.

Theorem 4. If K is a regular interval Cantor set of positive measure and
there exists a prime integer q such that Aq is infinite and tn+1 − tn →∞, then
K is not C1-minimal.

3 Generalities

The following lemmas are going to be very useful in the proofs of the main

results.

Definition 3.1. If f : S1 → S1 is a diffeomorphism, then for each x ∈ S1 and
for each positive integer n we define

F(x, n) =
n−1∑
i=0

log f ′( f i (x)) = log( f n)′(x).
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Lemma 3.1. If the Cantor set K is C1-minimal for f , then there exists x ∈ K
such that F(x, n) ≥ 0, for all positive integer n.

Proof. Assume that for all x ∈ K there exists mx such that F(x,mx) < 0.

By the continuity of f ′, for each x ∈ K there exists δx > 0 such that for

every point y in the interval (x − δx , x + δx), F(y,mx) < 0. As the family of

intervals (x − δx , x + δx) with x ∈ K is a covering of K , and K is a Cantor

set, then there exists a finite refinement {Ii , i = 1, . . . , p} of this covering

of open intervals, pairwise disjoint, that is a covering of K . So, for each Ii
there exists mi ∈ N such that for all y ∈ Ii we have F(y,mi ) < 0. Besides,

S1 \⋃p
i=1 Ii is a finite union of closed intervals, each of which is contained in

a connected component of Kc that we call Ji , with i = 1, . . . , p. We consider

m = max{mi : i = 1, . . . , p} and M ≥ 1 the maximum of f ′. We consider a

wandering interval T of the past of J1 such that |T |Mm < min{|J1|, . . . , |Jp|}.
Now we will show that if j is a positive integer then | f j (T )| < |J1|, getting a

contradiction. By the choice of T , we know that T is contained in Ii for some i .
By the Mean Value Theorem, there exists θ ∈ Ii such that

| f mi (T )| = |T |( f mi )′(θ).

As F(θ,mi ) < 0, we have ( f mi )′(θ) < 1 and so

| f mi (T )| < |T |.
We can repeat this process with f mi (T ) instead of T . Inductively we conclude

that there exists a sequence ν1, ν2, . . . , νk, . . . with νk ∈ {m1, . . . ,mp} such that

for all positive integer r
| f
∑r

k=1 νk (T )| < |T |.
As for all j there exists r0 ≥ 0 such that

r0∑
k=1

νk ≤ j <
r0+1∑
k=1

νk,

we have

| f j (T )| = | f j−∑r0
k=1 νk ( f

∑r0
k=1 νk (T ))| ≤ Mm |T | < |J1|. �

Let K be a Cantor set of the circle and let Kc = ⋃ I j , where I j are the

connected components of Kc. We define the spectrum of K (EK ) as the ordered

set {λi } (λi+1 < λi ), with λi the length of I j , for some j .
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Lemma 3.2. If the Cantor set K is C1-minimal for f and λn/λn+1 �→ 1,
there exists η > 0 and x ∈ K such that F(x,m) ≤ −η, for all positive integer m.

Proof. As λn/λn+1 �→ 1, there exist ε0 > 0 and a sequence {nk} such that

1 + ε0 ≤ λnk
λnk+1

. Let Ink be a connected component of Kc such that |Ink | ≥ λnk
and for all j > 1, | f j (Ink )| ≤ λnk+1. By the choice of Ink we have that |Ink | → 0

when k → ∞. Let x be an accumulation point of the set of the intervals

Ink (x ∈ K ) and {ki } a sequence such that d(x, Inki ) → 0 when i → ∞.

Therefore, for every m ≥ 1, there exists i sufficiently large such that

1+ ε0 ≤
λnki
λnki+1

≤ |Inki |
| f m(Inki )|

.

Then

F(x,m) = log( f m)′(x) = log

(
lim
i→∞
| f m(Inki )|
|(Inki )|

)
≤ − log(1+ ε0). �

Lemma 3.3. If the Cantor set K is C1-minimal for f and λn/λn+1 �→ 1

then for every point x ∈ K, F(x,m) is not bounded.

Proof. By the transitivity of K (for f ), it is enough to prove the property for

any point of K . Let x and the number η be as in lemma 3.2 and suppose by

contradiction that F(x,m) is bounded. Therefore if y = inf{F(x,m) : m ∈ N},
there exists a positive integer p such that |F(x, p)− y| < η/2. So

F( f p(x),m) = F(x,m + p)− F(x, p)

= F(x,m + p)− y − (F(x, p)− y) >
−η
2

(1)

for all positive integer m. We consider {nk} such that f p+nk (x) has limit x when

k →∞. From the uniform continuity of f ′ we have that

|F( f p(x), p + nk)− F(x, p + nk)|

≤
p−1∑
i=0

| log f ′( f p+nk+i (x))− log f ′( f i (x))|

= δ(nk)→ 0

when k →∞. Then

F( f p(x), p + nk) < F(x, p + nk)+ δ(nk) < −η + δ(nk),

so using (1) we have a contradiction. �
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4 Geometric rigidity

In this section we are going to prove two geometric properties for the quasi

regular interval Cantor sets and that if, we suppose that a Cantor set K of this

family is C1-minimal for f , we obtain rigidity conditions for f ′.

Lemma 4.1. If K is a quasi regular interval Cantor set, μn <
2π

2n−1 , for all
integer n > 1.

Proof. We are going to prove that if

μn <
2π

2n−1
, μn+1 <

2π

2n .

As a result of this, μ1 < 2π and we would have proved the lemma. From

the construction of K we know that there exist integers j1, j2 and j3 such that

�nj1 <
2π

2n−1 and such that �n+1, j2 and �n+1, j3 are contained in �nj1 . Therefore

min
{|�n+1, j2 |, |�n+1, j3 |

} ≤ |�n, j1 |
2

<
2π

2n ,

and from here the lemma follows. �

Lemma 4.2. If K is a quasi regular interval Cantor set then λn/λn+1 �→ 1.

Proof. Let {li } be the sequence where li is the length of the open intervals

removed in the step i of the construction of K . From the construction of K we

have that the open intervals removed in the step n are contained in Kn−1 , so

from the previous lemma we have that ln < 2π/2n−2 for n > 2. Then, for n > 2

we have

# ({log λi } ∩ [−(n − 2) log 2+ log 2π, 0]) < n. (2)

Suppose that λn/λn+1→ 1. Then for all ε > 0 there exists n0 > 0 such that for

all n ∈ N
0 < log λn0+n−i − log λn0+n+1−i < log(1+ ε)

with i = 0, . . . , n, so

0 > log λn0+n > log λn0
− n log(1+ ε).

Then

#({log λi } ∩ [log λn0
− n log(1+ ε), 0]) ≥ n0 + n. (3)
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Applying the inequalities (2) and (3) we have

#({log λi } ∩ [−(n − 2) log 2+ log 2π, 0]) < n < n0 + n
≤ #({log λi } ∩ [log λn0

− n log(1+ ε), 0]).
Therefore

−(n − 2) log 2+ log 2π ≥ log λn0
− n log(1+ ε).

As this inequality is true for all n ∈ N and for all ε > 0, taking ε such that

log(1+ ε) < log 2 we get contradiction. �

Lemma 4.3. If a quasi regular interval Cantor set K is C1-minimal for f ,
there exists x ∈ K such that f ′(x) > 1.

Proof. From the previous lemma, we know that there exists ε0 > 0 and an

increasing sequence of positive integers {n j } such that λn j /λn j+1 > 1+ ε0, for

all n j . Let I be a connected component of Kc. Then, the family { f −n(I )} with

i ∈ N is a family of open intervals, pairwise disjoint, so | f −n(I )| → 0 when

n → ∞. Therefore, if j is sufficiently large there exists p( j) ∈ N such that

| f −p( j)(I )| ≤ λn j+1 and | f −p( j)+1(I )| ≥ λn j . Then, we have

| f −p( j)+1(I )|
| f −p( j)(I )| ≥

λn j

λn j+1

> 1+ ε0. (4)

Applying the Mean Value Theorem, there exists a point θp( j) ∈ f −p( j)(I )
such that

| f −p( j)+1(I )| = f ′(θp( j))| f −p( j)(I )|
so

| f −p( j)+1(I )|
| f −p( j)(I )| = f ′(θp( j)). (5)

From (4) and (5) we have

f ′(θp) > 1+ ε0. (6)

If x is an accumulation point of the set { f −p( j)(I )}, it is an accumulation

point of the set {θp( j)} too and, as f ∈ C1, we have that f ′(θp) → f ′(x)
when j →∞, so from (6) we obtain that f ′(x) > 1. �

If K is a quasi regular interval Cantor set and y ∈ K we denote by K y
n the

connected component of Kn that contains y. The following remarks will be

useful for the proofs of the next lemmas.
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1. If K is a quasi regular interval Cantor set, C1-minimal for f , for all ε > 0

there exists a positive integer n(ε) such that if n > n(ε) and x1, x2 belong

to the same connected component of Kn ,

1

1+ ε <
f ′(x1)

f ′(x2)
< 1+ ε.

2. For all positive integer n and all point x ∈ K there exists a positive number

υ such that if λ is an element of the spectrum of K , smaller than υ, there

exists a connected component of Kc, of length λ, contained in K f (x)
n such

that its preimage is contained in K x
n .

Lemma 4.4. Let K be a quasi regular interval Cantor set that is C1-minimal
for f and x any point in K . For any ε > 0, any integer n and any small enough
I , connected component of K c, there exists a connected component I ∗ of K c

such that
( f ′(x))m

1+ ε <
|I ∗|
|I | < ( f

′(x))m(1+ ε).

Proof. First we suppose that m ≥ 0. We consider ε1 > 0 sufficiently small

and n = n(ε1) as in remark 1. Let Kn be as in the construction of K . If I
is a short enough connected component of Kc, there exists another connected

component I1 of Kc, contained in K x
n such that its length is |I |. From the Mean

Value Theorem we have that there exists θ ∈ I1 such that

| f (I1)| = f ′(θ)|I1| = f ′(θ)|I |.
As θ ∈ K x

n , by remark 1 we have

f ′(x)
1+ ε1 <

| f (I1)|
|I | < f ′(x)(1+ ε1).

If I is sufficiently small we can repeat this procedure with f (I1) instead of I .
Then there exists I2, connected component of Kc, such that

f ′(x)
1+ ε1 <

| f (I2)|
| f (I1)| < f ′(x)(1+ ε1).

By induction we conclude that there exist I3, . . . , Im , connected components of

Kc, such that
f ′(x)

1+ ε1 <
| f (Ii+1)|
| f (Ii )| < f ′(x)(1+ ε1),
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with i = 1, . . . ,m − 1. So

( f ′(x))m

(1+ ε1)m <
| f (Im)|
|I | < ( f ′(x))m(1+ ε1)m . (7)

Given ε > 0 we choose ε1 > 0 such that (1+ ε1)m < 1+ ε. Then, from (7) the

lemma follows. In the case m < 0 we proceed as follows. If I is a connected

component of Kc, sufficiently small, there exists I1, connected component of

Kc too, of length |I |, contained in K f (x)
n such that f −1(I1) is contained in K x

n .

Therefore, there exists θ ∈ I1 such that

| f −1(I1)| = ( f −1)′(θ)|I1| = |I1|
f ′( f −1(θ))

.

As f −1(θ) ∈ K x
n , from remark 1 we have

1

(1+ ε1) f ′(x) <
| f −1(I1)|
|I1| = 1

f ′( f −1(θ))
<

1+ ε1
f ′(x)

.

So, as in the first case, we obtain the desired result. �

Lemma 4.5. If the quasi regular interval Cantor set K is C1-minimal for f ,
then f ′ takes finitely many values. Moreover, if the set of values of f ′ restricted
to K is {a1, . . . , an}, then log ai/ log a j ∈ Q ( a j �= 1).

Proof. Let ε0 and {n j } be as in the proof of lemma 4.3. We need to prove

that A = { f ′(x) : x ∈ K } is a finite set. Assume that A is infinite. As f ′ is
continuous in S¹, the set A has an accumulation point. We conclude that there

exist a, b ∈ K , a �= b, such that

1

1+ ε0 <
f ′(a)
f ′(b)

< 1. (8)

Let ε1 be a positive number such that

1+ ε1 < min

{√
f ′(b)
f ′(a)

,

√
(1+ ε0) f

′(a)
f ′(b)

}
.

From remark 1 we have that there exists n(ε1) such that if x1 and x2 are in the

same connected component of Kn(ε1), then

1

1+ ε1 <
f ′(x1)

f ′(x2)
< 1+ ε1. (9)
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Let I1 be a connected component of Kc contained in the connected component

of Kn(ε1) that contains the point a. From the construction of K we have that

Kc
n(ε1) only contains a finite number of connected components of Kc. By the

Mean Value Theorem, there exists θ1 ∈ I1 such that

| f (I1)| = |I1| f ′(θ1).
By (9), as θ1 and a are in the same connected component of Kn(ε1), we have

|I1| f ′(a)
1+ ε1 < | f (I1)| < |I1|(1+ ε1) f ′(a). (10)

If |I1| is sufficiently small there exists I2, connected component of S1 \ K ,

of length | f (I1)|, such that f −1(I2) is in the connected component of Kn(ε1)
that contains b (remark 2). By the Mean Value Theorem there exists θ2 ∈ I2
such that

| f −1(I2)| = |I2|( f −1)′(θ2) = |I2|
f ′( f −1(θ2))

.

From the choice of I2 we have that f −1(θ2) and b are in the same connected

component of Kn(ε1); so applying (9) we obtain

| f (I1)|
f ′(b)

1

1+ ε1 ≤ | f
−1(I2)| ≤ | f (I1)|f ′(b)

(1+ ε1).

From this last inequality and (10) we have

|I1|
(1+ ε1)2

f ′(a)
f ′(b)

≤ | f −1(I2)| ≤ |I1|(1+ ε1)2 f ′(a)
f ′(b)

,

and therefore, by the choice of ε1, we have

1 <
|I1|

| f −1(I2)| < 1+ ε0.

Summarizing, we have proved that if I is a connected component of S1 \ K with

sufficiently small length, there exists another connected component I ∗ of Kc

such that

1 < |I |/|I ∗| < 1+ ε0.
Taking I of length λn j sufficiently small we have

1+ ε0 > |I ||I ∗| ≥
λn j

λn j+1

> 1+ ε0
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and this is a contradiction. Then, A is finite.

Now, assume that there exist i and j such that log ai/ log a j /∈ Q. We are

going to prove (as in the previous case) that if I is a short enough connected

component of Kc, there exists another connected component I ∗ of Kc such that

1 < |I |/|I ∗| < 1+ ε0
and we get a contradiction. As log ai/ log a j /∈ Q then for all ε1 > 0 there exist

integers m and n such that

−ε1 < m log ai − n log a j < 0,

so there exist x, y ∈ K such that

e−ε1 < ( f ′(x))m( f ′(y))−n < 1. (11)

From lemma 4.4 we have that given ε2 > 0 and I a sufficiently small connected

component of Kc, there exist I ∗ and I ∗∗ such that

( f ′(x))m

1+ ε2 <
|I ∗∗|
|I | < ( f

′(x))m(1+ ε2) (12)

and
( f ′(x))−n

1+ ε2 <
|I ∗|
|I ∗∗| < ( f

′(x))−n(1+ ε2) (13)

By equations (11), (12) and (13) we have

( f ′(x))−m( f ′(y))n

(1+ ε2)2 <
|I |
|I ∗| <

(1+ ε2)2
e−ε1

. (14)

We take ε2 such that
( f ′(x))−m( f ′(y))n

(1+ ε2)2 > 1,

and ε1 such that
(1+ ε2)2

e−ε1
< 1+ ε0.

So, by (14) we have proved what we want. �

5 Proof of the theorem 1

Remark 1. Let Rθ : S1 → S1 be the rotation of angle θ (irrational in π ).

Take x ∈ S1 and m a positive integer. There exist n > m such that the set

An = {Ri
θ (x) : i = 0, . . . , n} determines the intervals T1, . . . , Tp (with the

same length) and J1, . . . , Jq (with the same length) such that f (Ti ) = Ti+1

and f (Jj ) = Jj+1. This can be easily deduced from basic facts about the

combinatorics of rotations.
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Remark 2. If f : S1 → S1 is a continuous function and Rθ is the rotation of

irrational angle θ , for all point x ∈ S1 we have

lim
n→∞

1

n

∑
0≤i≤n

f (Ri
θ (x)) =

∫
S1

f dx .

This follows from the fact that f is continuous in S1 applying Birkhoff theorem

(see [4]).

Now we prove theorem 1.

Proof. Assume, that there exists a quasi regular interval Cantor set K , C1-

minimal for f , and that Kc has only one orbit of wandering intervals. Let

h : S1→ S1 be the semiconjugate such that h◦ f = Rθ◦h, with Rθ : S1→ S1 the

rotation of angle θ (irrational in π ). From lemma 4.5 we have that there exists a

covering of K formedbypairwise disjoints closed intervals H1, . . . , Hr , such that

f ′/Hi
⋂

K = ai . It is possible to choose the intervals Hi so that each connected

component of the complement of
⋃r

i=1 Hi is a connected component of Kc.

If L1, . . . , Lr are the connected components of the complement of
⋃r

i=1 Hi ,

then the image of each Li by h is a point yi . As f has only one orbit of

wandering intervals, then the points yi are in the same orbit in the rotation Rθ .
Let Am , T1, . . . , Tp, J1, . . . , Jq be as in remark 1 such that {y1, . . . , yr } ⊂ Am .

Now, we define

g :
p⋃
1

Ti ∪
q⋃
1

Jj → R

such that g(x) = f ′(h−1(x)) (note that g is well defined even in the case that

h−1(x) is an interval). By the choice of the intervals Ti and Jj we have that g is

constant in each of them. Even more, if y is a point of S1 such that h(y) does

not belong to
⋃

j∈N R− j
θ (Am) (preorbit of the end points of the intervals Ti and

Jj ) then

F(y, n) =
n−1∑
i=0

log(g(Ri
θ (h(y)))).

Claim.

∫
(
⋃

Ti )∪(⋃ J j )
log g dx = 0.

Assume that
∫
(
⋃

Ti )∪(⋃ J j )
log g dx �= 0. Supposing that∫
(
⋃

Ti )∪(⋃ J j )
log g dx > 0,
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we have that there exists a continuous function g1 : S1 → S1 such that g1 < g
and
∫
S1 log g1dx > 0. So, by remark 2 we have that given x ∈ S1 and k > 0

there exists n = n(x, k) such that

n−1∑
i=0

log
(
g1(Ri

θ (x))
)
> k.

Therefore, if x ∈ K and h(x) /∈ ⋃ j∈N R− j
θ (Am) we have that for each k > 0

there exists a positive integer n such that

F(x, n) =
n−1∑
i=0

log
(
g( f i (x))

) ≥ n−1∑
i=0

log
(
g1(Ri

θ (h(x)))
)
> k. (15)

As for each point x ∈ K there exists a positive integer s such that h( f s(x)) does

not belong to
⋃

j∈N R− j
θ (Am), taking k sufficiently large and applying (15) for

the point h( f s(x)), we have that there exists a positive integer n such that

F(x, n) > 0.

Therefore, the result obtained contradicts lemma 3.2. If∫
S1

log g dx < 0,

working in analogous form we have that for every x ∈ K there exists a positive

integer n such that F(x, n) < 0. This result contradicts lemma 3.1. Then we

have proved the claim. Now, we are going to prove that∫
⋃

Ti
log g dx =

∫
⋃

J j

log g dx = 0. (16)

We denote ai = g/Ti e b j = g/Jj . Then∫
(
⋃

Ti )∪(⋃ J j )
log g dx =

∑
|Ti | log ai +

∑
|Jj | log b j

= |T1|
∑

log ai + |J1|
∑

log b j = 0.

(17)

If
∑

log ai �= 0, from lemma 4.5 we have
∑

log b j/
∑

log ai ∈ Q. So, by

(17) we have that |T1|/|J1| ∈ Q and this is a contradiction because the end points

of the intervals Ti and Jj share an orbit of the irrational rotation Rθ . Then∑
log b j =

∑
log ai = 0.
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Now, let y ∈ K be such that x = h(y) ∈ T1. From the construction of the inter-

vals Ti and Jj we have that Rp+1
θ (x) belongs to T1 or J1. If Rp+1

θ (x) belongs to

T1, then R2p+1
θ (x) belongs to T1 or J1. If Rp+1

θ (x) belongs to J1, then Rp+q+1
θ (x)

belongs to T1 or J1. Inductively, we have that there exists an increasing sequence

nk such that nk+1 − nk only takes values p and q and Rnk+1
θ (x) belongs to T1 or

J1. Therefore, from (16) we have that F(y, nk) = 0, for all k. Finally, given a

positive integer n there exists k0 such that nk0
≤ n < nk0+1 and therefore,

F(y, n) = F(y, nk0
)+ F( f nk0 (y), n − nk0

) = F( f nk0 (y), n − nk0
).

As n − nk0
is bounded, F(y, n) is also bounded and this contradicts lemma 3.3,

so the proof is finished. �

6 Covering and levels

Note that if the quasi regular interval Cantor set K is C1-minimal for f , for each

positive integer n we have that if I is a connected component of Kc, as small as

necessary, I and f (I ) are contained in Kn .

Definition 6.1. The positive integer s is the level of an interval I ⊂ S1, if I
was removed from the construction of K in step s (we denote s = L(I )).
Lemma 6.1. If {Ti j }, with j ∈ N and i = 1, . . . , n, is a family of closed
intervals contained in S1 such that ν j = max{|Ti j |; i = 1, . . . , n} has limit 0

when j →∞, there exist a positive integer k and a finite set of pairwise disjoint
intervals {Jt}, contained in S1, such that A = ⋃ Jt ⊃ ⋃n

i=1 Tik and every
interval ofAc has a greater measure than the measure ofA.

Proof. For the proof we will work by induction in n. If n = 1 it is immediate.

Assume the property is true for n ≥ 1. We are going to prove that the property

is true for n + 1. For each j ∈ N, we denote by B j = ⋃n+1
i=1 Ti j and by Ys j

(s = 1, . . . , n j , with n j ≤ n+ 1) the connected components of the complement

of B j . Consider two cases. First, suppose that a j = min{|Yk j |; k = 1, . . . , n j }
does not have limit 0 when j →∞. Then, there exist ε > 0 and an increasing

sequence { jt} such that a jt ,> ε for all t . By assumption we know that ν j → 0

when j →∞, then there exists r ∈ N such that ν jr < ε/(n + 1), so

|B jr | ≤
n+1∑
i=1

|Ti jr | < (n + 1)
ε

n + 1
= ε.
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As a jr > ε, we have that every interval of the complement of B jr has length

greater than |B jr |. If we define the intervals Jt as the connected components

of B jr , we have proved the inductive step in this case. Now, we suppose that

a j → 0 when j → ∞. We denote by Y∗j one of the connected components of

the complement of B j such that its length is a j . We can suppose, without loss

of generality, that Y∗j is the interval Arc(T1 j ,T2 j ) \ (T1 j ∪T2 j ) (considering j
sufficiently large and reordering the intervalsTi j as necessary). Now we consider

the family of intervals T ∗i j defined as follows. We take

T ∗1 j = T1 j ∪ Y∗j ∪ T2 j

and for i = 2, . . . , n
T ∗i, j = Ti+1, j .

Then by induction there exist a number k and a family of intervals Jt that satisfy

the lemma for the intervals T ∗i j . The number k and the family of intervals Jt
obtained for the family of intervals T ∗i j satisfy the thesis of the lemma for the

family of intervals Ti j . The proof is therefore finished. �
If the point x is the end point of a connected component of Kc of level s0, for

each integer s > s0 we denote by Is the connected component of Kc closest to

x . Note that if s is sufficiently large then Is is unique.

Definition 6.2. Let x be the end point of a connected component of K c of
level s0. For each integer s > s0 we define

ϕx(s) = s − L( f (Is)).

Lemma 6.2. If the quasi regular interval Cantor set K , has regularity differ-
ent from 0, is C1-minimal for f and x is the end point of a connected component
of K c of level s0, then ϕx is upper bounded.

Proof. As the regularity of K is not 0, there exists a procedure that determines

K such that δ = inf{μm/νm : m ∈ N} > 0. We suppose that for each k > 0

there exists a positive integer sk , such that ϕ(sk) = sk − L( f (Isk )) > k. We

denote rk = L( f (Isk )). By the construction of K we have that μsk ≤ 2−kμrk . If

Isk = (ak, bk), with ak between x and bk , we have that there exists θk ∈ [x, ak]
such that d( f (x), f (ak)) = f ′(θk)d(x, ak). So

d( f (x), f (ak)) ≤ f ′(θk)νsk ≤ f ′(θk)
μsk
δ
≤ f ′(θk)

δ
2−kμrk

≤ f ′(θk)
δ

2−kd( f (x), f (ak)).
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From here it follows that f ′(θk) → ∞ when k → +∞, and this is a contra-

diction. �

7 Proof of the theorem 2

Proof. Assume that there exists ε > 0 and a diffeomorphism f , of class C1+ε
such that K is minimal for f .

First, we will show that it is possible to choose a set A = {λ1, λ2, . . . , λr } ⊂
EK , with r ≤ q, and ν > 0 such that the set {λiνm : m ∈ N+, i ∈ {1, . . . , r}} is
close as necessary from EK . Then, applying lemma 6.1, we will show that EK
satisfies the Mc Duff’s condition (see [2]), getting a contradiction.

By lemmas 4.5 and 4.3 we have that there exist a positive integer n0 and an

end point x of a connected component of Kc, such that:

1. the restriction of f ′ to K is constant in each connected component of Kn0
.

2. f ′(x) = ν > 1.

3. by the continuity of f ′ we have that if n0 is sufficiently large, for every

connected component I of Kc, contained in K x
n0

(connected component

of Kn0
that contains x), we have that | f (I )| > |I |, so f (I ) and I have

different level.

Given a positive integer n we denote by In = (an, bn) the interval of level n+n0

contained in K x
n0

nearest to x . We fix m and for each integer n > m we consider

the family of intervals {I j
n } j∈N with the following properties:

1. the interval I 0
n = In .

2. the interval I j
n is the connected component of Kc with the same level that

the level of f (I j−1
n ) closest to x (in the proof we are going to work only

with a finite number of the I j
n ).

Let q = max{L(I ) − L( f (I ))} be the integer given by lemma 6.2. We define

pn = min{ j : L(I j
n ) ≤ L(Im+q−1) = n0 + m + q − 1}. We need to prove that

the set Dn = { j : L(I j
n ) ≤ L(Im+q−1)} is not empty. Assume that Dn is empty.

Then, for all j we have that |I j−1
n | < |I j

n | and that I j
n is between x and Im+q−1

and this is a contradiction. So Dn is not empty. Now, we consider the finite

family {I j
n } with j = 1, . . . , pn . By lemma 6.2 follows that n0 + m + q >

L(I pn
n ) ≥ n0 + m. So the set A = {I pn

n } has r elements with r ≤ q. By the
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Mean Value Theorem we know that there exist θ j ∈ I j
n , j = 0, . . . , pn − 1 such

that | f (I j
n )| = f ′(θ j )|I j

n | = |I j+1
n |. Therefore,

|In| = |I pn
n |

f ′(θ0) . . . f ′(θpn−1)
. (18)

We denote r j = L(I j
n ), with j = 0, . . . , pn − 1. Note that as i �= j , ri �= r j and

r j ≥ m + n0, for every j . For every j , we have that θ j and x are in the same

connected component of Kr j−1, so from lemma 4.1 and if r j is sufficiently large

we have

|θ j − x | < 2

δ2r j−2
.

Therefore, as f is the class C1+ε (this is | f ′(x)− f ′(y)| ≤ k̃|x − y|ε) we have

1− k
ν

1

2(r j−2)ε
<

f ′(θ j )
ν

< 1+ k
ν

1

2(r j−2)ε
, (19)

where k = k̃( 2
δ
)ε . From (18) e (19) we have

|I pn
n |
ν pn

pn−1∏
i=0

{
1+ k

ν

(
1

2ri−2

)ε }−1 ≤ |In| ≤ |I
pn
n |
ν pn

pn−1∏
i=0

{
1− k

ν

(
1

2ri−2

)ε }−1

.

Therefore,

log |I pn
n | − pn log ν − P2(m) ≤ log |In| ≤ log |I pn

n | − pn log ν − P1(m) (20)

where

P1(m) =
∞∑

j=m+n0

log
{
1− k

ν

(
1

2 j−2

)ε }
≤ log

pn−1∏
i=0

{
1− k

ν

(
1

2ri−2

)ε }
< 0

and

P2(m) =
∞∑

j=m+n0

log
{
1+ k

ν

(
1

2 j−2

)ε }
≥ log

pn−1∏
i=0

{
1+ k

ν

(
1

2ri−2

)ε }
> 0.

For each m we define the set Am = {log |Ir |; r > m} (the difference between

this set and the set {log λi } is a finite number of elements). Now, we consider the

quotient Am/ log ν ·R =Am as a subset of the affine manifold S = R/ log ν ·R
that is isomorphic to S¹. From the inequality (20) we have that for each m there
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exists a finite number of closed intervals Tmj , j = 1, . . . , q, contained in S such

that
⋃q

j=1 Tmj ⊃ Am and am = max{|Tmj |; j = 1, . . . , q} = P2(m) − P1(m).
By the definitions of P1(m) and P2(m), am has limit 0 when m → ∞. By

lemma 6.1 we know that there exist m0 and a family of intervals Jk contained in

S, with k = 1, . . . , h, such that

Am0
⊂

q⋃
j=1

Tm0 j ⊂
⋃
Jk =M

and every connected component of the complement ofM has length greater than

|M|. If we consider the lifting of the previous sets we have that there exist a

number δ > 0 and a family of intervals [αs, βs], with αs ≤ βs e βs+1 < αs , s =
1, . . . ,∞ (they are the lifting of the intervals Jt ) such that Am0

⊂⋃∞s=1[αs, βs]
and αs − βs+1 < βs − αs + δ. It is easy to see that this condition implies the Mc

Duff condition and this is a contradiction (see Proposition 4.2 in [2]). �

8 Proof of the theorems 3 and 4

We will start by proving certain lemmas that will be useful in the proofs of

theorems 3 and 4. If I and J are sets contained in S1 \ K , we denote by

Arc(I, J ) the smaller arch that contains I and J .

Lemma 8.1. Let K be a regular interval Cantor set and let I1, I2, I3 and I4 be
connected components of S1 \ K, pairwise disjoint, removed in steps n1, n2, n3

and n4 of the construction of K , respectively. If n4 ≥ max{n1, n2, n3} and
Arc(I3, I4) \ (I3 ∪ I4) is a connected component of Kn4

, there exists a positive
integer m such that |K ∩ Arc(I1, I2)| = m|K ∩ Arc(I3, I4)|.
Proof. From the construction of K , we know that I1, I2, I3, I4 ⊂ S1 \ Kn4

, so

Arc(I1, I2) ∩ Kn4
is a union of m connected components of Kn4

, that we denote

by K 1
n4
, . . . , Km

n4
. Then

Arc(I1, I2) ∩ K = (Arc(I1, I2) ∩ Kn4
) ∩ K =

( m⋃
i=1

K i
n4

)
∩ K .

Therefore, |Arc(I1, I2) ∩ K | =∑m
i=1 |K i

n4
∩ K |. So, by the construction of K ,

we have

|Arc(I1, I2) ∩ K | = m|K 1
n4
∩ K |. (21)
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As Arc(I3, I4) \ (I3 ∪ I4) is a connected component of Kn4
then

|K 1
n4
∩ K | = |(Arc(I3, I4) \ (I3 ∪ I4)) ∩ K | = |Arc(I3, I4) ∩ K |. (22)

Then from (21) e (22) we have

|K ∩ Arc(I1, I2)| = m|K ∩ Arc(I3, I4)|. �

Lemma 8.2. If the regular interval Cantor set K , of positive measure, is C1-
minimal for f and f ′(x) > 1 for x ∈ K, then f ′(x) is a positive integer.

Proof. Let ε0, {n j } and {λn j } be as in the proof of lemma 3.2, and we consider

ε1 = min{ε0, f ′(x) − 1}. By lemma 4.5 and the construction of K we know

that there exists a positive integer n such that f ′ is constant in the intersection

of K with each connected component of Kn and if n is sufficiently large, by the

continuity of f ′ we have

1

1+ ε1 <
f ′(x1)

f ′(x2)
< 1+ ε1

with x1 and x2 in the same connected component of Kn . Without loss of gener-

ality, we can suppose that x is an end point of a connected component I of Kc

such that I and f (I ) are contained in S1 \ Kn . We consider j0 such that λn j0
is

smaller than the length of some connected components of Kc contained in Kn .

For each j > j0 we consider I j as the connected component Kc contained in K x
n

(connected component of Kn that contains x) nearest to x and |I j | ≥ λn j . Then,

we have that |I j | → 0 and d(x, I j )→ 0 when j →∞. This implies that there

exists a positive integer j1 such that if j ≥ j1 then f (I j ) is contained in K f (x)
n .

By the choice of ε1 we have that

d( f (x), f (I j )) >
f ′(x)

1+ ε1 d(x, I j ) ≥ d(x, I j ). (23)

Now, we will prove that if j ≥ j1 there does not exist another connected compo-

nent of Kc with length | f (I j )|, contained in K f (x)
n andwithin f (x) and f (I j ). We

suppose that there exists I ∗ in the previous conditions. Then f −1(I ∗) is between

x and I j . By the Mean Value Theorem we know that there exists θ∗ ∈ f −1(I ∗)
and θ j ∈ I j such that

| f −1(I ∗)| = |I ∗|
f ′(θ∗)

and | f (I j )| = f ′(θ j )|I j |,
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so | f −1(I ∗)| = f ′(θ j )
f ′(θ∗)

|I j |. As θ∗ and θ j are in the same connected component

of Kn , we have |I j |
1+ ε1 < | f −1(I ∗)| < |I j |(1+ ε1)

so

| f −1(I ∗)| > |I j |
1+ ε1 >

|I j |
1+ ε0 ≥

λn j

1+ ε0 > λn j+1.

From here we conclude that | f −1(I ∗)| ≥ λn j and this contradicts the definition

of I j . Moreover, utilizing (23) we have that if f (I j ) was removed in the step n1

and I j was removed in the step n2, n < n1 < n2. This observation allows us to

apply lemma 8.1, so there exists p ∈ N such that

|K ∩ Arc( f (x), f (I j ))| = p|K ∩ Arc(x, I j )|. (24)

As f ′ restrict to K ∩ Arc(x, I j ) is constant, then

| f (K ∩Arc(x, I j ))| = f ′(x)|K ∩Arc(x, I j )| = |K ∩Arc( f (x), f (I j )|. (25)

Therefore, from (24) e (25) and utilizing that |K | > 0 we have that 1 < f ′(x) =
p ∈ N and this concludes the proof. �

Now we prove theorem 3.

Proof. We suppose, that K is C1-minimal for f and {mi } is not bounded.

By lemmas 4.3 and 8.2 we know that there exists an end point of a wandering

interval I , that we call x , such that f ′(x) = p ∈ N with p > 1. Therefore, by

the uniform continuity of f ′ and by lemma 4.1 we know that there exists n0 ∈ N
such that f ′/(K ∩ K x

n0
) = p, where K x

n0
is the connected component of Kn0

that

contains x . As {mi } is not bounded, there exists i0 sufficiently large such that

mi0 > p + 2. Let Ji0 be the interval of level i0 closest to x and K x
i0 = [x, yi0]

(connected component of Ki0 that contains x). As f ′ restricted to K ∩ K x
n0

is p,

then

| f (K ∩ K x
i0)| = |K ∩ [ f (x), f (yi0)]| = p|K ∩ K x

i0 |.
As K has positive measure we have that the interval [ f (x), f (yi0)] contains

exactly p connected components of Ki0 . As f (x) is an end point of f (I ) (its

level is greater than i0, if i0 is sufficiently large) and in step i0 we removed more

than p+2 intervals, the level of f (Ji0) is i0. Therefore |Ji0 | = | f (Ji0)|. Besides,

we have that Ji0 ⊂ Ki0−1 and |Ki0−1| → 0 when i0 → ∞. But then, by the

continuity of f ′, we know that if i0 is sufficiently large |Ji0 | < | f (Ji0)|, and this

is a contradiction. �
The following lemmas will be useful in proving theorem 4.
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Lemma 8.3. If the regular interval Cantor set K , of positive measure, is C1-
minimal for f , and there exists x ∈ K and a positive integer p (p > 1) such
that f ′(x) = p, then p is multiple of mi + 1 for large enough i .

Proof. From lemma 4.5 we can suppose that x is an end point of a connected

component of Kc. We denote by Ii = (ai , bi ) the connected component of Kc

of level i nearest to x (if i is large enough, Ii is determined). Then, f ([x, ai ])
contains exactly p connected components of Ki , so the level of f (Ii ) is less than

or equal to i . If i is sufficiently large we have that | f (Ii )| > |Ii |, so the level of

f (Ii ) is less than i . Therefore, the quantity of connected components of Ki that

contains f ([x, ai ]) is multiple of mi + 1. �

Lemma 8.4. If K is a regular interval Cantor set of positive measure, then
ln
σn
→ 0 when n → ∞, where σn is the length of the connected components

of Kn and ln is the length of the open intervals removed in step n of the construc-
tion of K .

Proof. By the construction of K we have that |K | = limn→∞ θ1 . . . θn > 0, so

θn → 1. If x is an end point of some open interval that was removed in step j ,
then for all n > j + 1 we have

θn = |Kn|
|Kn−1| =

|K x
n |(mn + 1)

|K x
n−1|

= |K x
n |(mn + 1)

|K x
n |(mn + 1)+ mnln

,

so ln
|K x

n | → 0 when n→+∞. �
Now we prove theorem 4.

Proof. We suppose by contradiction that K is C1-minimal for f . Let x , I ,
p and n0 be as in the proof of theorem 3. For each i > n0, we denote by

Ji = (yi , zi ) the wandering interval of level i closest to f (x). By hypothesis,

there exists a positive integer n0 such that if n ≥ n0, tn+1 − tn > 3p.

Claim 1: For all i > tn0
, if f −1(Ji ) is the interval of level j closest to x

then f −1(Jj ) is not the interval of level k = L( f −1(Jj )) nearest to x . We

suppose by contradiction that f −1(Jj ) is not in the desired conditions. Therefore

[x, f −1(yi )] is a connected component of K j and [x, f −1(y j )] is a connected

component of Kk . Then (mi+1 + 1) . . . (m j + 1) = p and (m j+1 + 1) . . . (mk +
1) = p. Utilizing lemma 8.2 and that q is a prime number we have that there

exist less than two elements of the set {(mi+1+1), . . . , (m j +1), . . . , (mk +1)}
that are multiple of q. As this set doest not have more than 2p elements, if i is

large enough we have a contradiction. Then we have demonstrated claim 1.
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Claim 2: If i is large enough there exists k > i such that

|Jk |
|K f (x)

k | >
3

2

|Ji |
|K f (x)

i | .

By the Mean Value Theorem, for all i , there exist θ1 and θ2 (they depend on i)
contained in [x, f −1(zi )] such that

|Ji | = | f −1(Ji )| f ′(θ1) and |( f (x), yi )| = |(x, f −1(yi ))| f ′(θ2).
Then

|Ji |
|K f (x)

i | =
|Ji |

|( f (x), yi )| =
f ′(θ1)
f ′(θ2)

| f −1(Ji )|
|(x, f −1(yi ))| →

| f −1(Ji )|
|(x, f −1(yi ))| , (26)

when i →∞. We have two possibilities.

1. If f −1(Ji ) is the interval closest to x of level j = L( f −1(Ji )), from

claim 1, we have that f −1(Jj ) is not the interval of level k = L( f −1(Jj ))

closest to x , therefore |(x, f −1(y j ))| > 2.|K x
k |. Then, by (26),

|Ji |
|K f (x)

i | →
|Jj |
|K f (x)

j |
→ |Jk |
|(x, f −1(y j ))| <

|Jk |
2|K f (x)

k | ,

when i →∞. So, claim 2 follows.

2. If f −1(Ji ) is not the interval closest to x of level k = L( f −1(Ji )), then

|(x, f −1(yi ))| > 2.|K x
k |. So the proof follows in analogous form to the

previous item.

From claim 2 we have that
|Jn|
|K f (x)

n | �→ 0 when n → ∞ and this contradicts

lemma 8.4. �
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