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A Jenkins-Serrin theorem in M2 × R
Ana Lucia Pinheiro∗

Abstract. In this paper we study minimal surfaces in M × R, where M is a complete

surface. Our main result is a Jenkins-Serrin type theorem which establishes necessary

and sufficient conditions for the existence of certain minimal vertical graphs in M ×R.

We also prove that there exists a unique solution of the Plateau’s problem in M × R
whose boundary is a Nitsche graph and we construct a Scherk-type surface in this space.
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1 Introduction

Let M be a complete Riemannian surface and D ⊂ M be a geodesically convex

(open) domain with D̄ compact. We call such a domain an admissible do-
main. Suppose that ∂D contains two sets of open geodesic arcs A1, . . . , Ak and

B1, . . . , Bl , with the property that neither two Ai nor two Bj have a common end-

point. The remaining part of ∂D is the union of open convex arcsC1, . . . ,Ch and

all endpoints. Let fs : Cs → R, 1 ≤ s ≤ n, be continuous functions. Moreover

let P be an admissible polygon, i.e., a polygon inscribed in ∂D whose vertices

are chosen among the vertices of Ai , Bj , and let

α :=
∑
Ai⊂P

‖Ai‖, β :=
∑
Bj⊂P

‖Bj‖, γ := perimeter (P),

where ‖ ‖ denotes the length of the arc.

We prove the following result:
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Theorem 1.1. With the above notation assume further that {Cs} �= ∅. Then
there exists a function u : D → R whose graph is a minimal surface in D × R
with

u∣∣
Ai

= +∞, u∣∣
B j

= −∞, u∣∣
Cs

= fs,

if and only if

2α < γ, 2β < γ (1)

for each admissible polygon P. Moreover, if the function u exists, it is unique.
Assume now that {Cs} = ∅. Then the function u exists if and only if

α = β

for P = ∂D and condition (1) holds for all other admissible polygons P. In this
case, if the function u exists, it is unique up to an additive constant.

This theorem is analogous to that of Jenkins and Serrin [JS] for minimal graphs

inR3 and generalizes the similar result of Nelli and Rosenberg [NR1] inH2×R.

A Jordan curve � ⊂ M × R is a Nitsche graph if it admits a parametriza-

tion {(α(s), t (s)), s ∈ S1}, whose orthogonal projection on M is a monotone

parametrizatiom α(s) of the boundary ∂D of a domain D ⊂ M . By monotone

parametrization of ∂D we mean that α : S1 → ∂D is continuous and there exist

disjoint closed intervals J1, . . . , Jl ⊂ S1 such that α|Jk is constant for all k, and

α|
S1−(⋃k Jk ) is injective and regular. See Figure 1.

Figure 1 – Nitsche graph.

Given a Nitsche graph � on the boundary of a domain D, by a minimal graph
with boundary� we mean a minimal surface contained in D̄×Rwhich is a graph

on D. The next result assures the existence and uniqueness of such a surface

when D is an admissible domain.
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Theorem 1.2. If � is a Nitsche graph on the boundary of an admissible
domain, then there exists a unique minimal graph with boundary �. Hence
it is a disk.

The proof of this theorem asserts that the Dirichlet problem for the minimal

equation in M × R, on an admissible domain, has a unique solution, called

minimal solution even if the boundary data is continuous except in a finite set

of points. In R3, this Dirichlet problem was considered by Finn [F] and, in a

more general case by Nitsche [N].

The uniqueness in our case is a consequence of the following general maxi-

mum principle.

Theorem 1.3. Let D ⊂ M be an admissible domain and E = {P1, . . . , Pk} ⊂
∂D. Let �n ⊂ ∂D × R, for n = 1, 2, be Nitsche graphs, un minimal graphs
with boundary �n and πn : �n → ∂D the vertical projections. Suppose that
π−1
n (Pi ) ⊂ �n is a vertical segment, for all i = 1, . . . , k. If u1 ≤ u2 on

∂D − E, then u1 ≤ u2 on D.

To define a Scherk surface in M ×R consider � ⊂ M an embedded geodesic

triangle, with open sides a, b, c opposite to the vertices A, B, C , respectively,

and such that interior angles are smaller than π . Suppose � ⊂ D, where D is

an admissible domain. We have the following result:

Theorem 1.4. There exists a minimal function u defined on�− ā that satisfies
u∣∣

b
= u∣∣

c
= 0 and lim

x→int(a)
u(x) = +∞.

Moreover, |∇u(x)| → +∞ when x approaches the side a. We denote by ∇
the gradient on M.

We call the graph of u a Scherk surface in M ×R. This minimal surface plays

an important role along the proof of the Jenkins-Serrin type theorem.

For example, let M = S
2 be the round sphere. This theorem assures that,

given a geodesic triangle� contained in an open hemisphere of S2, there exists a

function u : � → R whose graph is a Scherk surface in S2 ×R. This particular

case was proved by H. Rosenberg [Ro].

This work is part of my doctoral thesis [P] at Universidade Federal do Rio de

Janeiro. The author would like to thank Professors Harold Rosenberg and Walcy

Santos for their advice and encouragement during the preparation of this paper

and Professor Enaldo Vergasta for his help on writing.
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2 Proof of Theorem 1.2

As D×R is a homogeneously regular manifold and ∂(D×R) is mean-convex,

by Morrey [Mo], Meeks and Yau [MY1], [MY2] there exists an embedded min-

imal disk 	 ⊂ D × R that is a solution for the Plateau problem with boundary

�. Our effort is to prove that 	 is a graph on D.

Assertion 2.1. For all p ∈ int 	, Tp	 is not a vertical plane in D × R.
To prove the assertion assume, by contradiction, that there exists a point

p ∈ int 	 such that p ∈ M(c) := M × {c} for some c ∈ R, and the tan-

gent plane π to 	 at p is vertical in D ×R. This means that there exists a basis

{∂/(∂ t), v} of π , where ∂/(∂ t) is the tangent vector to 	 in the R-direction and

v is tangent to M(c) at p. We take ‖v‖ = 1.

As vertical translations are isometries in M × R, we can assume c = 0. So,

there exists a unique geodesic γ ⊂ M(0) such that γ (0) = p and γ
′
(0) = v.

The geodesic γ intersects ∂D exactly in two points. In fact, if γ accumulates

on D, then there exist a sequence of points pn ∈ γ and a point p ∈ γ such that

pn converges to p on D, but pn does not converge to p on γ . This means that

on D the distance between pn and p goes to 0 when n goes to infinity, and for

n sufficiently large there exists another curve β ⊂ D joining pN to p, for all

N ≥ n, whose length is smaller than the length of the arc of γ joining pn to p.
This contradicts the hypothesis on D.

On the other hand, γ ×R is a totally geodesic surface in D×R, in particular,

it is minimal. Moreover, Tp(γ ×R) = π . Therefore, near p, I = 	 ∩ (γ ×R)
is a set of at least two curves, which intersect transversally at p. If there

exists a cycle α in I − ∂	, then α is the boundary of a minimal disk in 	.

Thus we could touch this disk at an interior point with another minimal sur-

face β × R, where β is a geodesic curve of D, but this can not happen by the

maximum principle.

So each branch of these curves leaving p must go to ∂	 and, as γ ∩ ∂D has

exactly two points, at least two of the branches go to the same point or vertical

segment of ∂	. This yields a compact cycle α in I and, by the same previous

argument, we have a contradiction. This concludes the proof of the Assertion 2.1.

With the next argument we prove that the tangent planes on vertical segments

are not vertical. In fact, as	 is an embedded disk, it separates the space D×R in

two connected components. As 	 is orientable, by the Assertion 2.1 we can as-

sume that the normal vector field N points up at every point of int 	. Suppose that

there exist two consecutive points P and Q in the intersection of int 	 with the

same vertical line of D×R. By hypotheses, N (P) and N (Q) point up in D×R.
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In particular, the vector −N (P) must point down. But, as P and Q are consec-

utive points of int 	 in the same vertical line, the vectors −N (P) and N (Q)
should point to the same component of D×R. This is a contradiction and proves

that 	 is a graph on D. See [ADR] for a similar argument.

The uniqueness is a consequence of the Theorem 1.3. �

3 Proof of Theorem 1.3

Denote by φ the function u1 − u2 and assume by contradiction that the set

U = {p ∈ D; φ(p) > 0} is non empty. After a vertical translation of the

graph u1, if necessary, we can assume u1 < u2 on ∂D − E and the curves

contained in ∂U = {p ∈ D;φ(p) = 0} have no singularities, i.e., the vector

∇φ(p) is not null, for all p ∈ ∂U.

Consider a curve γ ⊂ ∂U. Then γ is a proper curve in D. In fact, if γ

accumulates on D, then one has a point p = γ (t0) ∈ D and a sequence of

points pn ∈ γ such that pn converges to p on D, but pn does not converge to

p on γ . So, there exists a curve β ⊂ D, such that β(t0) = p, β joins p to pn ,
for all n, and {γ ′(t0), β ′(t0)} is a basis of TpM . As φ|γ ≡ 0 and φ(pn) = 0,

we have (dφ)p(γ ′(t0)) = (dφ)p(β ′(t0)) = 0 and, consequently (dφ)p ≡ 0.

Now the equality 〈∇φ(p), v〉 = (dφ)p(v), for all v ∈ TpM , implies that

∇φ(p) = 0, what can not happen.

By the classical maximum principle, γ can not be closed in D. So γ goes to

the boundary of D. As φ is a continuous function and we have supposed u1 < u2

on ∂D − E , then γ must go to E . So there exists a connected domain Ũ ⊂ D,

with ∂Ũ ⊂ {φ ≡ 0} ∪ E .

Take ε > 0 small. Let Ũε ⊂ Ũ be the domain such that ∂Ũε is the union

of the set of all points in ∂Ũ whose distance from Pi ∈ ∂Ũ ∩ E is greater than

ε with the circular arcs Ciε with center at each Pi ∈ ∂Ũ ∩ E and radius ε, see

Figure 2.

Figure 2 – Domain Ũε .
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As ui , i = 1, 2, satisfies the minimal equation div ∇ui
Wi

= 0 on D, where

Wi =
√

1 + |∇ui |2 [Sp], we have∫
Ũε

div

(∇u1

W1

− ∇u2

W2

)
= 0.

By Stokes’ theorem, this implies∫
∂Ũε

〈∇u1

W1

− ∇u2

W2

, ν

〉
= 0, (2)

where ν is the inward unit conormal to ∂Ũε .

Assertion 3.1. 〈∇u1

W1

− ∇u2

W2

,∇φ
〉
= 1

2
(W1 +W2)‖N1 − N2‖2,

where Ni =
(
−∇ui
Wi
, 1
Wi

)
, i = 1, 2, is the unit normal vector to the graph of ui .

The assertion is a consequence of the following equality〈∇u1

W1

− ∇u2

W2

,∇u1 −∇u2

〉
= 〈〈W1N1 −W2N2, N1 − N2〉〉,

where 〈〈 , 〉〉 is the inner product in M × R.
Now, as 1/2(W1 +W2) ≥ 1 and |∇φ| �= 0 on αε , where αε = ∂Ũε − (∪iCiε),

the assertion implies that〈∇u1

W1

− ∇u2

W2

,∇φ
〉
> 0 on αε. (3)

On the other hand, as ∇φ �= 0 and φ ≡ 0 on αε , and φ > 0 on Ũε , the vector

∇φ has to point to int Ũε along αε and, consequently, ∇φ is a positive multiple

of ν on αε . Therefore, by (3),〈∇u1

W1

− ∇u2

W2

, ν

〉
> 0 on αε,

and ∫
αε

〈∇u1

W1

− ∇u2

W2

, ν

〉
≥ δ > 0.
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On ∪iCiε , one has ∣∣∣∣∣
∫
∪i Ciε

〈∇u1

W1

− ∇u2

W2

, ν

〉∣∣∣∣∣ ≤ 2 l(ε),

where l(ε) = length(∪iCiε) goes to zero, when ε goes to 0. So, when ε is

sufficiently small, one has∫
∂Ũε

〈∇u1

W1

− ∇u2

W2

, ν

〉
> 0.

This is a contradiction with (2) and we have that u1 ≤ u2 on D. �

4 Proof of Thorem 1.4

Let t be a fixed positive number and �t ⊂ �̄ × R the Nitsche graph on ∂�

obtained by the union of the sides b, c, the curve a(t) obtained by raising the

side a to height t , and the vertical segments joining the endpoints of a and a(t).
By Theorem 1.2, there exists a unique minimal graph, denoted by 	t , with

boundary �t . That is, there exists a continuous function ut : � − {B, C} → R

such that 	t = graph ut , and

ut(A) = 0, ut ∣∣
b
= ut ∣∣

c
= 0, ut ∣∣

a
= t.

Let t1 and t2 be positive real numbers with t1 ≥ t2. Consider the function

f : �− {B, C} → R; f (x) = (ut1 − ut2)(x),
where uti , i = 1, 2, is defined as above. As f ≥ 0 on ∂� − {B, C}, The-

orem 1.3 implies that f ≥ 0 on � − {B, C}. Then {ut} is a nondecreasing

and nonnegative sequence on � − {B, C}. In order to see that the function

u = limt→+∞ ut exists, we prove that the sequence ut is uniformly bounded on

compact subsets K ⊂ � − a. The idea to prove this is to construct a minimal

surface in � × R which is over the graph of ut , for all t . We call this minimal

surface an upper barrier for the sequence ut .
Let ã ⊂ D be the geodesic arc that contains the side a and whose endpoints

B̃ and C̃ are at a small distance δ from a, then ‖ã‖ = ‖a‖ + 2δ. Let b̃ and c̃
be the minimizing geodesics joining C̃ and B̃ to A, respectively, and �̃ be the

triangle in M(0) with sides ã, b̃ and c̃. Consider the points P̃ ∈ b̃, Q̃ ∈ c̃ at a

same small distance ε from A and the geodesic curve αε ⊂ �̃ joining P̃ to Q̃.
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Denote by P and Q the intersect points of αε and b and c, respectively. Now, let

bε the segment of b between C and P , cε be the segment of c between B and Q,

b̃ε be the segment of b̃ between C̃ and P̃ and c̃ε be the segment of c̃ between B̃
and Q̃. See Figure 3.

Figure 3 – Triangle �̃.

Fix τ ∈ R, τ > 0, and let R(b̃ε, τ ) and R(c̃ε, τ ) be the curves that are the

boundary of b̃ε × [0, τ ] and c̃ε × [0, τ ], respectively. See Figure 4.

We use the Douglas criteria for the Plateau problem [J] to prove the existence

of a least area oriented minimal annulus with boundary R(b̃ε, τ ) ∪ R(c̃ε, τ ).
Assertion 4.1. Let D be a minimal disk with boundary R(b̃ε, τ ). Then
area(D) ≥ ‖b̃ε‖τ .

In fact, by the co-area formula,

area(D) =
∫ maxx∈D h(x)

minx∈D h(x)

(∫
h−1(t)

dst
|∇Dh|

)
dt,

where h is the height function in M × R and dst is the volume form on h−1(t).
The function h is harmonic on D [Ro], thus the minimum and the maximum

of h on D would be attained at the boundary of D. Then

area(D) =
∫ τ

0

(∫
h−1(t)

dst
|∇h−1(t)h|

)
dt .

Denoting by ∇̃ the gradient on M ×R, we have ∇h−1(t)h = ∇̃h − 〈∇̃h, N 〉N ,

where N is the unit normal vector to h−1(t). As ∇̃h = ∂/(∂t), we have
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|∇h−1(t)h| ≤ 1 and

area(D) ≥
∫ τ

0

(∫
h−1(t)

dst
)
dt

=
∫ τ

0

‖h−1(t)‖ dt

≥
∫ τ

0

‖b̃ε(t)‖ dt ,

as asserted. At the last inequality we used that b̃ε is the minimizing geodesic

joining C̃ to P̃ .

Based in this assertion we conclude that the area of the disks b̃ε × [0, τ ] and

c̃ε × [0, τ ] are the minimum areas of the disks with boundary R(b̃ε, τ ) and

R(c̃ε, τ ), respectively.

Now, consider the annulus

A = αε × [0, τ ] ∪ ã × [0, τ ] ∪ B̃ Q̃ P̃C̃ ∪ B̃ Q̃ P̃C̃(τ ),
where B̃ Q̃ P̃C̃ is the quadrilateral contained in M(0), with sides ã, b̃ε, αε and

c̃ε , and B̃ Q̃ P̃C̃(τ ) ⊂ M(τ ) is B̃ Q̃ P̃C̃ raised to height τ . See Figure 4. We

claim that if τ is sufficiently large the annulus A has area smaller than the sum

of the areas of the disks b̃ε × [0, τ ] and c̃ε × [0, τ ].

Figure 4 – Annulus A and Curves R(b̃ε, τ ) and R(c̃ε, τ ).

In fact, area(A) ≤ area
(
(b̃ε × [0, τ ]) ∪ (c̃ε × [0, τ ])

)
is equivalent to

‖αε‖τ + [ ‖a‖ + 2δ ] τ + 2 area(B̃ Q̃ P̃C̃) ≤
(
‖c̃‖ + ‖b̃‖ − 2ε

)
τ

⇔
(
‖c̃‖ + ‖b̃‖ − 2ε − ‖αε‖ − ‖a‖ − 2δ

)
τ > 2 area(B̃ Q̃ P̃C̃),
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and area(B̃ Q̃ P̃C̃) does not depend of τ , when ε and δ are sufficiently small,

and consequently ‖αε‖ is small too. So, if τ is sufficiently large, to prove the

assertion we have to show that

‖c̃‖ + ‖b̃‖ − ‖a‖ > 0.

Observe that M is a metric space and b̃ and c̃ are geodesic curves, so the

triangle inequality holds. Then

‖a‖ < ‖ã‖ = dist (B̃, C̃)
≤ dist (B̃, A)+ dist (A, C̃)
= ‖c̃‖ + ‖b̃‖.

Hence, area(A) is smaller than the sum of the areas of the disks b̃ε × [0, τ ]
and c̃ε × [0, τ ], and by the Douglas criteria, there exists a least area minimal

annulus A(δ, τ ) with boundary R(b̃ε, τ ) ∪ R(c̃ε, τ ).
The annulus A(δ, τ ) is above 	t for all t > 0, that is, if a vertical geodesic

in int(�×R) meets both surfaces, then the point of A(δ, τ ) is above the points

of 	t . To see this, we translate vertically A(δ, τ ) to height t , and then one

lowers it continuously. By the classical maximum principle there does not exist

interior points between the surfaces until A(δ, τ ) reaches the original position.

Moreover, as δ goes to 0, the same argument shows that the annulus A(τ ) :=
A(0, τ ) is above 	t . The boundary maximum principle assures that at each

interior point of the vertical geodesics B × [0, τ ] and C × [0, τ ] the tangent

planes to A(τ ) and 	t are not parallel. As A(τ ) is above 	t , we can say that in

each of these points the angle between the tangent plane to A(τ ) and the geo-

desic plane containing b̃ε × [0, τ ] or c̃ε × [0, τ ] is larger than the angle between

this last plane and the tangent plane to 	t . Therefore the annulus A(τ ) is an

upper barrier for the sequence ut .
We claim that the horizontal projections of the annulus A(τ ) is an exhaustion

for �̄, when τ goes to+∞. Consequently, for all compact set K ⊂ π(A(τ )) ⊂ �

and for all t ∈ R, there exists an upper barrier for 	t . So there exists a function

u defined on �̄− ā such that graph u is minimal in �× R,

u = lim
t→∞ ut ,

and

u∣∣
b
= u∣∣

c
= 0, lim

x→int(a)
u(x) = +∞ .

Now, we prove that π(A(τ )) is an exhaustion of �̄. Let � be the non-

compact connected component of �× R− int(A(τ )). As, for all k > τ , ∂� =
Bull Braz Math Soc, Vol. 40, N. 1, 2009
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∂(�̄ × R) ∪ A(τ ) is piecewise smooth mean-convex, there exists a least area

connected minimal surface A(k) ⊂ � ⊂ �̄ × R with boundary R(bε, k) ∪
R(cε, k).

Translating vertically A(τ ) to height τ − k, by the maximum principle, one

guarantees that A(τ ) and A(k) have no common interior points, and they are

not tangent at boundary points. So, when k goes to +∞, the angle the tangent

plane of A(k) makes along the vertical boundary segments is controlled by that

of A(τ ).
For each n > τ , denote by N (n) the surface A(2n) translated down a distance

n. As each N (n) is stable, one has uniform local area bounds, and uniform curva-

ture estimates [Sc]. So, there exists a subsequence of N (n), n > τ , converging

to a minimal surface N (∞) ⊂ � × R. By the classical maximum princi-

ple, A(τ ) can be translated up to +∞ and down to −∞ without ever touching

N (∞) in interior points. Then N (∞) has a connected component N whose

boundary is the union of the vertical geodesics B × R and C × R. We prove

that N = ã × R which means that the compact sets in the vertical projection of

N (n) on � exhaust �.

At first, let us parametrize the sides b̃ and c̃ of �̃ by the same parameter

t, t ∈ [0, 1] such that b̃(0) = C̃, c̃(0) = B̃ and b̃(1) = c̃(1) = A.

Consider {Ct}0≤t≤1 a set of curves where Ct = b̃[0, t] ∪ c̃[0, t] ∪ γ̃t and

γ̃t is the unique minimizing geodesic of �̃ joining b̃(t) and c̃(t). This set is

a foliation of �̃ by geodesics, with C1 = A, and C0 = ã and, for each t ∈
[0, 1], Ct × R is the union of three minimal surfaces in M × R, and the angle

between these surfaces is smaller than π . Moreover, ∂(Ct × R) = (B̃ × R) ∪
(C̃ ×R). Letting t goes to 0, these surfaces can not touch N , since N would be

Ct by the maximum principle. Therefore, either N = a ×R or there is a largest

positive t0 > 0 such that N is asymptotic to Ct0 × R at infinity.

Suppose, by contradiction, that the latter case happens, i.e., for some 0 <

t0 < 1 there is a sequence xn ∈ N ∩ M(n) such that dist(xn,Ct0 × R) goes

to 0 when n goes to ∞. Denote by S(n) the surface N vertically translated

in order to the height of xn becomes zero. By the same argument used for

N (n), n > τ , we can claim that a subsequence of S(n), n ≥ 1, converges to

a minimal surface S. Moreover, by the hypotheses, S touches Ct0 × R at some

interior point at height zero. Then S = Ct0 × R. Now, let K ⊂ Ct0 × R be a

compact domain such that the distance between K and ∂(Ct0 × R) is positive

and the projection of K in �̃ contains points of �̃ − �. As S = Ct0 × R,

we can say that there exists domains in N (n) that converge uniformly to K
when n goes to ∞. So there exist points of N (n) with vertical projection in

�̃ −�. This is impossible since N (n) is a vertical translation of A(2n) whose
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vertical projection is contained in �. This shows that the horizontal projections

of A(τ ) forms a exhaustion of �, as we claimed.

To finish the proof of Theorem we need to show that given a sequence of

points zn ∈ int(�) such that zn → z ∈ int(a) we have

|∇u(zn)| n→+∞−→ +∞ .

For each positive integer large enough n, let γn = u(�) ∩ M(n) and ϕn =
π(γn), where π is the vertical projection of � × R on �. Denote by �n the

connected part of � bounded by ϕn, b and c. Consider a sequence of points

zn ∈ � with zn ∈ ϕn , for all n.

Let ∂/(∂ t) be the vertical vector in � × R, νn be the outward unit conor-

mal to the boundary 	�n = graph u|�n and Nn be the unit normal to the 	�n ,

such that 〈Nn, ∂/(∂ t)〉 ≥ 0.

At each point p ∈ ∂	�n , we consider the basis β = {γ ′
n, νn, Nn} of

Tp(�× R), where γ ′
n is a unit tangent vector to γn . See Figure 5.

Figure 5 – Basis β.

At points of 	�n , we have

∂

∂t
= dγ ′

n + eνn + f Nn,

where d, e, f ∈ R. The curve γn is horizontal, then
〈
∂/(∂ t), γ ′

n
〉 = 0. Therefore

d = 0 and ∂/(∂ t) = eνn + f Nn . Moreover, as 〈νn, Nn〉 = 0 and |νn| = 1, one

has 〈
∂

∂t
, νn

〉
= e and

〈
∂

∂t
, Nn

〉
= f.
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So
∂

∂t
=

〈
∂

∂t
, νn

〉
νn +

〈
∂

∂t
, Nn

〉
Nn,

or 〈
∂

∂t
, νn

〉
νn = ∂

∂t
−

〈
∂

∂t
, Nn

〉
Nn.

Finally, as
∣∣ ∂
∂t

∣∣2 = 1,

〈
∂

∂t
, νn

〉
=

√
1 −

〈
∂

∂t
, Nn

〉2

. (4)

Assertion 4.2. Let u : � → R be a minimal solution in � × R which con-
verges to infinity as one approaches an open geodesic arc a ∈ ∂�. Then the
tangent plane to graph u approaches the vertical as one converges to a.

Let zn ∈ � be a sequence of points as before. To prove the assertion it is

sufficient to show that the tangent plane at pn = (zn, u(zn)) is almost vertical

when n goes to ∞.

First, we extend νn to the interior points of 	�n , that is we define on 	�n

the outward conormal ντ in γτ ⊂ 	�n , 0 < τ � n. By the previous argument,

we have 〈
∂

∂t
, ντ

〉
=

√
1 −

〈
∂

∂t
, Nτ

〉2

.

Observe that at points of 	�n where the tangent plane is almost vertical,

the vertical projection of Nn must be almost zero. By (4), this means that

〈∂/(∂ t), νn〉 approaches 1. Then the tangent plane at pn ∈ 	�n is almost vertical

when n goes to ∞ if, and only if, for each ε > 0 and q ∈ a, there exists a

neighborhood of a in � such that〈
∂

∂t
, νn

〉
> 1 − ε, (5)

at each point of the neighborhood, for n sufficiently large.

Suppose, by contradiction, that (5) does not hold. Then ∃ q ∈ int(a) and

∃ δ > 0 such that ∀ n ∈ N, ∃ zn ∈ �, with zn
n→+∞−→ q and ∃ ñ > n, such that〈

∂

∂t
, νñ

〉
≤ 1 − δ.
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Denote by D(pn, R) the open disk of center pn and radius R in 	�n . It is pos-

sible to choose a number R > 0, independent on n, such that D(pn, R) ⊂ 	�n ,

where pn = (zn, u(zn)), and R is the intrinsic radius. In fact, as q ∈ int(a),
one has dist(pn, ∂	�n ) >> 0, for all n. We use again curvature estimates for

stable minimal surfaces to guarantee that 	�n is a graph on a disk D(pn, r) ⊂
Tpn	�n and this graph has bounded distance from D(pn, r). Moreover, r de-

pends only on R and, consequently, it is independent of n. Hence, if zn is

close enough to a, the vertical projection of D(pn, r) is out of �. But, as

the distance between 	�n and D(pn, r) is bounded, the vertical projection of

	�n is out of � too. This is a contradiction.

Therefore, the assertion holds and the proof of theorem is finished. �

5 Proof of Theorem 1.1

First we prove that the condition (1) is sufficient for the existence of u. This

proof is divided in five cases. Our argument is analogous to [JS].

Case 1. ∂D contains just one geodesic arc A and one strictly convex arc C .

The function f : C → R is continuous and positive.

The surface constructed in this case is a generalization of the Scherk type

surface given by Theorem 1.4. In fact, now the boundary of the domain con-

tains a non-geodesic arc and on this arc the function f can take positive values.

Later we prove that on strictly convex arcs infinite values are not possible. The

argument in the proof of the first case is analogous to the proof of Theorem 1.4.

Proof of Case 1. Let n ∈ R, n > 0. Consider �n ⊂ ∂(D × R) the curve that

is the union of the following arcs: the geodesic arc A raised to height n, the

graph of the function min(n, f ) and the vertical geodesic segments joining the

endpoints of the curves just described.

Let 	n be the graph of the function un : D → R that is a solution of the

Plateau problem in D×Rwith boundary �n . By the general maximum principle

(Theorem 1.3), {un} is a nondecreasing sequence. Let us prove that {un} is

uniformly bounded on each compact set K ⊂ D − A. So we will construct an

upper barrier for 	n , for all n, using the Douglas criteria.

Let Ã ⊂ M(0) be a geodesic arc extending A, whose endpoints P̃ and Q̃ are

at a small distance δ from A, so ‖ Ã‖ = ‖A‖ + 2δ. Let C̃ a strictly convex

arc, parallel to C , joining P̃ to Q̃ (thus dist(C̃,C) = δ), M be the midpoint of

C̃ and D̃ be the region bounded by Ã and C̃ . Consider Ẽ, F̃ ∈ C̃ at a same
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small distance ε > 0 from M . Now, consider the following curves: αε , βε be

minimizing geodesics of D̃ joining P̃ to Ẽ and Q̃ to F̃ , respectively; α̃ε , β̃ε
subarcs of C̃ , bounded by P̃ , Ẽ and Q̃, F̃ , respectively; α̃, β̃ subarcs of C̃ , such

that C̃ = α̃ ∪ β̃, α̃ ∩ β̃ = {M}; α, β minimizing geodesic joining P̃ to M and

Q̃ to M , respectively; and finally, γ̃ε ⊂ D̃ a minimizing geodesic joining Ẽ
to F̃ . Figure 6 can help us.

Figure 6 – Region D̃.

For fixed t > 0, denote by R̃(α̃ε, t) the boundary of Dα̃ε := α̃ε × [0, t] and

by R̃(β̃ε, t) the boundary of Dβ̃ε
:= β̃ε × [0, t]. Let D̃α̃ε and D̃β̃ε

be the disks

that are solutions to the Plateau problem with boundary R̃(α̃ε, t) and R̃(β̃ε, t),
respectively.

We want to construct a minimal annulus S(δ, t) ⊂ D̃ × R with ∂S(δ, t) =
R̃(α̃ε, t) ∪ R̃(β̃ε, t).

Consider the annulus

N = Ã × [0, t] ∪ γ̃ε × [0, t] ∪ P̃ Ẽ F̃ Q̃ ∪ P̃ Ẽ F̃ Q̃(t),
where P̃ Ẽ F̃ Q̃ is the quadrilateral, contained in M(0), whose sides are the

curves Ã, α̃ε, γ̃ε and β̃ε , and P̃ Ẽ F̃ Q̃(t) ⊂ M(t) is P̃ Ẽ F̃ Q̃ raised to height t .
One has ∂N = R̃(α̃ε, T ) ∪ R̃(β̃ε, T ).

The area of the annulus N is given by

area(Ñ ) = ‖ Ã‖t + ‖γ̃ε‖t + 2 area(P̃ Ẽ F̃ Q̃).

By the Douglas criteria, we must show that area(N ) < area(D̃α̃ε ∪ D̃β̃ε
) to

assure that S(δ, T ) exists.
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Let Dαε := αε × [0, t]. By the Co-area formula, we guarantee that

area
(
Dαε ∪ Dβε

) ≤ area
(
D̃α̃ε ∪ D̃β̃ε

)
.

So, if we show that

area(N ) < area
(
Dαε ∪ Dβε

)
,

then S(δ, t) exists. That is, we should prove[‖αε‖ + ‖βε‖ − (‖A‖ + 2δ + ‖γ̃ε‖)
]
t > 2 area(P̃ Ẽ F̃ Q̃).

As area(P̃ Ẽ F̃ Q̃) is constant, then if t is large and ε, δ are small enough,

it is sufficient to show that ‖α‖ + ‖β‖ − ‖A‖ > 0. This follows from the

triangle inequality in M , since α, β and A are geodesics. Hence there exists

an annulus S(δ, t), above 	n for all n > 0, with boundary R̃(α̃ε, t) ∪ R̃(β̃ε, t).
As δ > 0, one has ∂S(δ, t) ∩ ∂	n = ∅. Letting δ go to 0, we obtain that

the annulus S(t) = S(0, t) is above 	n , for all n. In fact, by the boundary

maximum principle, at each interior point of ∂S(t) ∩ ∂	n the tangent planes to

S(t) and 	n are not parallel. This means that S(t) is above 	n , for all n, and

consequently un is uniformly bounded on each compact set K ⊂ π(S(t)). So,

u = limn→∞ un exists on each K ⊂ π(S(t)). By the same argument used in the

proof of Theorem 1.4 these compact sets exhaust D − A, when t → +∞, and

there exists a function u : D→ R such that

u|A = +∞, u|C = lim
n→∞ min( f, n) = f

as we desired. It concludes the proof of Case 1.

Remark 5.1. Let D ⊂ M be an admissible domain and let C ⊂ ∂D be a

strictly convex curve. Denote by C(C) the open convex-hull of C . If g : C(C)∪
C → R is a minimal solution whose values on C are bounded, the proof of

Case 1 shows that g is bounded on all compact sets K ⊂ C(C). In fact,

consider the geodesic arc A joining the endpoints of C . By the proof of Case

1 there exists a Scherk-type surface u+ defined on C(C), such that u+|A =
+∞, u+|C = g|C and for all compact K ⊂ C(C), u+ is above the graph of g.

Assertion 5.1. Let C(C) be the open convex-hull of a strictly convex curve C,
and let g : C(C) → R be a minimal solution. If g is unbounded on C, then g is
unbounded on C(C).
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In fact, since g|C = +∞, we can assume that g ≥ 0 on C(C). Suppose,

by contradiction, that there exists a point p ∈ C(C) such that g(p) < +∞.

Let u− be a Scherk surface on C(C) with u−|C = 0 and u−|A = −∞, where

A is the geodesic joining the endpoints of C . One has g > u− on C(C). As

u−|C(C) is bounded, we can translate vertically up u− until it touches graph of g
at (p, g(p)). This is impossible by the classical maximum principle and hence

there not exist such a point p ∈ C(C).
In order to continue the proof of Theorem 1.1, we need some preliminary

results. Let g : D → R be a minimal solution, where D ⊂ M is an admissible

domain. Denote the graph of g by 	 and suppose that g|∂D is bounded. Let

us define νg(p) as an outward unit conormal vector at p ∈ ∂	 in a classic

way, i.e., νg(p) ∈ Tp	 and νg(p)⊥ Tp(∂	). Here (ν3)g is the component of νg
in the ∂/(∂ t)-direction. We will establish some results about (ν3)g.

Assertion 5.2. Let A ⊂ ∂D be an open geodesic arc. Then |(ν3)g(p)| < 1,
for all p = (z, g(z)) ∈ ∂	, where z ∈ A.

Suppose, by contradiction, that there exists a point p = (z, g(z)) ∈ ∂	, with

z ∈ A, such that |(ν3)g(p)| = 1. This means that the tangent plane to 	 is

vertical at p. So Tp	 and Tp(A × R) are vertical and parallel and the surface

	 is in the same side of A × R. This is impossible by the boundary maximum

principle and the assertion is proved.

Remark 5.2. By a similar argument, this assertion holds if p = (z, g(z)),
when z belongs to a strictly convex arc C ∈ ∂D.

Lemma 5.1. Let C ⊂ ∂D be a strictly convex arc. Then∫
C
(ν3)gds < ‖C‖

Proof. This is a consequence of the Remark 5.2. �

Assertion 5.3.

∫
∂	

(ν3)gds = 0 .

As the height function is harmonic on 	 [Ro], using Stokes theorem we have

0 =
∫
	

�h dV	 =
∫
∂	

〈∇	h, ν〉 dV∂	,

where ν is the outward unit conormal on ∂	.
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As ∇̃h = ∇	h +
〈
N , ∇̃h

〉
N and ∇̃h = ∂

∂t
, one has

0 =
∫
∂	

〈
∂

∂t
−

〈
N ,

∂

∂t

〉
N , ν

〉
dV∂	

=
∫
∂	

〈
∂

∂t
, ν

〉
dV∂	.

This concludes the proof of the assertion.

Lemma 5.2. Let A ⊂ ∂D be a geodesic arc and let {gn} be a sequence of
minimal solutions on an open domain which are continuous on D ∪ A. Denote
by νn the unit outward conormal vector to the boundary of the graph of gn,
for each n. Then

(i) If {gn} diverges uniformly to infinity on compact subsets of A and re-
mains uniformly bounded on compact sets of D, then

lim
n→∞

∫
A
(ν3)nds = ‖A‖.

(ii) If {gn} diverges uniformly to infinity on compact subsets of D and re-
mains uniformly bounded on sets of A, then

lim
n→∞

∫
A
(ν3)nds = −‖A‖.

Proof.

(i) Let δ > 0 be a fixed small number and Aδ be a subarc of A whose

distance from ∂A is at least δ.

As gn goes to ∞ when n goes to ∞ on Aδ, one has, for each n large

enough, (ν3)n > 0 on Aδ. By Assertion 5.2, one has (ν3)n < 1. So

lim
n→∞

∫
Aδ
(ν3)nds ≤ lim

n→∞

∫
Aδ

1 ds = ‖Aδ‖. (6)

On the other hand, for each n, the tangent plane to graph gn at points whose

vertical projection belongs to Aδ is almost vertical when n goes to +∞. Hence

for all ε > 0 small and n large, we have |(ν3)n| > (1 − ε) on Aδ.
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Consequently,

lim
n→∞

∫
Aδ
(ν3)nds ≥ lim

n→∞

∫
Aδ
(1 − ε) ds ,

and for ε → 0,

lim
n→∞

∫
Aδ
(ν3)nds ≥ ‖Aδ‖. (7)

Now, when δ goes to 0 and Aδ goes to A, (6) and (7) imply that

lim
n→∞

∫
A
(ν3)nds = ‖A‖.

(ii) The proof is analogous to (i) if we observe that now (ν3)n < 0 on Aδ. �

Remark 5.3. By the same argument used in the proof of the previous lemma,

we can prove the following fact: Let {gn} be a monotone sequence of minimal

solutions on D, and let V be a compact subset of D. If {gn} diverges uniformly

on V and converges uniformly on D − V , then

lim
n→∞

∫
A
(ν3)nds = − ‖A‖,

on each geodesic arc A ⊂ ∂V .

Case 2. ∂D contains geodesic arcs A1, . . . , Ak and strictly convex arcs

C1, . . . ,Ch . We suppose fs : Cs → R are continuous and bounded below.

Proof of Case 2. For each n ∈ R, let �n be the closed curve obtained by the

union of the curves Ai (n), i ∈ {1, . . . n}, graph {min(n, fs), s ∈ {1, . . . , h},
and the vertical segments on the vertices of D such that �n is a Nitsche graph.

By Theorem 1.2, there exists a function un whose graph, denoted by 	n , is

minimal with boundary �n .

The following result is an interesting one on its own. The notation is the same

as above.

Lemma 5.3. Let p ∈ D. If the sequence un(p) is bounded, then
∣∣∇un(p)∣∣ is

bounded.

Proof. Let B = B(p, ε) be a geodesic ball with center p and radius ε > 0.

For each v ∈ V = {v ∈ TpD; |v| = 1} consider γv ⊂ D the geodesic curve
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with γv(0) = p and γ
′
v(0) = v. Since B is an admissible domain, from the

prove of Assertion 2.1 we have that γv intersects ∂B exactly in two points. So

γv divides B in two connected components.

Consider {γvt ; 0 < t ≤ 1} a foliation, by geodesic arcs, of one of these

components with γv1 = γv. Again, for each t ∈ (0, 1), γvt divides B in two

connected components. Denote by �vt the component of B bounded by γvt
such that γv ⊂ int �vt . See Figure 7.

Figure 7 – Domain �vt .

For t ∈ (0, 1), let 	vt = graphφvt be a Scherk surface defined on �vt ⊂ B
with boundary values

φvt |γvt = ∞ and φvt |∂D∩∂�vt ≡ 0.

Letting δ small and fixed, we change t ∈ [δ, 1 − δ] and v ∈ V continu-

ously in order to have a 2-parameter compact continuous family Fvt of Scherk

surfaces [RS].

Now, for each fixed n ∈ R, let x and y be local coordinates in B, with p as

origin,
∂un
∂x

(p) > 0 and
∂un
∂y

(p) = 0.

So 	n ∩ M(un(p)) is a horizontal curve tangent to the y direction.

Fix v ∈ V and let δ be as before. The same argument used to prove Assertion

4.2 shows that the tangente plane πvt at the point (p, φvt(p)) ∈ 	vt , with p near

to γvt , is almost vertical. Then there exists a smaller t0 ∈ (0, 1 − δ] such that

∀ t ∈ [t0, 1− δ] the intersection of 	vt ∩ (M(φvt(p))) is a connected curve with

endpoints contained in the vertical segments of �vt × R. Moreover this curve

intersects γv(φvt(p)) only at (p, φvt(p)), where γv(φvt(p)) denote the curve

γv raised to height φvt(p). Choosing ṽ ∈ V such that ṽ corresponds to the y
direction, one has

∂un
∂y

(p) = ∂φṽt

∂y
(p) = 0, ∀ t ∈ [t0, 1 − δ] .
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Suppose that un(p) < φṽt(p) for all t ∈ [t0, 1 − δ],

Assertion 5.4.
∂un
∂x

(p) <
∂φṽt0
∂x

(p).

Suppose, by contradiction, that
∂un
∂x

(p) ≥ ∂φṽt0
∂x

(p) .

If
∂un
∂x

(p) = ∂φṽt0
∂x

(p), then |∇u(p)| = |∇φṽt0(p)|.
We can translate vertically 	n up to un(p) coincides with φṽt0(p). Now,

	ṽt0 and 	n are tangent at the point q = (p, φṽt0(p)) = (p, un(p)). So there

exist at least two curves contained in the intersection of these graphs, which

intersect transversally at q. If there exists a cycle α in 	ṽt0 ∩ 	n , then α is

the boundary of two minimal disks. By the classical maximum principle these

disks are the same, what is impossible. As un is bounded and positive on B, the

curves have bounded height and each branch must go to the vertical segments in

	ṽt0 . Because there are two segments and 	n is a graph on B, then two branches

intersect a same vertical segment at the same point yielding again a cycle. This

contradiction shows that ∂un
∂x (p) �=

∂φṽt0
∂x (p).

Now, if ∂un
∂x (p) >

∂φṽt0
∂x (p), the angle between the tangent plane Tṽt0 and the

horizontal direction is smaller than the angle between Tp	n and the horizon-

tal direction.

By the Theorem 1.4, we have that |∇φṽt(p)| goes to infinity when p approaches

to γṽ, i.e., when t goes to 1. Then, for some t1 ∈ (t0, 1), we have

∂un
∂x

(p) <
∂φṽt1
∂x

(p) and
∂un
∂y

(p) = 0 = ∂φṽt1
∂y

(p).

Consequently, for some t̃ ∈ (t0, t1), one has

∂un
∂x

(p) = ∂φṽt̃

∂x
(p) and

∂un
∂y

(p) = 0 = ∂φṽt̃

∂y
(p).

With the same argument used before, one obtains a contradiction and conclude

the prove of the assertion.

Therefore we have

∂un
∂x

(p) <
∂φṽt̃

∂x
(p) and |∇un(p)| < |∇φṽt̃(p)|.

For each function un , we constructed a Scherk surface φṽt̃ such that

|∇un(p)| < |∇φṽt̃(p)|. As Fvt is a compact family and |∇φvt | is continu-

ous, there is a Scherk surface φ ∈ Fvt such that |∇φvt(p)| < |∇φ(p)|, for
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all v ∈ V and t ∈ (δ, 1 − δ). So |∇un(p)| < |∇φ(p)| and the Lemma

is proved. �

Assertion 5.5. The setU = {p ∈ D; un(p) is a bounded sequence} is open.
Let p ∈ U. By curvature estimates for stable minimal surfaces [Sc], for

each n, there is a neighborhood of pn = (p, un(p)) where 	n is a graph with

bounded gradient on a disk D(pn R) ⊂ Tpn	n whose radius R is independent

of n. But the sequence∇un(p) is bounded by the previous Lemma. Hence, there

is a disk with fixed radius contained in the projection of each D(pn, R) over the

horizontal plane and un is uniformly bounded on this disk. This shows that p is

a interior point of U, and the Assertion is proved.

By Remark 5.1, {un} is uniformly bounded on compact sets contained in each

open convex-hull C(Cs), s = 1, . . . , h. Hence, by the last assertion, a subse-

quence of {un} (we will use the same notation) converges on the compact subsets

of each open set U ⊂ D with
⋃h
s=1 C(Cs) ⊂ U. Moreover, {un} diverges

uniformly on the compact sets of the closed set V = D̄ −U. The next result

shows that if V is not empty, it has special properties.

Lemma 5.4. With the above notation, one has

(i) ∂V consists only of geodesic chords of D and parts of ∂D;
(ii) Two chords of ∂V can not have a common endpoint;

(iii) The endpoints of chords of ∂V are among the vertices of the geodesic
arcs Ai ;

(iv) A connected component of V can not consist only of an interior chord
of D.

Proof.

(i) Suppose, by contradiction, that there exists a strictly convex arc C ⊂ ∂V .

By Assertion 5.1, {un} is unbounded on C(C). On the other hand, as each

connected component ofU is convex, we have C(C) contained inU, and

consequently, un is bounded in C(C), what is a contradiction.

The same argument proves that vertices of ∂V can not be in D.

(ii) Suppose, by contradiction, that there exist arcs L1, L2 ⊂ ∂V with a

common endpoint q ∈ ∂D. Let Q1 ∈ L1 and Q2 ∈ L2 be points such that

the triangle T with vertices Q, Q1, Q2 belongs to D.
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By Assertion 5.3, ∫
∂T
(ν3)nds = 0,

that is,

lim
n→∞

[∫
Q1Q

(ν3)nds +
∫
QQ2

(ν3)nds
]

= − lim
n→∞

∫
Q2Q1

(ν3)nds. (8)

We have either T ⊂ U or T ⊂ V .

If T ⊂ U, as Q1Q and QQ2 are geodesic arcs, by Lemma 5.2(i) one has

lim
n→∞

∫
Q1Q∪QQ2

(ν3)nds = ‖Q1Q‖ + ‖QQ2‖.

On the other hand, −(ν3)n < 1 in Q2Q1. Then (8) implies that

‖Q1Q‖ + ‖QQ2‖ < ‖Q2Q1‖.
This is an absurd, because T is a triangle.

If T ⊂ V , the equality (8) still holds. So an analogous argument works here.

(iii) Let L ⊂ ∂V be a geodesic arc of D with an endpoint P ∈ ∂D. Four

situations are possible.

1. P ∈ int Cs , for some s. In this case one has a subarc L ′ ⊂ L ⊂ ∂V
such that L ′ ⊂ C(Cs), where {un} is bounded. Absurd, since {un} is

unbounded at ∂V .

2. P ∈ Cs1 ∩ Cs2 . Again, we have a subarc L ′ ⊂ L ⊂ ∂V , where {un}
is bounded, with L ′ ⊂ C(Cs1 ∪ Cs2).

3. P ∈ int Ai , for some i . Here we construct a triangle T ⊂ D with

vertices P, P1, P2, where P1 ∈ ∂V and P2 ∈ Ai . By a similar

argument as used in (i), we obtain a contradiction.

(iv) By (iii), the endpoints of ∂V are among the endpoints of {Ai }. So, ifV is

the chord of D, with P ∈ ∂V ∩ ∂D, we construct a triangle T with vertex

P and the reasoning is the same as before. �

Assertion 5.6. V = ∅.

Suppose, by contradiction, that for all admissible polygons P we have

2 · α < γ , but there is no a function u as in the statement of the Theorem.
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For all s = 1, . . . , h, C(Cs) is contained inU and, by the above Lemma, each

component ofV is bounded by a geodesic polygon PV with vertices among the

endpoints of {Ai }. For this polygon, denote by AiV the arcs of Ai ⊂ ∂D that

belong to PV , γV = perimeterPV and αV = ∑
i ‖AiV‖ .

By Assertion 5.3, ∫
PV
(ν3)nds = 0,

that is, ∫
⋃
i AiV

(ν3)nds +
∫
PV−⋃

i AiV
(ν3)nds = 0. (9)

By Remark 5.3,

lim
n→∞

∫
PV−⋃

i AiV
(ν3)nds = −(γV − αV ).

On the other hand, for all n, |(ν3)n| < 1 on geodesic arcs. Then

lim
n→∞

∫
⋃
i AiV

(ν3)nds ≤ lim
n→∞

∫
⋃
i AiV

|(ν3)n|ds ≤
∑
i

‖AiV‖ = αV .

Using (9), one has

αV ≥ lim
n→∞

∫
⋃
i AiV

(ν3)nds = − lim
n→∞

∫
PV−⋃

i AiV
(ν3)nds = γV − αV ,

that is, 2αV ≥ γV , a contradiction.

Hence V = ∅ and {un} is uniformly bounded on each compact set K ⊂ D.

Therefore {un} converges to a function u defined on D, with boundary values as

desired, and the proof of Case 2 is complete.

Remark 5.4. Two convex arcs Cs and Cs̃ contained in ∂D can have a com-

mon endpoint p. When this happens, it is clear by the proof of Case 2 that the

minimal graph contains a vertical segment whose extreme points are the limit

values of the continuous functions fs and fs̃ at p. The same argument used in

Remark 5.1 assures that the function u is bounded on C(C1 ∪ C2).

Case 3. ∂D contains geodesic arcs A1, . . . , Ak and convex arcs (not strictly

convex) C1, . . . ,Ch . Again, fs : Cs → R are continuous and positive.

The fundamental difference between Cases 2 and 3 is that now Cs may be a

geodesic arc and C(Cs) = Cs . Consequently, it is not clear that {un} is bounded
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on some open set U ⊂ D. Moreover, ∂D is a polygon and using the same

notation α = 	i‖Ai‖ and γ = ‖∂D‖, we suppose that the condiction (1) holds

for it. But, for this polygon we do not demand that the set of its vertices be

contained in the set of endpoints of {Ai }.
Proof of Case 3. Consider un : D→ R a minimal solution with

un∣∣
Ai

= n, un∣∣
Cs

= min(n, fs).

As before, let U = {
p ∈ D; un(p) < c, ∀ n ∈ N, for some constante c

}
and

suppose that U = ∅.

By Assertion 5.3, ∫
∂D
(ν3)nds = 0, (10)

for each un .
Now, Remark 5.3 implies that

lim
n→∞

∫
∪sCs

(ν3)nds = −(γ − α).

As |(ν3)n| < 1 on each Ai , then

lim
n→∞

∫
∪i Ai

(ν3)nds ≤ α.

Using (10), we have α ≥ γ −α that is an absurd, because ∂D is an admissible

polygon. So U �= ∅ and using the same argument of the proof of Case 2, we

guarantee that U = D and conclude the proof of Case 3.

Case 4. ∂D contains geodesic arcs A1, . . . , Ak, B1, . . . , Bl and convex arcs

C1, . . . ,Ch, h ≥ 1. The functions fs : Cs → R are continuous.

Proof of Case 4. By Case 3, we can find minimal solutions

u+, u− : D→ R,

such that

u+∣∣
Ai

= +∞, u+∣∣
B j

= 0, u+∣∣
Cs

= max{0, fs},

u−∣∣
Ai

= 0, u−∣∣
B j

= −∞, u−∣∣
Cs

= min{0, fs}.

Bull Braz Math Soc, Vol. 40, N. 1, 2009



142 ANA LUCIA PINHEIRO

On each Cs , let us define

( fs)n =

⎧⎪⎨
⎪⎩

−n, if fs < −n,
fs, if | fs | ≤ n,
n, if fs > n,

and let un : D→ R be the minimal solution with boundary values

un∣∣
Ai

= n, un∣∣
B j

= −n, un∣∣
Cs

= ( fs)n .

By the general maximum principle, one has

u− ≤ un ≤ u+ on D.

Hence {un} is uniformly bounded on compact sets of D, that is, there is a

subsequence converging to a minimal solution u with the desired values on the

boundary.

Case 5. ∂D contains only geodesic arcs A1, . . . , Ak , B1, . . . , Bl .

Proof of Case 5. Now ∂D is a geodesic polygon, thus k = l. For this poly-

gon we have, by hypothesis, α = β.

We need to construct some auxiliary sets and minimal solutions.

By Case 1, there exists a minimal solution vn : D→ R such that

vn
∣∣
Ai

= n, vn
∣∣
B j

= 0.

For each c ∈ (0, n), consider the following open subsets of D:

Ec = {vn > c} ∩ D, Fc = {vn < c} ∩ D.
Let Eic be the component of Ec whose closure contains the edge Ai and let

Fic be the component of Fc whose closure contains the edge Bj . By the maxi-

mum principle

Ec =
k⋃
i=1

Eic and Fc =
k⋃
i=1

Fic .

We choose c close enough to n such that the Eic are disjoint and we define

μ(n) = lim sup
{
c ∈ (0, n) ; Eic ∩ E jc = ∅, i �= j

}
.
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There is at least one pair i, j such that

Ē iμ(n) ∩ Ē jμ(n) �= ∅.

Then, for each i there exists a j such that Fiμ(n) ∩ F jμ(n) = ∅.
For each n, we define the following minimal solution on D:

un = vn − μ(n) .

In order to prove that the sequence {un} is uniformly bounded on compact

subsets of D, let us define two auxiliary minimal solutions on D. Let u+i and u−i
be the minimal solutions on D with the boundary values

u+i ∣∣
Ai

= ∞ , u+i ∣∣
∂D−Ai

= 0,

u−i ∣∣
B j

= −∞ , i �= j , u−i ∣∣
∂D−⋃

j �=i B j
= 0,

The existence of u+i and u−i , for each i ∈ {1, . . . , k}, is assured by previ-

ous cases.

Finally, for any z ∈ D we define

u+(z) = max
1≤i≤k

{
u+i (z)

}
, u−(z) = min

1≤i≤k
{
u−i (z)

}
.

At any point of D holds

u− ≤ un ≤ u+. (11)

To prove this, first choose p ∈ D such that un(p) > 0. Then p belongs to

Eiμ(n), for some i . As on ∂Eiμ(n) one has un ≤ u+i , then this inequality holds

in Eiμ(n) and

un(p) ≤ u+i (p) ≤ u+(p).
The left inequality in (11) is obvious at the point p, since u− is non positive.

The proof of (11) at points where un is negative is analogous, using the

set Fiμ(n).
Hence {un} has a subsequence converging to a minimal solution u : D → R.

Let us prove that u takes the right boundary values.

As we have

un∣∣
Ai

= n − μ(n) and un∣∣
Bi

= −μ(n), (12)
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we must prove that the sequences {n − μ(n)} and {μ(n)} both diverge to in-

finity. We prove it for the sequence {μ(n)}; the proof for the other sequence

is analogous.

By contradiction, take a subsequence such that μ(n) goes to a finite limit μ0.

Then, by (12),

un
n→∞−→ ∞ on Ai ,

and

un
n→∞−→ −μ0 on Bi .

So, for the limit function u we have

u∣∣
Ai

= ∞, u∣∣
Bi

= −μ0.

Let (ν3)n be the unit inward conormal to the boundary of graph u. Using

Lemma 5.2, we obtain

α = lim
n→∞

∫
⋃
i Ai
(ν3)n ds = − lim

n→∞

∫
⋃
i Bi
(ν3)n ds

≥ − lim
n→∞

∫
⋃
i Bi

|(ν3)n| ds

> −β.
This is a contradiction with the hypothesis α = β and Case 5 is proved.

Now we prove that the condition (1) is necessary to the existence of the

function u.

We fix the following notations: 	 = graph u, 	n = 	 ∩ (M × [−n, n]),
Dn = is a vertical projection of 	n over D and un = u|Dn .
Assertion 5.7. When n → +∞, one has un → u, Dn → D and 	n → 	

uniformly.

For n large enough, the convex arcs Cs belongs to ∂Dn . The remaining part of

∂Dn is the union of non-geodesic arcs Ani , Bnj ⊂ D which endpoints approach

to the endpoints of Ai , Bj , respectively, when n goes to +∞.

Fixing δ > 0 small, for each n, let Dnδ ⊂ Dn be a domain such that ∂Dnδ is

the set of points in ∂Dn whose distance from the vertices of Dn is greater than δ

and circular arcs with center in a vertex of D and radius δ. See Figure 8.

Denote by Anδi the subarc of Ani contained in ∂Dnδ.
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Figure 8 – Domain Dnδ.

On every compact set K ⊂ Anδi , one has

Anδi
n→∞−→ Ai

because where p is near to Ai the tangent plane to 	n at points zn = (p, un(p)),
converges C∞ to the tangent plane to Ai × R, when n goes to ∞. This last

assertion is a consequence of 	 being a stable surface, i.e., 	 has bounded

geometry. The same argument holds on the subarcs Bnδj of Bj contained on

∂Dnδ, i.e., on every compact K ⊂ Bnδj one has

Bnδj
n→∞−→ Bj .

Letting δ → 0,

un → u, Dn → D and 	n → 	,

as we asserted.

Let P ⊂ D be an admissible polygon. Denote by Âi , B̂ j the edges Ai ,
Bj ⊂ ∂D which belong to P.

It is clear that if { Âi , B̂ j } = ∅, (1) holds. Let us suppose that { Âi } �= ∅ and

{B̂ j } = ∅. The other cases are similar. Denote by Pδ
n the curve constructed

changing the sides Âi ⊂ P by Ânδi and putting circular arcs contained in ∂Dnδ
in way that Pn is closed.

Denote by Pδ the limit curve of Pδ
n , when n→ ∞.

By Assertion 5.3, one has ∫
Pδn
(ν3)n ds = 0,

where (ν3)n is the unit exterior conormal to the boundary of the graph of u
restricted to the domain bounded by Pδ

n .
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This is equivalent to∫
⋃
i Â

nδ
i

(ν3)n ds = −
∫
Pδn−

⋃
i Â

nδ
i

(ν3)n ds. (13)

When n goes to ∞, using Assertion 5.7, we have that the limit of the first

integral is α − (2δ)i and the limit of the second one is smaller than ‖Pδ‖−
[α − (2δ)i]. Letting δ goes to 0, this implies that 2α < γ .

Thus the existence of u implies that (1) holds.

To finish the proof of Theorem 1.1, we need to prove the uniqueness of the

solution. Consider u1 and u2 two different minimal solutions assuming values

+∞ on each Ai , −∞ on each Bj , and the same continuous data on each convex

arc Cs . If {Cs} = ∅, suppose φ := u1 − u2 is not constant.

First we suppose that {p ∈ D, u1(p) < u2(p)} and {p ∈ D, u1(p) > u2(p)}
are not empty. Let ε > 0 be sufficiently small such that Dε = {φ(p) > ε} �= ∅
and ∂Dε is regular.

A similar argument used in the proof of the general maximum principle works

here.

In fact, as u1 and u2 are minimal solutions, one has∫
∂Dε

〈∇u1

W1

− ∇u2

W2

, ν

〉
= 0, (14)

where ν is the outward conormal to ∂Dε .

On the other hand, as φ = 0 on {Cs}, ∂Dε is composed of three parts. The first

one is included in D, where ∇φ �= 0, by hypothesis. Then, by Assertion 3.1,〈∇u1

W1

− ∇u2

W2

, ν

〉

is no zero and it does not change the sign, so the integral in (14) is no zero on

this part.

The second part is included in ∪i j {Ai , Bj }. Now ν is the horizontal outward

unit conormal to ∂(Dε × {t}) and

Nn =
(
−∇un
Wn

,
1

Wn

)
, n = 1, 2,

is the unit normal vector to the graph of un . So we have that

〈Nn, ν〉 =
〈
−∇un
Wn

, ν

〉
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on ∂(Dε × {t}), for each t . But, on each horizontal arc Ai × {t}, one has

〈Nn, ν〉 =
〈
νn,

∂

∂t

〉
,

where νn is the outward conormal vector of ∂(graph un), n = 1, 2. Now, the

Lemma 5.2 implies that the integral in (14) is zero on ∪i j {Ai , Bj }.
The remaining part of ∂Dε is composed of some vertices of ∂D; and its

contribution to the integral is zero.

So we have ∫
∂Dε

〈∇u1

W1

− ∇u2

W2

, ν

〉
�= 0,

a contradiction.

If either {p ∈ D, u1(p) < u2(p)} or {p ∈ D, u1(p) > u2(p)} are empty, we

translate vertically the graph of u so that the set Ũ = {p ∈ D;φ(p) = 0} is no

empty and ∂Ũ is regular. Now ∂Ũ ∩ {Cs} = ∅ and the above argument works

on ∂Ũ. �
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