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1 Introduction

Commutativity in a group can be depicted by its commutativity graph which has

for vertices the elements of the group and where two elements are joined by

an edge provided they commute. Greater understanding of the commutativity

graph of finite groups has been achieved in recent years and this has had important

applications; see for example [5].

For a nontrivial finite p-group, it is an elementary and fundamental fact that

it has a non-trivial center and therefore each element in its commutativity graph

is connected to every element in the center. Now, suppose a finite group G
contains a non-trivial p-group A such that every p-element in G commutes with

some non-trivial element in A. Does it follow that G contains a non-trivial

normal p-subgroup? In 1976, the second author proved in [6] results along such

lines for p = 2 and formulated the following conjecture: if a finite group G
contains a non-trivial elementary abelian 2-group A such that every involution
in G commutes with some involution from A then A ∩ O2 (G) is non-trivial.
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This was settled in 2006 by Aschbacher, Guralnick and Segev in [1]. The proof

made significant use of the classification theorem of finite simple groups. It was

also shown that the result applies to the Quillen conjecture from 1978 about the

Quillen complex at the prime 2; see [4].

A configuration which arises in this context is one where the commutation

between elements of A and those of one of its conjugates B = Ag is defined by

a bijection. An approach which we had taken in 1980 to such a weak form of

commutativity or permutability was through combinatorial group theory. The

following finiteness criterion was proven in [7].

Theorem 1. Let H, K be finite groups having equal orders n and let f : H →
K be a bijection which fixes the identity. Then for any two maps a : H → K , b :
H → H, the group

G (H, K ; f, a, b) = 〈
H, K | hh f = hahb for all h ∈ H 〉

is finite of order at most n exp(n − 1), where h f , ha, hb denote the images of h
under the maps f, a, b, respectively.

It is to be noted that the proof uses the same argument as that given by I.N.

Sanov for the local finiteness of groups of exponent 4; see [8].

The notion of weak commutativity between H and K by way of a bijection is

formalized by the group

G (H, K ; f ) = 〈
H, K | hh f = h f h for all h ∈ H 〉

.

When H is isomorphic to K , we simplify the notation to G (H ; f ).
If f itself is an isomorphism from H onto K then G (H ; f ) is the same group

as χ (H) and f as ψ in [7]. In addition to finiteness, the operator χ preserves a

number of other group properties such as being a finite p-group. Indeed, it was

shown later in [3] that more generally, if H is finitely generated nilpotent then

so is χ (H).
We are guided in this paper by the following conjecture.

Conjecture 1. Let H and K be finite nilpotent groups of equal order and
f : H # → K # a bijection. Then G (H, K ; f ) is also nilpotent.
The construction G (H, K ; f ) lends itself well to extensions of groups, as

follows. Let H̃ , K̃ be groups having normal subgroups M, N respectively and

let H̃M = H , K̃N = K . Let f : H → K , α : M → N be bijections both fixing e.
Then, f and α can be extended in a natural manner to a bijection f ∗ : H̃ → K̃

Bull Braz Math Soc, Vol. 40, N. 2, 2009



ON COMMUTATIVITY AND FINITENESS IN GROUPS 151

fixing e such that G̃ = G (
H̃ , K̃ ; f ∗) modulo the normal closure V of 〈M, N 〉 is

isomorphic to G (H, K ; f ). We use this process to produce an ascending chain

of groups of G (H, K ; f ) type. For central extensions, we prove

Theorem 2. Maintain the above notation. Suppose M, N are central sub-
groups of H̃ , K̃ respectively and that G (M, N ;α) is abelian. Then, V is an
abelian group. If furthermore H, K are abelian then

[
V, G̃

]2 is central in G̃.
AlthoughG (H, K ; f ) is finite for finite groups, H, K , since f in general does

not behave well with respect to inductive arguments, methods from finite group

theory are difficult to apply. At the present stage, we have stayed close to the

case where the groups H and K are isomorphic finite abelian groups and more

specially to elementary abelian p -groups Ap,k of rank k.
A step in the direction of proving nilpotency is

Theorem 3. Suppose A, B are finite abelian groups of equal order n and let
G = G (A, B; f ). Then, the metabelian quotient group G

G ′′ is nilpotent of class
at most n.

The next lemma is a natural first step in classifying the groups G (H, K ; f )
for a fixed pair (H, K ).

Lemma 1. Let a ∈ Aut (H) , b ∈ Aut (K ), and g = a f b. Then, the extension
γ : G (H, K ; f )→ G (H, K ; g) of h → ha−1, k → kb is an isomorphism from
G (H, K ; f ) onto G (H, K ; g).

Let H and K be isomorphic groups by t : H → K . Then in the above lemma,

f = f ′t, g = g′t, b = t−1b′t
where f ′, g′ ∈ Sym (

H #
)
and b′ ∈ Aut (H); here H # denotes H\ {e}Therefore,

g′ = a f ′b′ is an element of the double coset Aut (H) f ′Aut (H). Thus, in order

to classify G (H ; f ) one is obliged to determine the double coset decomposition

Aut (H) \Sym (
H #

)
/Aut (H). When the context is clear, we refer to f simply

by its factor f ′.
Computations by GAP [2] produce the following data for abelian groups of

small rank:

for A2,3, SL(3, 2)\Sym (7) /SL(3, 2) has 4 double cosets;

for A2,4, SL(4, 2)\Sym (15) /SL(4, 2) has 3374 double cosets;

for A3,3, PGL (3, 3) \Sym (13) /PGL (3, 3) has 252 double cosets.
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The groups G
(
Ap,k; f

)
have the following nilpotency classes and derived

lengths.

Theorem 4.

(i) Let A = A2,k . If k = 3, 4 then G (A; f ) is a 2-group of order at most
22k+k−1, has class at most 5 and derived length at most 3;

(ii) Let A = A3,3. Then G (A; f ) is a 3-group of order at most 39 and has
nilpotency class at most 2.

We discuss a number of other issues. These include the reduction of the

number of relations in G (A; f ), finding a bijection equivalent to f which is

“closer” to being an isomorphism and also concerning f inducing a bijection

between the nontrivial cyclic subgroups of A.
The paper ends with three general examples. The first is G (A, f ) where A

is a field, seen as an additive group, and where f corresponds to the multiplica-

tive inverse. The second example illustrates the construction of extensions of

G = G (A, f ) which are of the same type as G; this produces metabelian 2-

groups having the same order 22k+k−1 and nilpotency class k as χ
(
A2,k

)
, but

not isomorphic to the latter group. The third is G = G
(
A2,k, f

)
where f

corresponds to a transposition of A#
2,k .

2 Extensions of groups

Let H̃ , K̃ be groups having normal subgroups M, N and let H be a transver-

sal of M in H̃ with e ∈ H . Similarly, let K be a transversal of N in K̃ with

e ∈ K . We identify H with the quotient group H̃/M and K with the quotient

group K̃/N . Let f : H → K , α : M → N be bijections both fixing e. Given

a bijection γ : M → N (not necessarily fixing e), define f ∗ : H̃ → K̃ by

f ∗ : m → mα, f ∗ : mh → mγ h f if h 	= e.
Then f ∗ is a bijection which fixes e and G = G (H, K ; f ) is an epimorphic

image of G̃ = G (
H̃ , K̃ ; f ∗). The natural epimorphisms H̃ → H, K̃ → K

extend to an epimorphism G̃ → G having for kernel V , the normal closure of

〈M, N 〉 in G̃.

For any group L let νL denote the exponent of L and γ i (L) the i-th term of

the lower central series of L .
Define δ : M → N , ε : M → M by

mδ = mα
((
mmαγ−1

)γ)−1
, mε = m

(
(mαmγ )

γ−1
)−1

.
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Clearly, mδ = e if and only if m = e and similarly, mε = e if and only if

m = e.
Theorem 5. Maintain the previous notation. Suppose M, N are central sub-
groups of H̃ , K̃ , respectively and that G (M, N ;α) is abelian. Then, V is an
abelian group such that

V = M + N + [
V, G̃

]
,[

V, G̃
] = [

Mδ, H
] = [

N ε, H
]
,[

V, γ i
(
H̃

)] = [
V, i H̃

]2i−1
for all i ≥ 1 and

ν[V,G̃] | gcd
(
νM , νN , νH , νK

)
.

Both sets{ (
mδ

1

)−1 (
mδ

2

)−1
(m1m2)

δ | m1,m2 ∈ M
}
,

{
m−1

((
mδ

)α−1)ε | m ∈ M}

are central in G̃. Furthermore, if H, K are abelian then
[
V, G̃

]2 is central in G̃.
Proof. (1) Let m 	= e 	= h. Then,[
m, h f

] = [
m,mαh f

] = [(
mαγ−1h

)
m,mαh f

]
=

[(
mmαγ−1

)
h,mαh f

]
=

[(
mmαγ−1

)
h,

((
mmαγ−1

)γ
h f

)−1
mαh f

]

=
[(
mmαγ−1

)
h,mδ

]
= [
h,mδ

]
.

In the same manner,[
h,mα

] = [
mh,mα

] = [
mh,mγ h f .mα

] = [
mh,mαmγ h f

]
=

[(
(mαmγ )

γ−1 h
)−1

mh,mαmγ h f
]

= [
mε,mαmγ h f

] = [
mε, h f

]
.

Since
[
h,mδ

] = [
m, h f

]
and mδ = (

m ′
)α

for m ′ = (
mδ

)α−1
, we obtain[(

m ′
)ε
, h f

] = [
h,

(
m ′

)α]
,[((

mδ
)α−1)ε

, h f
]
= [
h,mδ

] = [
m, h f

] ;
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that is, m−1
((
mδ

)α−1)ε
commutes with K and is therefore central in G̃.

(2) We obtain from
[
m, h f

] = [
h,mδ

]
that the sets [m, K ] ,

[
H,mδ

]
are

equal and H, K normalize the subgroup 〈[m, K ]〉. Also, any m ′ ∈ M commutes

with
[
h,mδ

] (= [
m, h f

]) ∈ [M, K ]. Therefore, MK
(
= MK̃

)
is abelian.

Since [M, K ] ≤ [
H,Mδ

] ≤ [N , H ] and [H, N ] ≤ [Mε, K ] ≤ [M, K ] we get

[M, K ] = [
H,Mδ

] = [H, N ] = [
Mε, K

]
.

Therefore V is abelian and

V = M + N + [
Mδ, H

]
,

[
V, G̃

] = [
Mδ, H

]
, ν[V,G̃] | gcd (νM , νN ) .

(3) Let m1,m2 ∈ M . Then,[
m1m2, h f

] = [
h, (m1m2)

δ
]
,[

m1m2, h f
] = [

m1, h f
]m2

[
m2, h f

]
= [

m1, h f
] [
m2, h f

]
= [

h, (m1)
δ
] [
h, (m2)

δ
]
,

and [
h, (m1m2)

δ
] = [

h, (m1)
δ
] [
h, (m2)

δ
]
.

Thus, {(
mδ

1

)−1 (
mδ

2

)−1
(m1m2)

δ | m1,m2 ∈ M
}

is central in G̃ and likewise for{(
mε

1

)−1 (
mε

2

)−1
(m1m2)

ε | m1,m2 ∈ M
}
.

(4) Since any h ∈ H centralizes
〈
M, h f

〉
, we have for all m ∈ M ,[

m, h f , h
] = e = [

mδ, h, h
]

and so, [
mδ, h, h

] = e, [mδ, hi
] = [

mδ, h
]i

for all v ∈ V and all integers i . Therefore,

ν[V,G̃] | gcd (νN , νH ) , gcd (νM , νK ) .
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We calculate for h1, h2 ∈ H[
mδ, (h1h2)−1

] = [
mδ, h1h2

]−1
,[

mδ, h−12 h
−1
1

] = [
mδ, h1h2

]−1
,

[
mδ, h−11

] [
mδ, h−12

]h−11 =
([
mδ, h2

] [
mδ, h1

]h2)−1
,

[
mδ, h1

] [
mδ, h2

]h−11 = [
mδ, h2

] [
mδ, h1

]h2
,[

mδ, h2
]−1 [

mδ, h2
]h−11 = [

mδ, h1
]−1 [

mδ, h1
]h2

,[
mδ, h2, h−11

] = [
mδ, h1, h2

]
.

Therefore,[
mδ, h1, h2

] = [
mδ, h2, h−11

] = [
mδ, h−11 , h−12

] = [
mδ, h1, h−12

]−1
,[

mδ, h1, h2
]−1 = [

mδ, h1, h−12

]
,[

mδ, h1, h2
] = [

mδ, h2, h−11

] = [
mδ, h2, h1

]−1
.

Calculate further[
mδ, h1h2

] = [
mδ, h2

] [
mδ, h1

]h2 = [
mδ, h2

] [
mδ, h1

] [
mδ, h1, h2

]
,[

mδ, h1h2, h1h2
] = [

mδ, h2, h1h2
] [
mδ, h1, h1h2

] [
mδ, h1, h2, h1h2

]
= [

mδ, h2, h1
] [
mδ, h2, h1, h2

] [
mδ, h1, h2

]
[
mδ, h1, h2, h2

] [
mδ, h1, h2, h1

]
.
[
mδ, h1, h2, h1, h2

]
= [

mδ, h1, h2, h1
]h2 = e.

We conclude [
mδ, h2, h1, h1

] = e.
Thus,

[v, h, h] = e
for all v ∈ V .

When V is written additively, the action of h on V can be expressed as

v (−1+ h)2 = 0.

From this we derive the following formulae for the action of H on V :
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for h1, h2, . . . , hi ∈ H ,

h2h1 = −2+ 2h1 + 2h2 − h1h2,
h−11 h2h1 = −2+ 2h1 + 3h2 − 2h1h2,

−1+ [h2, h1] = −2 (−1+ h1) (−1+ h2) ,
−1+ [hi , . . . , h2, h1] = (−2)i−1 (−1+ h1) (−1+ h2) . . . (−1+ hi ) .

In other words,

[v, [hi , . . . , h2, h1]] = [v, h1, h2, . . . , hi ](−2)
i−1
,[

V, γ i
(
H̃

)] = [
V, i H̃

]2i−1
.

(5) Suppose H, K abelian. Then

[v, [h1, h2]] = [v, h1, h2]2 =
[
[v, h1]2 , h2

] = e.
As

[
V, G̃

] = [V, H ] = [V, K ], we conclude that
[
V, G̃

]2
is central. �

Theorem 6. Suppose in the above, H̃ , K̃ are finite groups and let M =
〈m〉 , N = 〈n〉 be cyclic central subgroups of H̃ , K̃ respectively, each of prime
order p. Then, 〈M, N 〉G̃ is an elementary abelian p -subgroup of rank at most
|H | + 1.

Proof. We have [M, N ] = {e}, [M, K ] = [H, N ] elementary p-abelian sub-

group and M, N centralize [M, K ]. Therefore,

〈M, N 〉G̃ = 〈M, N 〉G = 〈
mK , n

〉 = 〈
m, nH

〉
is an elementary abelian p-subgroup of rank at most |K | + 1. �

3 Metabelian quotients of G (A, B, f )

It would be interesting to resolve the question of nilpotency of the solvable

quotients of G (H, K ; f ). In the next result we consider metabelian quotients

of G (A, B; f ).
Theorem 7. Suppose A, B are finite abelian groups of equal order n and let
G = G (A, B; f ). Then, the metabelian quotient group G/G ′′ is nilpotent of
class at most n.
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Proof. In a metabelian group M , if u ∈ M ′ and xi ∈ M (1 ≤ i ≤ k) then[
u, x1, x2, . . . , xk

] = [
u, xi1, xi2, . . . , xik

]
for any permutation (i1, i2 . . . , ik) of {1, 2, . . . , k}.

We have from the relations of G,

[a, b] =
[
a,

(
a f

)−1 b] = [
a.

(
b f
−1)−1

, b
]
.

Let a ∈ A, b1, b2 ∈ B. As a f and b f
−1

1 commute with both a, b1, it follows that

[a, b1, b2] =
[
a, b1,

(
a f

)−1
.b2

]
=

[
a.

(
b f
−1

1

)−1
, b1, b2

]

=
[
a, b1,

(
a.

(
b f
−1

1

)−1) f

b2

]
.

We observe that if b1 = b2 	= a f , then b1 	=
(
a.

(
b f
−1

1

)−1) f

b2.

Now, we will work in G modulo G ′′.
Let a ∈ A, bi (2 ≤ i ≤ k) ∈ B. From Witt’s formula, as A, B are abelian,

we have [
a, b2, b1

] = [
a, b1, b2

]
and more generally,[

a, b1, b2, . . . , bk
] = [

a, bi1, bi2, . . . , bik
]

for any permutation (i1, i2 . . . , ik) of {1, 2, . . . , k}.
Therefore, if {

x2, . . . , xk
} = {

b2, . . . , bs, as+1, . . . , ak
}

with b2, . . . , bs ∈ B and as+1, . . . , as+k ∈ A then[
a, b1, x2, . . . , xk

] = [
a, b1, b2, . . . , bs, as+1, . . . , ak

]
.

Let again a ∈ A, bi (2 ≤ i ≤ k) ∈ B. Suppose that b1, b2, . . . , bk−1, a f are
distinct.
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Then,

bk,
(
a.

(
b f
−1

1

)−1) f

bk, . . . ,
(
a.

(
b f
−1
k−1

)−1) f

bk

are k distinct elements of B.
Suppose further that bk = b j for some 1 ≤ j ≤ k − 1. Then, for some i ,

b′i j =
(
a.

(
b f
−1
i

)−1) f

b j 	∈
{
b1, b2, . . . , bk−1

}
.

In this manner, we have

[
a, b1, b2, .., bk−1, bk

] = [
a, b1, b2, . . . , bk−1, b j

]
= [

a, bi , b j , bl, . . . , bm
]

= [
a, bi , b′i j , bl, . . . , bm

]
= [

a, b1, b2, . . . , bk−1, b′i j
]

and b1, b2, . . . , b′i j are distinct. If k = n then [a, b1, b2, . . . , bn] = e and G
is nilpotent of class at most n. �

The limit n obtained in the proof is clearly too large, especially when com-

pared with available results. Determining the nilpotency degree seems to stem

from a more general problem which can be formulated for commutative rings.

Problem 1. Let A be a free abelian group of rank m generated by a1, . . . , am
and let A act on a torsion-free Z-module V . Let n be a natural number. Define

S (m, n) =

⎧⎪⎪⎨
⎪⎪⎩
al1i1a

l2
i2 . . . a

ls
is ais+1 | 0 ≤ s ≤ m − 1,

1 ≤ i1 < i2 < · · · < is < m,
1 ≤ li ≤ n − 1

⎫⎪⎪⎬
⎪⎪⎭ .

This set corresponds to a choice of a generator for each of the different cyclic
subgroups of order n in A/An. For instance, S (2, 3) = {

a1, a2, a1a2, a21a2
}
.

Let f be a permutation of S (m, n) and define

U (m, n; f ) = {
(1− x) (1− x f ) | x ∈ S (m, n)} .

Suppose that A acts on V such that U (m, n; f ) = {0}. Prove that the action
of A on V is nilpotent. Moreover, that it has nilpotency degree at most 3 for
n = 2 and degree at most 2 for n ≥ 3. The small bounds have been confirmed
by a number of examples using the Groebner basis applied to Q[a1, a2, . . . , an]
modulo the ideal generated by U (m, n; f ).
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4 Reduction of the presentation of χ (A)

It is interesting to reduce the number of relations in the definition of G (A, f ),
particularly for the sake of applications. This is difficult to carry out in general.

We treat here the question for the group χ (A). Given a generating set S of A
then define

χ (A, S;m) = 〈
A, Aψ | [a, aψ] = e for all a ∈ ∪1≤i≤mSi

〉
.

The construction χ (A, S; 1) does not conserve finiteness in general. For let

A = A2,2 be generated by S = {a1, a2} . Then, on defining x1 = a1aψ2 , x2 =
aψ1 a2, we find χ (A, S; 1) = 〈x1, x2〉 A, where 〈x1, x2〉 is free abelian of rank 2.

We start with

Proposition 1. Let H be a group generated by x1, x2, y1, y2 such that[
y1, x1

] = e = [
y2, x2

]
. Then

(i)
[
y1y2, x1x2

] = [
yy21 , x2

][
y2, xx21

];
(ii) if in addition

[
x1, x2

] = [
y1, y2

] = e holds then[
y1y2, x1x2

] = [
y1, x2

][
y2, x1

]
(*);

(iii) if furthermore
[
y1y2, x1x2

] = e holds then H is nilpotent of class at most
2 with derived subgroup H ′ = 〈[

y1, x2
]〉
.

Proof. The first two items are shown directly. The last item follows from[
y1, x2

] = [
x1, y2

]
,
[
y1, x2

]x1 = [
y1, x2

]
,[

y1, x2
]x2 = [

x1, y2
]x2 = [

x1, y2
]
.

�
Corollary 1. Let A be an abelian group generated by S = {a1, a2} and let
G = χ (A, S; 2). Then, G = χ (A).

For abelian groups A of rank 3, the situation becomes less simple.

Proposition 2. Let A be an abelian group generated by S = 〈ai |1 ≤ i ≤ 3〉.
Then the following equations hold in G = χ (A, S; 2):

ξ =
[
aψ1 a

ψ

2 a
ψ

3 , a1a2a3
]
=

[
aψ1 , a3

]aψ2 [
aψ3 , a1

]a2
,

[
aψ1 , a

2
3

][a2,ψ] =
[
aψ1 , a

2
3

]
.
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Proof. On substituting x1 = a1a2, x2 = a3, y1 = aψ1 aψ2 , y2 = aψ3 in (*) of the

previous proposition, we obtain

ξ =
[
aψ1 a

ψ

2 a
ψ

3 , a1a2a3
]

=
[
aψ1 , a3

]aψ2 [
aψ2 , a3

] [
aψ3 , a2

] [
aψ3 , a1

]a2
=

[
aψ1 , a3

]aψ2 [
aψ2 , a3

] [
a3, aψ2

] [
aψ3 , a1

]a2
=

[
aψ1 , a3

]aψ2 [
aψ3 , a1

]a2
.

Substitute a1 ↔ a3, a2 ↔ a2, ψ → ψ above to obtain

ξ =
[
aψ3 , a1

]aψ2 [
a1, aψ3

]a2
.

Therefore, since
[
a1, aψ3

]
=

[
aψ1 , a3

]
, and

〈
a1, a3, aψ1 , a

ψ

3

〉
has class at most

2, we have

[
aψ1 , a3

]aψ2 [
aψ3 , a1

]a2 = [
aψ3 , a1

]aψ2 [
a1, aψ3

]a2
,

[
aψ1 , a3

]aψ2 [
aψ3 , a1

]a2 = [
a3, aψ1

]aψ2 [
a1, aψ3

]a2
,

[
aψ1 , a3

]2aψ2 =
[
aψ1 , a3

]2a2
,

[
aψ1 , a

2
3

]aψ2 =
[
aψ1 , a

2
3

]a2
[
aψ1 , a

2
3

][a2,ψ] =
[
aψ1 , a

2
3

]
.

Suppose A has odd order. Then,[
aψ1 , a3

][a2,ψ] =
[
aψ1 , a3

]

and therefore ξ =
[
aψ1 a

ψ

2 a
ψ

3 , a1a2a3
]
= e. By the previous corollary, we can

substitute the ai ’s by their powers in this last equation. �
For groups A of odd order the reduction is drastic.

Corollary 2. Let A be a finite abelian group of odd order generated by S and
G = χ (A, S; 2). Then, G = χ (A).
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Proof. Let |S| = m ≥ 3. We proceed by induction on m. By the previous

proposition, χ (A; 2) = χ (A; 3). We assume χ (A; 2) = χ (A;m − 1). Then

we simply apply our argument to the set.{
a1, a2, . . . , am−2,am−1am

}
with m − 1 elements and obtain[

aψ1 a
ψ

2 . . . a
ψ

m−2 (am−1am)
ψ , a1a2 . . . am−2 (am−1am)

]
= e.

�

Example 1. The following example provides us with a glimpse into the prob-

lem of reduction of the presentation of G
(
Ap,k, f

)
in general and how it com-

pares with that of χ
(
Ap,k

)
.

Let A, B be isomorphic to Ap,3 with respective generators {a1, a2, a3},
{b1, b2, b3}. Define

G =
〈

A, B | [ai , bi] = e (
i = 1, 2, 3

)
,[

a1a2, b1b−12

] = [
a1a3, b1b3

] = [
a2a3, b2b3

] = e
〉
.

With the use of GAP, we find that the resulting group for p = 3, 5, 7 to be finite

metabelian of order p11 and of nilpotency class 3. We also find that[
a1a−12 , b1b2

] = [
a1a−13 , b1b−13

] = [
a2a−13 , b2b−13

] = e
hold but [

a1a2a3, bi1b
j
2b3

]
	= e for any 1 ≤ i, j ≤ p − 1.

These results should be compared with those for χ
(
Ap,3

)
which has order p9

and nilpotency class 2.

We go back to the case χ
(
Ap,3

)
for p = 2.

Theorem 8. Let A2,3 be generated by

S = {
a1, a2, a3

}
,G = χ

(
A2,3, S; 2

)
and ξ = [

aψ1 a
ψ

2 a
ψ

3 , a1a2a3
]
.

Then the kernel K of the epimorphism φ : G → χ
(
A2,3

)
extended from ai →

ai , aψi → aψi
(
i = 1, 2, 3

)
is the normal closure of 〈ξ〉 in G and is free abelian

of rank 4.
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Proof. We will show that K is freely generated by{
ξ, ξ ai (i = 1, 2, 3)

}
and that G acts on it as follows: for {i, j, k} = {1, 2, 3},

ξψ = ξ−1, ξ a
ψ
i = ξ−ai , ξ ai a j = ξ−ak = ξ a j a

ψ
i .

We sketch the proof. First, we derive the table

[
aψ3 , a2, a1

]aψ2 =
[
aψ2 , a1, a3

]−1
,
[
aψ3 , a2, a1

]aψ3 = [
aψ1 , a3, a2

]−1
,[

a3, aψ2 , a
ψ

1

]a2 = [
a2, aψ1 , a

ψ

3

]−1
,
[
a3, aψ2 , a

ψ

1

]a3 = [
a1, aψ3 , a

ψ

2

]−1
,[

aψ3 , a2, a
ψ

1

]a2 = [
aψ2 , a1, a

ψ

3

]−1
,
[
aψ3 , a2, a

ψ

1

]a3 = [
aψ1 , a3, a

ψ

2

]−1
,[

aψ1 , a2, a
ψ

3

]a1 = [
aψ3 , a1, a

ψ

2

]−1
,
[
aψ1 , a3, a

ψ

2

]a1 = [
aψ2 , a1, a

ψ

3

]−1
,[

aψ2 , a1, a
ψ

3

]a2 = [
aψ3 , a2, a

ψ

1

]−1
.

From this table we conclude that the subgroup generated by{[
aψ3 , a2, a1

]
,
[
aψ1 , a3, a2

]
,
[
aψ2 , a1, a3

]
,
[
aψ3 , a2, a1

]aψ1 }

is abelian and normal in G.

Next, we find

ξ =
[
aψ1 a

ψ

2 a
ψ

3 , a1a2a3
]
=

[
aψ2 ,

[
aψ3 , a1

]] [
aψ3 , a1, a2

]
=

[
aψ2 ,

[
aψ1 , a3

]] [
aψ1 , a3, a2

]
and by permuting the ai ’s, the following holds

ξ =
[
aψ3 ,

[
aψ2 , a1

]] [
aψ2 , a1, a3

]
=

[
aψ1 ,

[
aψ3 , a2

]] [
aψ3 , a2, a1

]
=

[
aψ1 ,

[
aψ2 , a3

]] [
aψ2 , a3, a1

]
.

It is straightforward to obtain the action of G on {ξ, ξ ai (i = 1, 2, 3)}, as de-

scribed above.
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Let Z [x, y, z] be the polynomial ring in the variables x, y, z with coeffi-

cients from Z. The proof is finished by constructing the group as a subgroup of

GL (5,Z [x, y, z]):

a1→

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0

1 0 0 0 0

0 0 0 −1 0

0 0 −1 0 0

x −x y y 1

⎞
⎟⎟⎟⎟⎠ , a2→

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0

0 0 0 −1 0

1 0 0 0 0

0 −1 0 0 0

x y −x y 1

⎞
⎟⎟⎟⎟⎠ ,

a3→

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0

0 0 −1 0 0

0 −1 0 0 0

1 0 0 0 0

x y y −x 1

⎞
⎟⎟⎟⎟⎠ , aψ1 →

⎛
⎜⎜⎜⎜⎝

0 −1 0 0 0

−1 0 0 0 0

0 0 0 −1 0

0 0 −1 0 0

w w y y 1

⎞
⎟⎟⎟⎟⎠ ,

aψ2 →

⎛
⎜⎜⎜⎜⎝

0 0 −1 0 0

0 0 0 −1 0

−1 0 0 0 0

0 −1 0 0 0

w y w y 1

⎞
⎟⎟⎟⎟⎠ , aψ3 →

⎛
⎜⎜⎜⎜⎝

0 0 0 −1 0

0 0 −1 0 0

0 −1 0 0 0

−1 0 0 0 0

w y y w 1

⎞
⎟⎟⎟⎟⎠

from which we find that

ξ →

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

z 0 0 0 1

⎞
⎟⎟⎟⎟⎠

where z = 4 (−x − y + w). �

5 Fixing a basis

Let A = Ap,k be written additively and let Bk be the set of bases of A. We

will show that for any bijection f : A → A fixing 0, the set Bk ∩ B f
k is

nonempty; indeed,

lim
p→∞

∣∣∣Bk ∩ B f
k

∣∣∣
|Bk | = 1.
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Example 2.

(i) The following easy example shows that for p odd, a bijection f : A→ A
may be linear when restricted to each of the 1 -dimensional subspaces and

may also permuteBk , without being a linear transformation. Let A = Ap,2
be generated by a1, a2 and define f : A → A by f : ia1 → ia1, ia2 →
ia2, i (a1 + ja2)→ i (a1 − ja2) for 0 ≤ i, j ≤ p − 1, j 	= 0.

(ii) A map f is anti-additive provided (x + y) f 	= x f + y f for all x, y such

that 0 	∈ {x, y, x + y}. Let F be a field of characteristic different from

3 and such that its multiplicative group F# does not contain elements of

order 3. Then, multiplicative inversion defined by f : 0 → 0, x → x−1
is anti-additive.

Concerning the first example, the situation for k ≥ 3 is quite different as can

be seen from a result of R. Baer from 1939 ([9], Th. 2, page 35):

let G be an abelian p-group such that G contains an element of order
pn and contains at least 3 independent elements of such order. Then
any projectivity of G onto another abelian group H is induced by an
isomorphism.

It follows then

Lemma 2. Let A = Ap,k . Suppose f is a permutation of A#. If f permutes
the set Bk of bases of A then f is a linear transformation when k ≥ 3 and when
p = 2, k = 2.

Proof. As f permutes the set Bk of bases of A, it induces a projectivity on A.
The case p = 2, k = 2 is easy. �

Definition 1. Let A = Ap,k and f be a permutation of A#. A subset C of
A of linearly independent elements is said to be f -independent if C f is also
a linearly independent set. Let N (p, j) denote the number of f -independent
subsets C of A with |C | = j .
Proposition 3. Maintain the previous notation. Then, the following inequal-
ity holds for all k ≥ 1,

N (p, k) ≥ (
pk − 1

) ∏
1≤i≤k−1

pk− j − 1

p − 1

(
p j − 2p j−1 + j + 1

)
.
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Furthermore, lim p→∞

∣∣∣Bk ∩ B f
k

∣∣∣
|Bk | = 1.

Proof. Clearly, N (p, 1) = pk − 1. Let k ≥ 2, C be f -independent and
|C | = j ≥ 1. Denote U = 〈C〉 ,W = 〈

C f 〉. Then,
|U | = |W | = p j ,∣∣U # − C∣∣ = ∣∣W # − C f ∣∣ = (

p j − 1
)− j .

Suppose U 	= A. There are
pk− j − 1

p − 1
non-trivial cyclic subgroups in the quo-

tient group A/U . For each such cyclic subgroup, choose a representative P in

A and also choose a generator v for each P .
Fix such a P = 〈v〉. Then, each element in the set

L = {
u + iv | u ∈ U, 1 ≤ i ≤ p − 1

}
is independent of C and |L| = ∣∣L f ∣∣ = p j (p − 1). The elements of L f \W # =
L f \ (W # − C f ) are independent of C f and∣∣L f \W #

∣∣ ≥ p j (p − 1)− (
p j − 1− j)

= p j+1 − 2p j + j + 1.

Therefore,

N (p, j + 1) ≥ N (p, j)
pk− j − 1

p − 1

(
p j+1 − 2p j + j + 1

)
and

N (p, k) ≥ (
pk − 1

) ∏
1≤ j≤k−1

pk− j − 1

p − 1

(
p j+1 − 2p j + j + 1

)
.

Finally, since

|Bk | =
∏

0≤ j≤k−1

(
pk − p j) = p(k2) ∏

0≤ j≤k−1

(
pk− j − 1

)
,

N (p, k) =
∣∣∣Bk ∩ B f

k

∣∣∣ ,
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we conclude ∣∣∣Bk ∩ B f
k

∣∣∣
|Bk | ≥

∏
1≤ j≤k−1

(
p j+1 − 2p j + j + 1

)
(p − 1)k−1 p(

k
2)

and lim p→∞

∣∣∣Bk ∩ B f
k

∣∣∣
|Bk | = 1 follows easily. �

Corollary 3. Let f : A#
p,k → A#

p,k be a bijection. Then there exists g an
element in the double coset GL(k, p). f.GL(k, p) and there exists a basis C of
A#
p,k such that g fixes point-wise the elements of C.

6 Permuting the set of cyclic subgroups

The commutation between two elements in a group imply the commutation of

the cyclic groups generated by them. For this reason, it is important to consider

commutation correspondence between cyclic subgroups.

Let A = Ap,k and let f be a permutation of A#. Define R ⊂ A#
p,k × A#

p,k by

R = {
(ai , b j ) (1 ≤ i, j ≤ p − 1) | a f = b} .

We will prove that R contains at least p − 1 permutations g of A#
p,k such that(

ai
)g = (

ag
)i

for all 1 ≤ i ≤ p − 1. Therefore, G
(
Ap,k; f

)
is a quotient of

G
(
Ap,k; g

)
for each one of these g’s. For this purpose, we construct a multi-

edge digraph L from R, having vertices the non-trivial cyclic subgroups Ci of A
and edges

(
C,C ′

)
whenever C = 〈

ai
〉
,C ′ =

〈(
a′

) j 〉
and f : ai → (

a′
) j
. Then

L is a regular graph, in the sense that there are exactly p − 1 edges coming into

and p − 1 edges leaving each vertex.

We enumerate the vertices of L and let N = (
Ni j

)
be the incidence matrix

with respect to this enumeration; that is Ni j = l if and only there is a total

of l edges connecting the vertex i to the vertex j . Then N is doubly stochastic,

as all row and column sums of N are equal to p− 1. A permutation g contained

in R corresponds to a non-zero monomial N1,1σ N2,2σ . . . Nk,kσ for some permu-

tation σ of {1, 2, . . . , k}.
Definition 2. Let M = (

Mi j
)
, N = (

Ni j
)
be k × k matrices over the real

numbers. Then, (i) M, N are equivalent provided there exist permutational
matrices S, T such that M = SNT ; (ii) N is said to be totally singular provided

N1,1σ N2,2σ . . . Nk,kσ = 0
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for all permutations σ of {1, 2, . . . , k}.
Proposition 4. Let N be a totally singular k × k matrix over the real num-
bers. Then N is equivalent to a matrix which contains a submatrix 0(k−l)×(l+1)
for some l ≥ 0.

Proof. By induction on k. The cases k = 2, 3 are easy; that is, if k = 2 then

N is equivalent to

( ∗ 0

∗ 0

)
and the if k = 3 then N is equivalent to one of

⎛
⎝ ∗ ∗ 0

∗ ∗ 0

∗ ∗ 0

⎞
⎠ ,

⎛
⎝ ∗ ∗ ∗∗ 0 0

∗ 0 0

⎞
⎠ .

Suppose that the assertion is true for k. We consider N of dimension k + 1.

Then, we can assume that there exist an l ≥ 0 such that

N =
⎛
⎝ a11 . . . U1×(l+1)

Vl×1 Bl×(k−l−1) Cl×(l+1)
W(k−l)×1 D(k−l)×(k−l−1) 0(k−l)×(l+1)

⎞
⎠ .

If U1×(l+1) or any row of Cl×(l+1) is null then we obtain the desired form. We

can also assume that U1×(l+1) = (. . . , a1k), a1k > 0. Therefore, we have the

(l + 1)× (l + 1) matrix(
U1×(l+1)
Cl×(l+1)

)
=

(
. . . a1k
Rl×l Sl×1

)
.

We have

Y(k−l)×(k−l) =
(
W(k−l)×1 D(k−l)×(k−l−1)

)
and therefore

N =
( ∗ Z(l+1)×(l+1)
Y(k−l)×(k−l) 0(k−l)×(l+1)

)
.

Now, one of Y(k−l)×(k−l), Z(l+1)×(l+1) is totally singular; suppose it is the first

one. Then we may assume

Y(k−l)×(k−l) =
(
. . . Y ′m×(m+1)
. . . 0(k−l−m)×(m+1)

)
.

Hence

N =
⎛
⎝ ∗ Z(l+1)×(l+1)

. . . Y ′m×(m+1)

. . . 0(k−l−m)×(m+1)
0(k−l)×(l+1)

⎞
⎠

and we obtain in N a (k − l − m) × (m + 1+ l + 1) block of zeroes where

the sum of the dimensions is k + 1. �

Bull Braz Math Soc, Vol. 40, N. 2, 2009



168 RICARDO N. OLIVEIRA and SAID N. SIDKI

Corollary 4. Maintain the previous notation. Suppose the entries of N are
non-negative. If in addition N is doubly stochastic then N = 0.

Proof. Let the row sum be s. There exists l ≥ 0 such that

N =
(

Xl×(k−l) Zl×(l+1)
Y(k−l)×(k−l) 0(k−l)×(l+1)

)
.

Therefore the column sum of

(
Zl×(l+1)

0(k−l)×(l+1)

)
is (l + 1) s whereas the row sum

is at most ls; hence s = 0. �
Wego back to our graph L and its incidencematrix N which is doubly stochas-

tic with s = p − 1. Then there exists a monomial N1,1σ N2,2σ . . . Nk,kσ 	= 0 and

so Ni,iσ 	= 0 for all i . This produces for us a bijection g : A#
p,k → A#

p,k . By

removing the edges corresponding to g, the graph L is reduced to one which is

(s − 1)-regular. Therefore, we can produce in this manner p−1 permutations g.
Clearly, if f is an isomorphism on the cyclic subgroups then all the permutations

g are equal.

7 Classification of G (A; f ) for A of small rank
We treat in this section groups G (A, B; f ) were A, B are finite abelian groups

generated by at most 4 elements.

Proposition 5. Suppose A = 〈a〉 , B = 〈b〉 are cyclic groups having equal
finite orders n. Then, G = G (A, B; f ) is isomorphic to A × B.
Proof. Suppose G is not abelian. Let 1 < r, s < n be minimal integers such

that [a, br ] = e = [as, b]. Then,

f : {
ai | 1 < i < n, gcd (i, s) = 1

}
→ {

b j | 1 ≤ j < n, r | j} ,
φ (s)

n
s

<
n
r
;

f −1 : {
bi | 1 < i < n, gcd (i, r) = 1

}
→ {

a j | 1 ≤ j < n, s| j} ,
φ (r)

n
r

<
n
s
;

φ (s) φ (r)
n
r

< φ (s)
n
s
<
n
r

which is a contradiction. �
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Example 4. The following example shows that relaxing f from bijection to

surjection may not maintain the finiteness of G (A, B; f ).
Let A = 〈a〉 de a cyclic group of order p3, B = 〈b〉 be cyclic of order p2 and

define f : A→ B by choosing surjective maps

f : e→ e,
A\ 〈a p〉 → 〈

bp
〉 \ {e} ,〈

ap
〉 \ {e} → B\ 〈bp〉 .

Then the relations
[
a, a f

] = e in G (A, B; f ) are equivalent to 〈a p, bp〉 being
central in G. Therefore, G/〈a p, bp〉 is isomorphic to the free product Cp ∗ Cp.
Proposition 6. Let A = 〈a1, a2〉 , B = 〈b1, b2〉 be homogenous abelian groups
of rank 2, both having finite exponent n. Then G = G(A, B; f ) is nilpotent of
class at most 2 and its derived subgroup is cyclic of order divisor of n.

Proof. Let us call an element of A which is part of some 2-generating set of A
primitive. The non-primitive elements are of the form is ai1a

j
2 where gcd (i, n) 	=

1 	= gcd ( j, n); therefore, their number is (n − ϕ (n))2. The number of primitive

elements is n2 − (n − ϕ (n))2 = 2nϕ (n)− ϕ (n)2.
The difference between the number of primitive elements and the non-prim-

itives is positive:

2nϕ (n)− ϕ (n)2 − (n − ϕ (n))2 = 4nϕ (n)− 2ϕ (n)2 − n2

and

2
ϕ (n)
n
+ 2

ϕ (n)
n
≥ 1+ 2

(
ϕ (n)
n

)2

,

since
1

2
≤ ϕ (n)

n
< 1.

Since f is a bijection we may suppose f : a1 → b1. Now, any 2-generating

set of A containing a1 has the form
{
a1, al1a

m
2

}
where gcd (m, n) = 1; there

are nϕ (n) such elements al1a
m
2 . As nϕ (n) > (n − ϕ (n))2, we may suppose

f : a2→ b2.
As f : ai1a j2 → bk1b

l
2, we have[
ai1a

j
2 , b

k
1b
l
2

]
= [
ai1, b

l
2

] [
a j2 , b

k
1

]
= e.
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Since a1, b2 commute with
[
a j2 , b

k
1

]
, while a2, b1 commute with

[
ai1, b

l
2

]
, we

conclude that
[
bk1, a

j
2

] = [
ai1, b

l
2

]
is central. We note that the size of{

ai1a
j
2 | gcd (i, n) = 1, j 	= 0

}
is ϕ (n) (n − 1), whereas the size of{

bk1b
l
2 | k 	= 0, gcd (l, n) 	= 1, l 	= 0

}
is (n − 1) (n − ϕ (n)− 1).

As the first set is larger than the second, there exist i, j with gcd (i, n) =
1, j 	= 0 such that f : ai1a j2 → bk1b

l
2 where gcd (l, n) = 1. We rewrite ai1

as a1 and bl2 as b2 and conclude that [a1, b2] is central. Similarly, [a2, b1] is

also central.

Hence, [
a1, b2

]n = [
a2, b1

]n = e
and there exist 0 ≤ s, t ≤ n − 1 such that[

a1, b2
] = [

a2, b1
]s
,
[
a2, b1

] = [
a1, b2

]t
and G ′ = 〈[

a1, b2
]〉 = 〈[

a2, b1
]〉
. �

7.1 The groups G
(
Ap,k; f

)
for p = 2, 3 and k = 3, 4

We consider the groups

G
(
A2,3; f

)
,G

(
A2,4; f

)
,G

(
A3,3; f

)
,

their orders, nilpotency classes c and derived lengths d. We write the group

Ap,k additively.

(i) The group A2,3 is{
0, a1, a2, a3, a1 + a2, a1 + a3, a2 + a3, a1 + a2 + a3

}
,

which we enumerate lexicographically and identify its elements with

their positions in this order. The group SL(3, 2) in its linear action on A#
2,3,

is generated by the permutations (2, 7, 4, 6, 5, 8, 3), (2, 8, 7)(3, 4, 6).

Using GAP, we find that there are 4 double cosets in SL(3, 2)\
Sym(7)/SL(3, 2), which are represented by the permutations{

() , (6, 7) , (6, 7, 8) , (5, 6, 7, 8)
}
.
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Each permutation produces for us a bijection f and a group as in the table

below

f
∣∣G (

A2,3; f
)∣∣ c d

() 210 3 2

(6, 7) 210 3 2

(6, 7, 8) 28 2 2

(5, 6, 7, 8) 28 2 2

Further analysis shows that these 4 groups are non-isomorphic.

(ii) The group A2,4 is treated in a similar manner. We find that there are

3374 double cosets in SL(4, 2)\Sym (15) /SL(4, 2) . The corresponding

groups G
(
A2,4; f

)
have orders

29, 210, 211, 212, 213, 215, 219.

There are 5 representatives f for which the groups have maximum order.

We list them below with their invariants c, d:

f
∣∣G (

A2,4; f
)∣∣ c d

() 219 4 2

(15, 16) 219 3 3

(11, 14)(15, 16) 219 5 3

(9, 11)(10, 13)(12, 14) 219 5 3

(9, 12)(10, 13)(11, 14) 219 4 2

Further analysis shows that these 5 groups are non-isomorphic.

(iii) The set of 1-dimensional subspaces of A3,3 has size 13. The group

GL(3, 3) in its linear action on A3,3 induces the group PGL(3, 3). There
are 252 double cosets in PGL(3, 3)\Sym(13)/PGL(3, 3). A double

coset representative corresponds to a bijection g of A#
3,3 which is linear

on the 1-dimensional subspaces of A3,3. We find that the corresponding

groups have orders 36, 37, 38, 39. The groups of order 36 are clearly iso-

morphic to A3,3 × A3,3 . Those of higher order have nilpotency class 2.

There is a unique group of maximum order 39 which clearly is isomorphic

to χ
(
A3,3

)
.
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8 Three general examples

Working by hand with G = G (H, K ; f ), it is easy to produce many conse-

quences from the defining relations: given h ∈ H, k ∈ K , then the equalities

[
h, k

] = [
h, h f k

] = [
k f −1h, k

]
hold and these serve to define the two maps

α : (h, k)→ (
h, h f k

)
, β : (h, k)→

(
k f −1h, k

)
on the set H × K . Finding equivalent forms for [h, k] according to the above

process corresponds to calculating the orbits of the group 〈α, β〉 in its action on

H × K . We will illustrate this sort of analysis in the examples below.

8.1 The multiplicative inverse function

Let F , Ḟ be isomorphic fields, via a → ȧ. Define f : 0 → 0, k → k̇−1
for k 	= 0 and let

G = G (F, inv) =
〈
F, Ḟ |

[
a,

1

ȧ

]
= e for a 	= 0

〉
.

Given an integer m , we have
[
a, mȧ

] = e. Therefore, if F = GF (p) or Q,

the group G is isomorphic to F × F .
We will prove

Theorem 9. Let F = GF
(
2k

)
where 2k − 1 is a prime number. Then,

G (F; inv) is nilpotent of class at most 2.
It appears that this result holds more generally. We develop below formulas

for general fields F .

Lemma 3. Let i ≥ 1, b ∈ F, b 	= 0 and suppose (2i − 1)! is invertible in F.
Then

(αβ)i : (0, b)→
(

(2i − 1)!(
2i−1(i − 1)!)2

1

b
,
22i−2 ((i − 1)!)2

(2i − 2)! b

)
,

(αβ)i α : (0, b)→
(

(2i − 1)!(
2i−1(i − 1)!)2

1

b
,
2i

(
2i−1(i − 1)!)2
(2i − 1)! b

)
.
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Let p be an odd prime number. Then,

(αβ)
p+1
2 : (0, b)→

(
0, (−1)

p−1
2 b

)

modulo p.

Proof. The first formulae can be verified in a straightforward manner.

In case the characteristic of F is a prime number p then

(αβ)
p+1
2 : (0, b)→

⎛
⎝0,

2p−2
(
p−1
2

)
!
(
p−3
2

)
!

(p − 2)! b

⎞
⎠

and by Wilson’s theorem,

(p − 1)! = (−12
) (−22

)
. . .

(
−

(
p − 1

2

)2
)

= (−1)
p−1
2

(
p − 1

2
!
)2

≡ −1 modulo p,
(
p − 1

2
!
)2

≡ (−1)
p+1
2 modulo p.

�
Lemma 4. Let L = GF (p) when charac(F) = p and L = Z when
charac(F) = 0. Let

T = {(
a, b

) | a 	= 0 	= b, ab 	∈ L}
.

Then, α, β : T → T and for all integers i1, . . . , is, j1, . . . , js ,

αi1β j1 . . . αisβ js : (a, b)→ (
a′, b′

)
,

where

a′ = �1≤s≤k (i1 + · · · + is + j1 + · · · + js + ab)
�1≤s≤k (i1 + · · · + is + j1 + · · · + js−1 + ab)a,

b′ = �1≤s≤k (i1 + · · · + is + j1 + · · · + js−1 + ab)
ab�1≤s≤k−1 (i1 + · · · + is + j1 + · · · + js + ab)b.

The relations
[
αi , β j

] = [
α j , β i

]
hold on the set T , for all integers i, j .
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Proof. We calculate only the action of αi1β j1 :

(a, b) → αi1

(
a,
i1
a
+ b

)
=

(
a,
i1 + ab
ab

b
)

→ β j1

(
a + j1

i1 + aba,
i1 + ab
ab

b
)

=
(
i1 + j1 + ab
i1 + ab a,

i1 + ab
ab

b
)

.

It is direct to check that the first general non-trivial relation happens for k = 3:

j1 = −i1 − i2, j2 = i1, i3 = −i1 − i2, j3 = i2;
that is,

αi1β−i1−i2αi2β i1α−i1−i2β i2 = e
which in turn is equivalent to[

αi , β j
] = [

α j , β i
]
.

�

Lemma 6. Let charac (F) = 2, a, b ∈ F such that a 	= 0 	= b, ab 	= 1.
Define c = c (a, b) = ab

1+ab . Then, α
2 = β2 = e and for all integers k,

(αβ)k : (a, b)→ (
cka, c−kb

)
,

(αβ)k β : (a, b)→ (
ck−1a, c−kb

)
.

The orbit of (a, b) under the action of 〈α, β〉 has length 2.o(c). As both

aci ∈ F and ḃċ−i ∈ Ḟ invert w = [
a, ḃ

]
for all i ≥ 0, we conclude that the

subgroup
〈(
1+ ci) a, (1+ ċi) ḃ | i 	= 0

〉
centralizes w. If c satisfies a monic

polynomial over GF(2), which is the sum of an odd number of monomials,

then a and ḃ centralize w and so
(
aḃ

)4 = e.
Proof of Theorem 10. Let a 	= 0 	= b, ab 	= 1. Since c = ab

1+ab is a

generator of the multiplicative group F# we have
{(
1+ ci) a | i ≥ 0

} = F#

and so, w = (
aḃ

)2 = [
a, ḃ

]
is central in G. Therefore, G is nilpotent of class

at most 2.
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Example 5. We obtain by using GAP:

for F = GF (
23

)
, the group G has order 28 and nilpotency class 2;

for F = GF (
24

)
the group G has order 211 and nilpotency class 2;

for F = GF (
33

)
the group G is abelian, isomorphic to F × F .

8.2 Group extension of χ (A)

Let Ã, B̃ be groups isomorphic to A2,k , k ≥ 3, generated by {ai | 1 ≤ i ≤ k},
{bi | 1 ≤ i ≤ k}, respectively. Define

A = 〈ai | 2 ≤ i ≤ k〉 , B = 〈bi | 2 ≤ i ≤ k〉
and let f : A → B be the isomorphism extended from the map ai → bi

(
2 ≤

i ≤ k). Then, G(A, B; f ) is isomorphic to χ
(
A2,k−1

)
. Both Ã, B̃ are central

extensions of A, B, respectively. Define f ∗ : Ã→ B̃ by

a1→ b1, h→ b1h f , a1h → h f for h ∈ A#;

this corresponds to choosing the bijections α : e → e, a1 → b1, γ : e →
b1, a1→ e.

We sketch below a proof that the group G = G
(
Ã, B̃; f ∗) is metabelian,

has order 22k+k−1 and has nilpotency class k. Yet, G is not isomorphic to

χ
(
A2,k

)
: for whereas the commutator subgroup of χ

(
A2,k

)
is of exponent 2,

G ′ is of exponent 4. Indeed, G ′ is generated by
[
a fj , a1

]
for j > 1 (their

number is k − 1, each of order 2) and by[
a fj1, a j2, a j3, . . . , a jr

]
where j1 > j2 > . . . > jr > 1

(their number is 2k−1 − k, each of order 4).

We develop the proof in steps.

Let t : Ã→ B̃ be the natural isomorphism extended from ai → bi .

(1) The set
{(
x, yt

) | x, y ∈ H̃}
partitions under the substitutions α, β into

three types of orbits. Let u 	= w ∈ A. Then orbits types are as follows:

(i)
{(
a1, ut

)
,
(
u, ut

)
,
(
u, b1

)
,
(
a1u, b1

)
,
(
a1u, b1ut

)
,
(
a1, b1ut

)}
;

(ii)
{(
u, wt

)
,
(
a1uw,wt

)
,
(
a1uw, ut

)
,
(
w, ut

)
,
(
w, b1utwt

)
,
(
u, b1utwt

)}
;
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(iii)
{(
a1u, b1wt

)
,
(
a1uw, b1wt

)
,
(
a1uw, b1ut

)
,
(
a1w, b1ut

)
,
(
a1w, b1utwt

)
,(

a1u, b1utwt
)}
.

(2) The following equalities hold for all x, y, z ∈ Ã:[
x, yt

] = [
y, xt

]
,

[
xt , y, zt

] = [
z, yt , x

]−1
,

[
z, yt , x

] = [
y, xt , z

]
.

Proof of (2). In each orbit we find
(
x, yt

)
,
(
y, xt

)
.

We conclude that for all x, y, z ∈ Ã,[
x, (yz)t

] = [
x, (zy)t

] = [
y, xt

] [
z, xt

] [
x, zt , yt

]
,[

x, (yz)t
] = [

yz, xt
] = [

y, xt
] [
y, xt , z

] [
z, xt

]
,[

z, xt
] [
x, zt , yt

] = [
y, xt , z

] [
z, xt

]
,

[
x, zt , yt

][xt ,z] = [
y, xt , z

]
,

[
x, zt , yt

][zt ,x] = [
y, xt , z

]
,[

yt ,
[
zt , x

]] = [
y, xt , z

]
,

[
zt , x, yt

] = [
y, xt , z

]−1
and [

zt , x, yt
] = [

y, xt , z
]−1 = [

x, yt , z
]−1 = [

xt , y, zt
] = [

z, yt , x
]−1

.

(3) We will show that a1 inverts
[
u, wt

]
for all u, w ∈ Ã.

Proof of (3). Clearly a1 inverts
[
a1, wt

]
.

In the calculations below, given a word ∗ ∗ x ∗ ∗ we introduce dots around

x as ∗ ∗ .x . ∗ ∗ indicating that x will be substituted by x f ∗xx f ∗ , if x ∈ Ã,
or by x( f ∗)

−1
xx( f ∗)

−1
, if x ∈ B̃.

Let u, w ∈ A. Then,[
u, wt

]a1 = (a1u) .wt .uwt a1 = (uw)wt . (a1uw) .wt a1
= (uw) ut (a1uw) .ut .a1 = (uw) utwutu = (

wutwut
)u

= [
w, ut

]u = [
u, wt

]u = [
u, wt

]−1
.

Bull Braz Math Soc, Vol. 40, N. 2, 2009



ON COMMUTATIVITY AND FINITENESS IN GROUPS 177

Furthermore,[
a1u, b1wt

]a1 = u.b1wt .a1ub1wt a1 = uw (
b1wt

)
.a1uw.b1wt a1

= uw (
b1ut

)
(a1uw) .b1ut .a1 = uw

(
b1ut

)
.a1w.

(
b1ut

)
a1u

= uw.b1utwt . (a1w)
(
b1utwt

)
a1u

= (
b1utwt

)
.a1u.

(
b1utwt

)
a1u

= (
b1wt

)
.a1u.

(
b1wt

)
a1u. =

[
b1wt , a1u

]
.

(4) We claim [[
zt , x

]
,
[
zt , x

]y] = e, [zt , x]y = [
zt , x

]yt
and the group G is metabelian.

Proof of (4). Apply a1 to[
x, (yz)t

] = [
x, (zy)t

] = [
x, yt

] [
x, zt

] [
x, zt , yt

]
.

Then [
(yz)t , x

] = [
yt , x

] [
zt , x

] [
x, zt , yt

]a1
= [

yt zt , x
] = [

yt , x
]zt [zt , x]

= [
yt , x

] [
yt , x, zt

] [
zt , x

]
,

[
x, zt , yt

]a1 = [
yt , x, zt

][zt ,x]
= [

z, xt , y
]−[zt ,x]

= [
zt , x, y

]
,[

x, zt , yt
] = [

zt , x, y
]a1

= [
x, zt , y

]
[
x, zt , yt

] = [
x, zt , y

]
,[

x, zt , y
] = [

xt , z, yt
]−1

= [
zt , x, yt

]−1
,[[

x, zt
]−1

, yt
]
= [[

x, zt
]
, yt

]−1
.
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Thus, [
x, zt

]yt = [
x, zt

]y
and [

x, zt
]
commutes with

[
x, zt

]yt
.

Observe that[
x, yt

]uvt = [
x, yt

]utvt = [
x, yt

](uv)t = [
x, yt

]uv
and so,

[
x, yt

][u,vt] = [
x, yt

]
. It follows that G is metabelian.

(4.1) The commutator subgroup is generated by[
atj , ai

]w
where j > i, w ∈ 〈ar | r 	= 1, i, j〉 .

We can improve upon the description of this generating set by using:

[
atj , ai , ak

]ai [ak, atj , ai]atj = e,[
ai , atj , ak

] [
a j , atk, ai

]a j = e,[
ai , atj , ak

] [
atk, a j , ai

] = e,

[
atj , ai , ak

] = [
atk, a j , ai

] = [
atj , ak, ai

]
= [

ati , ak, a j
] = [

atk, ai , a j
] = [

ati , a j , ak
]
.

Therefore the generators have the form[
atj1, a j2, a j3, . . . , a jr

]
where j1 ≥ j2 ≥ . . . ≥ jr .

If j1 = j2 then [
atj1, a j2

] = [
atj1, a1

]
,[

atj1, a j2, a j3
] = [

atj1, a1, a j3
] = [

atj1, a j3, a1
] = [

atj1, a j3
]2

.

Thus G ′ is generated by: [
atj , a1

]
(1 < j ≤ k)

(in total of k − 1, each of order dividing 2) and by[
atj1, a j2, a j3, . . . , a jr

]
for all j1 > j2 > . . . > jr > 1
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(in total of 2k−1 − k, each of order dividing 4). Hence,
∣∣G ′∣∣ divides 2k−1.

42k−1−k = 2k−1+2k−2k = 22k−k−1 and |G| divides 22k−k−122k = 22k−12k . The

nilpotency class of G is at most k and the commutator of highest weight is

apparently
[
atk, ak−1, ak−2, . . . , a1

]
.

Rather than effecting the final construction, we just remark that computations

in GAP confirm the structural information obtained above for k ≤ 5.

8.3 A transposition

Let A = A2,k and let f correspond to a transposition. Since SL (k, 2) is 2-

transitive on A#
2,k , any transposition of A#

2,k is equivalent to f . Detailed analysis

of G
(
A2,k; f

)
indicates that it has the same order as χ (A), but not isomorphic

to the latter. Again, this is confirmed by computations in GAP.
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