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Infinitesimal adjunction and polar curves

Nuria Corral

Abstract. The polar curves of foliationsF having a curve C of separatrices generalize

the classical polar curves associated to hamiltonian foliations of C . As in the classical

theory, the equisingularity type ℘(F) of a generic polar curve depends on the analytical

type of F , and hence of C . In this paper we find the equisingularity types ε(C) of C ,

that we call kind singularities, such that ℘(F) is completely determined by ε(C) for

Zariski-general foliations F . Our proofs are mainly based on the adjunction properties

of the polar curves. The foliation-like framework is necessary, otherwise we do not get

the right concept of general foliation in Zariski sense and, as we show by examples, the

hamiltonian case can be out of the set of general foliations.

Keywords: singular foliation, polar curve, Newton polygon, equisingularity type, ad-

joint curves.

Mathematical subject classification: 32S65.

1 Introduction

Let F be a germ of holomorphic foliation of (C2, 0) having a curve of sepa-

ratrices C . The polar curve � of F with respect to a direction [a : b] ∈ P1
C

is given by ω ∧ (ady − bdx) = 0, where ω is a 1-form defining F . There is

a Zariski-open set of directions such that the equisingularity type ε(� ∪ C) of

� ∪ C is the same one, independent of ω and of the coordinates. We denote

℘(F) this generic type of equisingularity. This paper is devoted to provide an

accurate description of the types ℘(F) in terms of the equisingularity type ε(C)

of C .

Wework with foliations in the classG∗
C of the generalized curves without “bad

resonances” defined as follows. A foliation F belongs to G∗
C if

Received 7 October 2008.

The author was partially supported by the research projects MTM2007-66262 (Ministerio de

EducaciónyCiencia),MTM2006-15338-C02-02 (Ministerio deEducaciónyCiencia), VA059A07

(Junta de Castilla y León) and PGIDITI06PXIB377128PR (Xunta de Galicia).



182 NURIA CORRAL

(1) It is a generalized curve in the sense of Camacho-Lins Neto-Sad ([3])

having C as curve of separatrices. Note that, in this case, the minimal

morphism of reduction of singularities πC of C is also the reduction of

singularities of F .

(2) For any C-ramification ρ : (C2, 0) → (C2, 0) (that is, ρ is transversal

to C and ρ−1C has only non-singular branches), there is no corner in the

reduction of singularities of ρ∗F with Camacho-Sad index equal to −1.
If C = ( f = 0), the hamiltonian foliation d f = 0 belongs to G∗

C . But the class

G∗
C is wider than that. Let us write f =∏r

i=1 fi , then the logarithmic foliations

Lλ =
( r∑

i=1
λi

d fi
fi
= 0

)

belong to this class if λ = (λ1, · · · , λr ) avoid certain rational resonances. More

generally, each generalized curve foliation F has a well defined logarithmic
model Lλ, λ = λ(F), of the above type such that the Camacho-Sad indices of

F and Lλ coincide along the reduction of singularities [5].

There is a first relationship between ε(C) and ℘(F) described in the decom-
position theorem of the polar curve [5], proved by several authors in different

contexts [13, 11, 10, 15]. It can be stated as follows:

Theorem (Decomposition [5]). Let ρ be a C-ramification. If � is a generic
polar curve of F ∈ G∗

C, then ρ−1� is a strict adjoint of ρ−1C.

If Y ⊂ (C2, 0) is a curve with only non-singular branches, we say that a

curve Z ⊂ (C2, 0) is a strict adjoint of Y if the multiplicities satisfy mp(Z) =
mp(Y ) − 1 at the infinitely near points p of Y and Z does not go through

the corners of the desingularization of Y . (Compare with the definition in [4],

p. 152).

There are infinitely many possible equisingularity types ε(Y ∪ Z) for a fixed

Y and Z being strict adjoint of Y . In section 3 we prove the following result of

finiteness by using a control of the Newton polygon of a generic polar curve �

(a similar result for the case of hamiltonian foliations can be deduced from the

virtual behaviour of the polar curves described in [4]).

Theorem. There exists a finite number of equisingularity types ℘(F), where
F ∈ G∗

C ′ and C ′ is such that ε(C ′) = ε(C).

Take as above Y ⊂ (C2, 0) with only non-singular branches. A strict adjoint

curve Z of Y is a perfect adjoint curve of Y if πY desingularizes Z . In this case
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the equisingularity type χY = ε(Y ∪ Z) does not depend on Z . Section 4 is

devoted to prove the following result of genericity.

Theorem (of genericity). Assume that C has only non-singular branches.
There is a non-empty Zariski-open set UC ⊂ Pr−1

C
defined by

“λ ∈ UC if there exists F ∈ G∗
C with ℘(F) = χC and λ = λ(F)”.

Moreover, for each F ∈ G∗
C with λ(F) ∈ UC we have that ℘(F) = χC .

In general, it is not possible to define χC in a way compatible with C-ramifica-

tions. This is the characteristic property of the kind equisingularity types that
we introduce below.

Let G(C) be the dual graph of C oriented by its first divisor. Associate to

each divisor E the multiplicity m(E) given by any E-“curvette” and the number

bE of edges and arrows which leave from E . Thus E is a bifurcation divisor
if bE ≥ 2 and a terminal divisor if bE = 0. A dead arc joins a bifurcation

divisor with a terminal divisor, with no other bifurcations. We say that ε(C) is

kind if m(Eb) = 2m(Et), for each dead arc of G(C) starting at Eb and ending

at Et . The next proposition, proved in section 5, gives a characterization of kind

equisingularity types in terms of adjunction.

Proposition. The equisingularity type ε(C) is kind if and only if there is a
germ of curve Z ⊂ (C2, 0) such that ρ−1Z is a perfect adjoint of ρ−1C for any
C-ramification ρ. Moreover ε(C ∪ Z) does not depend on the choice of Z.

For kind equisingularity types we define χC = ε(C ∪ Z) and we say that such

Z are perfect adjoint curves of C . The next proposition, proved in section 5,

gives a precise description of χC for kind equisingularity types. (For classical

polar curves, our description is slightly more precise than the one in [12]).

Proposition. Let C be a curve with kind equisingularity type and Z a perfect
adjoint curve of C. Then πC gives a reduction of singularities of Z ∪C. More-
over, the branches of Z intersect an irreducible component E of the exceptional
divisor of πC as follows:

• If E is a bifurcation divisor of G(C), the number of branches of Z cutting
E equals to bE − 2 if E is in a dead arc and to bE − 1 otherwise.

• If E is a terminal divisor of a dead arc of G(C), there is exactly one branch
of Z through E.

• Otherwise, no branches of Z intersect E.
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Finally, in section 6, we relate the polar curves to the adjoint curves in the case

of kind equisingularity types. As a consequence we obtain a precise description

of ℘(F) if ε(C) is kind. Let us define the Zariski open set UC ⊂ Pr−1
C

by

“λ ∈ UC if there exists F ∈ G∗
C with λ = λ(F) having a generic

polar curve � such that ρ−1� is a perfect adjoint of ρ−1C , for any

C-ramification ρ”

Then we prove the following theorem.

Theorem. The curve C has a kind equisingularity type if and only if UC 
= ∅.
In this case ℘(F) = χC for any F ∈ G∗

C such that λ(F) ∈ UC.

The hamiltonian foliations d f = 0 have vector of exponents λ = 1. We

provide examples such that 1 /∈ UC , hence the consideration of the class G∗
C is

essential for this theory.

The main results of this paper were announced in [6]. Our results are of

local nature in the framework of foliations (see also [15, 5, 7]). The classical

local study of polar curves has been developed by several authors ([16, 13, 11,

12, 4, 10]). There are also related works for foliations from the global view-

point [14, 8].

2 Strict adjoint curves

Before starting the study of polar curves, we describe some properties that can

be deduced from the fact that a curve is a strict adjoint of another curve. We

recall the notion of a strict adjoint curve:

Definition 1. Assume that C has only non-singular branches. We say that Z
is a strict adjoint of C if m p(Z) = mp(C)− 1 at each infinitely near point p of
C and Z does not go through the corners of the desingularization of C.

If Z is a strict adjoint of C , the properties above allow to give a decomposition

of Z into bunches of branches in terms of the equisingularity data of C . Let

us describe it using the dual graph G(C) of C which is constructed from the

minimal reduction of singularities πC : M → (C2, 0) of C (see appendix A

for all the notations concerning the dual graph of a curve). Given a divisor

E of π−1
C (0), we denote by πE : ME → (C2, 0) the morphism reduction of

πC to E (see appendix A); recall that πC = πE ◦ π ′
E . Let B(C) be the set of

bifurcation divisors of G(C). For any E ∈ B(C), we define Z E to be the union

of the branches ζ of Z such that
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• π∗
Eζ ∩ π∗

EC = ∅
• If E ′ < E , then π∗

Eζ ∩ π ′
E(E ′) = ∅

where π∗
Eζ denotes the strict transform of ζ by πE . Thus there is a unique

decomposition Z = ∪E∈B(C)Z E satisfying that:

d1. m0(Z E) = bE − 1.

d2. π∗
E Z E ∩ π∗

EC = ∅.
d3. If E ′ < E then π∗

E Z E ∩ π ′
E(E ′) = ∅.

d4. If E ′ > E then π∗
E ′Z

E ∩ E ′
red = ∅.

In particular, if E is not a bifurcation divisor we have that π∗
E Z ∩ Ered = π∗

EC ∩
Ered . Moreover, the properties above imply the following ones which are stated

in terms of the coincidences and of the data in G(C). For each irreducible

component ζ of Z E we have that

( D-i ) C(Ci , ζ ) = v(E) if E belongs to the geodesic of Ci ;

(D-ii) C(C j , ζ ) = C(C j ,Ci ) if E belongs to the geodesic of Ci but not to

the one of C j .

(see appendix A for the definitions of bE , v(E) and geodesic of a curve in

G(C)).

Consider now any curve C and let ρ : (C2, 0) → (C2, 0) be any C-rami-

fication (the reader can refer to appendix B for notations and general results

concerning ramifications). If Z̃ = ρ−1Z is a strict adjoint of C̃ = ρ−1C , then

there is also a decomposition of Z in terms of the equisingularity data of C : for

any bifurcation divisor E of G(C), we define Z E to be such that

ρ−1Z E =
nE⋃
i=1

Z̃ Ẽ j
,

where {Ẽ j }nE
j=1 are the divisors of G(C̃) associated to E in G(C̃) and Z̃ =

∪Ẽ∈G(C̃) Z̃ Ẽ is the decomposition of Z̃ described above. Hence, we get a de-

composition Z = ∪E∈B(C)Z E such that:

D1. m0(Z E) =
{

nEnE(bE − 1), if E does not belong to a dead arc;

nEnE(bE − 1)− nE , otherwise.
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D2. π∗
E Z E ∩ π∗

EC = ∅.
D3. If E ′ < E , then π∗

E Z E ∩ π ′
E(E ′) = ∅.

D4. If π∗
E Z E ∩ π ′

E(E ′) 
= ∅, then π ′
E(E ′) > Ered .

D5. If E ′ > E and E ′ does not belong to a dead arc joined to E , then
E ′

red ∩ π∗
E ′Z

E = ∅.
Moreover, properties (D-i) and (D-ii) also hold now for a branch ζ of Z E .

It is clear that the properties above do not determine the equisingularity type

of the curve Z even if C has only non-singular branches. Let us introduce a

definition:

Definition 2. Assume that C has only non-singular branches and let Z be a
strict adjoint of C. We say that Z is a perfect adjoint curve of C if πC gives a
reduction of singularities of Z.

Let us state a criterion to check if a curve Z is a perfect adjoint of C .

Proposition 1. Let C be a curve with only non-singular branches. A strict
adjoint curve Z of C is perfect adjoint curve of C if and only if the set

π∗
E Z ∩ Ered � π∗

EC ∩ Ered

has exactly bE − 1 points for each irreducible component E of π−1
C (0).

Proof. Observe that the second part of the statement always holds when E is

not a bifurcation divisor (bE = 1) since π∗
E Z∩Ered = π∗

EC∩Ered (see the prop-

erties of the decompositions above). Therefore we only need to prove the result

for bifurcation divisors. Recall that there is a decomposition Z = ∪E∈B(C)Z E

such that π∗
E Z ∩ Ered � π∗

EC ∩ Ered = π∗
E Z E ∩ Ered by properties d2-d4.

Assume first that Z is a perfect adjoint curve of C . Then πC is a reduction of

singularities of Z ∪C . Hence the irreducible components of Z are non-singular

and its number is equal to the multiplicity m0(Z). Moreover, the property d4.

implies that πE is a reduction of singularities of Z E and the number of points of

π∗
E Z E ∩ Ered is equal to m0(Z E) = bE − 1 since Z E only cuts Ered by d3.

Reciprocally, assume that the set π∗
E Z E ∩ Ered has exactly bE − 1 points for

each bifurcation divisor E of G(C). This implies that Z E has bE −1 irreducible

components which are non-singular and that πE is a reduction of singularities of

Z E . Then, from the equalities π∗
C Z E ∩ E = π∗

C Z ∩ E and π∗
C Z E ∩ π∗

CC = ∅,
we deduce that πC is a reduction of singularities of Z ∪ C . �
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INFINITESIMAL ADJUNCTION AND POLAR CURVES 187

The next corollary gives a characterization of a perfect adjoint curve of a given

curve C in terms of the equisingularity data of C , when C has only non-singular

branches.

Corollary 1. Consider a curve C with only non-singular branches and let
Z = ∪E∈B(C)Z E be the decomposition of a strict adjoint curve Z of C. The
curve Z is perfect adjoint curve of C if and only if each curve Z E is composed
by bE − 1 irreducible components {ζ E

i }bE−1
i=1 with C(ζ E

i , ζ E
j ) = v(E) for i 
= j .

In particular, the corollary above implies that G(C∪Z) is obtained fromG(C)

by adding bE −1 arrows to each bifurcation divisor E of G(C) and this property

characterizes the fact of Z being a perfect adjoint of C , when C has only non-

singular branches. Hence, it is clear that ε(C ∪ Z) does not depend on Z and we

denote χC = ε(C ∪ Z).

In the general case of a curve C with singular branches, it is not possible to

define χC in a compatible way with C-ramifications. Since this situation needs

a more detailed treatment, we shall consider it in section 5.

3 Local invariants and polar curves

Let F be the space of singular foliations of (C2, 0), that is, an element F ∈ F
is defined by a 1-form ω = 0, with ω = Adx + Bdy, A, B ∈ C{x, y} and
A(0) = B(0) = 0. Given a plane curve C ⊂ (C2, 0), we denote by FC the sub-

space of F composed by the foliations which have C as a curve of separatrices.

For a direction [a : b] ∈ P1
C
, the polar curve �(F; [a : b]) is the curve

� = {
aA(x, y)+ bB(x, y) = 0

}
.

We denote by �F a generic polar when the direction [a : b] is not needed. Then
the multiplicity m0(�F) of �F at the origin coincides with the multiplicity

ν0(F) of F at the origin. Recall that, if G is the space of generalized curve

foliations of (C2, 0) and GC = FC ∩ G, we have that ν0(F) = m0(C) − 1 for

any F ∈ GC .

The Newton polygonN (F; x, y) = N (ω; x, y) of F is defined as the one

of the ideal generated by x A and yB. More precisely, if we write ω =∑
i, j ωi j

with

ωi j = Ai j xi−1y jdx + Bi j xi y j−1dy, (1)

and we put �(ω) = {(i, j) : ωi j 
= 0}, thenN (F; x, y) is the convex envelop

of �(ω)+R2
≥0. In the case of an analytic function f =∑

i j fi j x i y j , we define

�( f ) = {(i, j) : fi j 
= 0} and then the Newton polygon N (C; x, y) of the
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curve C = ( f = 0) is the convex envelop of �( f ) + R2
≥0. In particular, if

F ∈ GC , thenN (F; x, y) coincides withN (C; x, y) =N (d f ; x, y).
From now on we will always assume that we chose coordinates (x, y) such

that x = 0 is not tangent to the curve C of separatrices. In particular this implies

that the first side of the Newton polygonN (F; x, y) has slope greater or equal
to −1.
Let us recall the relationship between Newton polygon and infinitely near

points of a curve since it will be useful in the sequel. First we introduce some

notations.

Notation. Let C be a curve with only non-singular branches and πC : M →
(C2, 0) be the minimal reduction of singularities of C . Given an irreducible

component E of π−1
C (0) with v(E) = p, the morphism πE : ME → (C2, 0) is

a composition of p blowing-ups of points

(
C2, 0

) σ1←− (
X1, P1

)← · · · ← (
X p−1, Pp−1

) σp←− X p = ME .

If (x, y) are coordinates in (C2, 0) there is a change of coordinates (x, y) =
(x̃, ỹ + ε(x̃)), with ε(x) = a1x + · · · + ap−1x p−1, such that the blowing up

σ j is given by x j−1 = x j , y j−1 = x j y j , for j = 1, 2, . . . , p, where (x j , y j )

are coordinates centered at Pj and (x0, y0) = (x̃, ỹ). We say that (x̃, ỹ) are
coordinates in (C2, 0) adapted to E .

Consider now a plane curve γ ⊂ (C2, 0) with only non-singular irreducible

components and let πγ : X → (C2, 0) be its minimal reduction of singularities.

Take E an irreducible component of π−1
γ (0) with v(E) = p and choose (x, y)

coordinates adapted to E . Assume that γ = ( f (x, y) = 0) with f (x, y) =∑
i, j fi j x i y j ∈ C{x, y}. Since (x, y) are adapted to E , then there exists a side

L ofN (γ ; x, y) with slope −1/p. Let i + pj = k be the line which contains

L and put

I n p( f ; x, y) =
∑

i+pj=k

fi j x i y j .

Take now (xp, yp) coordinates in the first chart of Ered with πE(xp, yp) =
(xp, x p

p yp) and Ered = (xp = 0). Thus, a simple calculation shows that the

points of π∗
Eγ ∩ Ered are given by xp = 0 and

∑
i+pj=k fi j y j = 0. We conclude

that the points of π∗
Eγ ∩ Ered are determined by I n p( f ; x, y) and reciprocally.

Consequently, the following result which describes the Newton polygon of

a generic polar curve �F will be useful to determine the infinitely near points

of �F .
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Lemma 1 ([5]). Consider a foliationF ∈ F and let L be a side ofN (F; x, y)
with slope −1/μ where μ ∈ Q and μ ≥ 1. If i + μj = k is the equation of the
line which contains L, then

N (�F ; x, y) ⊂
{
(i, j) : i + μj ≥ k − μ

}
.

More precisely, if μ > 1 then�(B) ⊂ {i+μj ≥ k−μ} and�(A) ⊂ {i+μj >
k − μ}.
However the result above does not provide enough information to obtain a

description of the equisingularity type of �F . If we want to control the slopes

ofN (�F ; x, y) we need to know the “contribution” in the points of the sides of

N (F; x, y). Recall that a point (i, j) ∈ �(ω) is said to be a contribution of B
if Bi j 
= 0 in the expression (1), i.e., if (i, j) ∈ �(yB).

Thus to get a more precise description of the Newton polygon N (�F ; x, y)
we need to consider foliations in G∗

C since the contributions on the sides of the

Newton polygon of a foliation have a direct relationship with the values of the

Camacho-Sad indices at the infinitely near points of F as it is explained in the

next proposition.

Recall that, if S = (y = 0) is a non-singular separatrix of F , then the

Camacho-Sad index of F relative to S at the origin is given by

I0(F, S) = −Res0 a(x, 0)b(x, 0)
(2)

where the 1-form ω defining F is written as ω = ya(x, y)dx + b(x, y)dy (see

[2]). Then we have the following result:

Proposition 2 [5]. Consider a foliation F ∈ G and take a side L of N (F)

with slope−1/p, p ∈ N. If L has no contribution of B in its highest vertex, then
there is a corner in the reduction of singularities of F with Camacho-Sad index
equal to −1.
In particular, given a foliation F ∈ G∗

C such that the curve C has only non-

singular irreducible components, the result above implies that

if N (F; x, y) has s sides L j with slopes −1/p j , p j ∈ N, j =
1, . . . , s and p1 < p2 < · · · < ps , then the first s − 1 sides of

N (�F ; x, y) are obtained from the ones ofN (F; x, y) by a vertical
translation of one unit and the other ones have slope ≥ −1/ps .

These results describing the Newton polygon of �F are key in the proof of the

decomposition theorem:
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Theorem 1 (of decomposition [5]). Consider a foliation F ∈ G∗
C and �F a

generic polar curve of F . Given any C-ramification ρ : (C2, 0) → (C2, 0), the
curve ρ−1�F is a strict adjoint of ρ−1C.

By the results in section 2, we deduce that there is a unique decomposition

ρ−1�F = ∪Ẽ∈B(C̃)�̃
Ẽ , with C̃ = ρ−1C , satisfying the properties d1-d4, (D-i)

and (D-ii). Moreover, the curve �F can also be decomposed in unique way as

�F =
⋃

E∈B(C)

�E

satisfying properties D1-D5, (D-i) and (D-ii) in section 2.

Observe now that the property of being a strict adjoint of a curve C does not

determine the equisingularity type of the adjoint curve: for instance, if C is the

union of 3 lines, then there are infinite many possible equisingularity types for

its strict adjoint curves. However, the number of possible equisingularity types

is finite when considering polar curves.

Theorem 2. There exists a finite number of equisingularity types ℘(F) for a
foliation F ∈ G∗

C ′ and any curve C ′ with ε(C ′) = ε(C).

Proof. Let F be a foliation in G∗
C and consider a generic polar curve � = �F

of F . It is clear that the number of irreducible components of � is lower than or

equal to the multiplicity m0(�) = m0(C)− 1.

Consider a ramification ρ : (C2, 0) → (C2, 0) transversal to C and such that

ρ−1C and ρ−1� have non-singular irreducible components. Let us prove that

given any two irreducible components σ, σ ′ of ρ−1� the coincidence C(σ, σ ′) is
bounded in terms of the equisingularity data of ρ−1C . In particular, this implies

that there is only a finite number of possibilities for the characteristic exponents

of the branches of � and for the coincidence between two branches of � once

the equisingularity type of C is fixed (see appendix B). Hence, the number of

possible equisingularity types for � is finite. Moreover, since the coincidences

between the irreducible components of � and C are determined by ε(C), the

result follows straightforward.

Let p = supσ,σ ′ C(σ, σ ′) where σ, σ ′ vary within the irreducible components

of ρ−1�; observe that p ∈ N. If p ≤ supα,α′ C(α, α′) for α, α′ among the irre-

ducible components of ρ−1C we finish. Otherwise let σ0, σ
′
0 be two irreducible

components of ρ−1� such thatC(σ0, σ ′
0) = p. In particular, by property (D-ii) of

the decomposition of ρ−1�, we have thatμ = supα C(σ0, α) = supα C(σ ′
0, α) <

p where α varies within the irreducible components of ρ−1C .
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Take (x, y) coordinates in (C2, 0) such that the coincidence of the axis y = 0

with the curves σ0 and σ ′
0 is equal to p. This implies that the last side L �̃ of the

Newton polygonN (ρ−1�; x, y) has a slope equal to −1/p. Moreover, the last

side LF ofN (ρ∗F; x, y) has a slope equal to −1/μ.
Let i+μj = k be the line which contains LF and (l1, h1) be the highest vertex

of LF (note that h1 ≥ 3). The previous results concerning the behaviour of the

Newton polygonN (ρ−1�; x, y) imply that a point (i, j) on L �̃ must verify the

following conditions⎧⎪⎨
⎪⎩

0 ≤ j ≤ h1 − 1 by prop. 2;
i + μj ≥ k − μ by lemma 1;
i + k−l1−1

h1−1 j ≤ k − 1 since (l1, h1 − 1), (k − 1, 0) ∈ �(ρ−1�).

Thus there exists only a finite number of possible values for p. Moreover, from

the inequalities above we deduce that μ ≤ p < 2μ. The next picture illustrates

the situation: the side L �̃ must be contained in the grey region with slope equal

to −1/p, p ∈ N.
j

ik

N (ρ∗F)

(l1, h1)

LF

N (ρ−1Γ)

�
Among all the possible equisingularity types ℘(F) = ε(�F ∪ C) for a fixed

equisingularity type ε(C), there is one which can be considered as the “minimal”

one satisfying the decomposition theorem. Next sections will be devoted to

characterize foliations such that ℘(F) is the minimal one.

4 Non-singular branches

In this section we consider a curve C = ∪r
i=1Ci with only non-singular irre-

ducible components and we study under what conditions a generic polar curve

�F of a foliation F ∈ G∗
C is a perfect adjoint of C . Denote by G∗

C,λ the space of
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foliations F ∈ G∗
C such that λ(F) = λ. Let UC ⊂ Pr−1

C
be the set defined by

λ ∈ UC if there exists F ∈ G∗
C,λ with ℘(F) = χC .

Then we have

Theorem 3 (of genericity). The set UC is a non-empty Zariski open set. More-
over, for each F ∈ G∗

C,λ with λ ∈ UC we have that ℘(F) = χC.

Definition 3. A foliation F ∈ G∗
C is Zariski-general if λ(F) ∈ UC.

Denote by Lλ a logarithmic foliation in GC with λ = (λ1, . . . , λr ) ∈ Pr−1
C

.

We define the set

U log

C = {
λ ∈ Pr−1

C
: Lλ ∈ G∗

C and ℘(Lλ) = χC
}
.

It is clear that U log

C ⊂ UC . Let us prove the following result

Proposition 3. The set U log

C is a non-empty Zariski open set of Pr−1
C

.

Proof. We note first that the equisingularity type of a generic polar curve of a

logarithmic foliation Lλ ∈ FC does not depend on the equations of C = ∪r
i=1Ci

chosen to define Lλ (see prop. 3.8 of [5]). So we can assume that Lλ is defined

by ωλ = 0 with

ωλ =
r∏

i=1
(y − ηi (x))

r∑
i=1

λi
d(y − ηi (x))
(y − ηi (x))

, (3)

where the curveCi is defined by (y−ηi (x) = 0) andηi (x) =∑∞
j=1 a

i
j x j ∈ C{x}.

Moreover, for a direction [a : b] ∈ P1
C
, the polar curve �(Lλ; [a : b]) is given by

r∑
i=1

λi
∏
j 
=i

(y − η j (x))(−aη′i (x)+ b) = 0 (4)

and we denote by �λ
[a:b] a generic polar curve of Lλ.

The first condition over λ to belong to U log

C is that Lλ ∈ G∗
C but this is equiv-

alent to
∑r

i=1 kiλi 
= 0 where k ∈ Rε(C) and Rε(C) is a finite set of resonances

(see [5] for a detailed description of Rε(C)). Now, for each bifurcation divisor E
of G(C), we define UE

C to be the set of λ ∈ Pr−1
C

such that

π∗
E�

λ
[a:b] ∩ Ered � π∗

EC ∩ Ered
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has exactly bE − 1 different points, and we will prove that UE
C is a non-empty

Zariski open set. Using the criterion given in proposition 1, we obtain that U log

C
is equal to

U log

C =
{
λ ∈ Pr−1

C
: λ ∈

⋂
E∈B(C)

UE
C and

r∑
i=1

kiλi 
= 0 for k ∈ Rε(C)

}

which is a non-empty Zariski open set.

Take a bifurcation divisor E of G(C) with v(E) = p and let us prove that

each UE
C is a non-empty Zariski open set. Let πE : ME → (C2, 0) be the

reduction of πC to E . Since the equisingularity type of a generic polar curve of

a foliation does not depend on the coordinates (see [5], §2), we can assume that

the coordinates (x, y) are adapted to E . Take (xp, yp) coordinates in the first

chart of Ered ⊂ ME such that πE(xp, yp) = (xp, x p
p yp) and Ered = (xp = 0).

If the strict transform π∗
ELλ of Lλ is defined by ωE

λ = 0 with

ωE
λ = AE

λ

(
xp, yp

)
dxp + xpBE

λ

(
xp, yp

)
dyp,

then the singular points of π∗
ELλ in the first chart of Ered are given by xp = 0

and AE
λ (0, yp) = 0. Let us compute the polynomials AE

λ (0, y) and BE
λ (0, y).

We consider two situations: E being the first bifurcation divisor of G(C) or

not. If E is the first bifurcation divisor, then E belongs to the geodesic of all the

irreducible components of C . Let {RE
1 , . . . , RE

bE
} be the singular points of π∗

ELλ

in the first chart of Ered where RE
i = (0, cE

i ) in the coordinates (xp, yp).

Compute the strict transform of ωλ by πE using the expression in (3) and the

fact that {RE
1 , . . . , RE

bE
} = π∗

EC ∩ Ered , thus we get that

AE
λ (0, y) = p ·

( r∑
i=1

λi

) r∏
i=1

(
y − ai

p
) = p

( r∑
i=1

λi

) bE∏
l=1

(
y − cE

l
)rl

BE
λ (0, y) =

r∑
i=1

λi
∏
j 
=i

(
y − a j

p
)

where rl = mRE
l
(π∗

EC); note that also rl = �{ j : π∗
EC j ∩ Ered = {RE

l }}.
Let us now compute the strict transform of �λ

[a:b] by πE . By the equation of

�λ
[a:b] given in (4) and lemma 1, we obtain that the points of the set π∗

E�
λ
[a:b]∩Ered

are given by xp = 0 and{
BE
λ (0, yp) = 0, if p > 1;

aAr−1
λ (1, yp)+ bBr−1

λ (1, yp) = 0, if p = 1,
(5)
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where Ar−1
λ (x, y)dx + Br−1

λ (x, y)dy is the jet of order ν0(Lλ) = r − 1 of ωλ.

Hence we shall consider the two cases: p > 1 and p = 1 to describe the set

π∗
E�

λ
[a:b] ∩ Ered � π∗

EC ∩ Ered .

By theorem 1, we know that mRE
i
(π∗

E�
λ
[a:b]) = rl − 1 and consequently, the

polynomial
∏bE

l=1(y − cE
l )

rl−1 divides the polynomials in (5). In particular, the

points of π∗
E�

λ
[a:b] ∩ Ered � π∗

EC ∩ Ered are given by xp = 0 and HE
λ (yp) = 0

with

HE
λ (y) =

{
BE
λ (0, y)/

∏bE
l=1(y − cE

l )
rl−1, if p > 1;

(aAr−1
λ (1, y)+ bBr−1

λ (1, y))/
∏bE

l=1(y − cE
l )

rl−1, if p = 1.

The degree of HE
λ (y) as a polynomial in y is equal to bE − 1 and its coefficients

depend linearly on the λi . Let us study the two cases p > 1 and p = 1.

Case p > 1: Let DE(λ) be the discriminant of HE
λ (y) as a polynomial in y.

Thus, the polynomial HE
λ (y) has bE−1 different roots if and only if DE(λ) 
= 0.

Note that DE(λ) 
≡ 0 since DE(1, 0, . . . , 0) 
= 0. Thus, the set UE
C is equal to

the non-empty Zariski open set Pr−1
C
� {DE = 0}.

Case p = 1: The exceptional divisor E coincides with E1 and the coordinates

(x, y) are adapted to E1. From (3) we get that

Ar−1
λ (1, y) = −

r∑
i=1

λi ai
1

∏
j 
=i

(y − a j
1 )

Br−1
λ (1, y) = BE1

λ (0, y) =
r∑

i=1
λi
∏
j 
=i

(y − a j
1 ).

Thus the polynomial HE1

λ (y) can be written as follows

HE1

λ (y) = aAr−1
λ (1, y)+ bBr−1

λ (1, y)∏b
l=1(y − cE1

l )rl−1
= aA�

λ(y)+ bB�
λ(y).

Let us show that HE1

λ (y) has bE1
− 1 different roots. It is clear that

AE1

λ (0, y) = Ar−1
λ (1, y)+ yBr−1

λ (1, y) =
( r∑

i=1
λi

) bE1∏
l=1

(
y − cE1

l
)rl
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and then

A�
λ(y)+ yB�

λ(y) =
( r∑

i=1
λi

) bE1∏
l=1

(
y − cE1

l
)
.

In particular, we deduce that A�
λ(y) and B�

λ(y) do not have common roots. In

fact, the only possible common roots are the elements of the set {cE1

l }bE1
l=1, but

if cE1

l is a common root of both polynomials then it is also a root of HE1

λ (y) in
contradiction with theorem 1. Thus for a, b generic, the polynomial HE1

λ (y) has
bE1

− 1 different roots and hence UE1

C = Pr−1
C

.

We consider now the case of E being any bifurcation divisor. Put I =
{1, 2, . . . , r} and I E = {i ∈ I : E belongs to the geodesic of Ci }. We can write

ωλ = ω∗
λ + ω∗∗

λ where

ω∗
λ =

∏
i∈I E

(y − ηi (x))
∑

j∈I�I E
λ j

∏
l∈I�I E

l 
= j

(y − ηl(x))(−η′j (x)dx + dy),

ω∗∗
λ =

∏
i∈I�I E

(y − ηi (x))
∑
j∈I E

λ j
∏
l∈I E
l 
= j

(y − ηl(x))(−η′j (x)dx + dy).

If we compute the strict transform ωE
λ of ωλ by πE , we get that the polynomials

AE
λ (0, y) and BE

λ (0, y) are given by

AE
λ (0, y) = C ·

∏
i∈I E

(
y − ai

p
); BE

λ (0, y) = C ′ ·
∑
i∈I E

λi
∏
j∈I E
j 
=i

(
y − a j

p
)

where C,C ′ are non-zero constants. Thus the set UE
C is defined in a similar way

to the case of E being the first bifurcation divisor with p > 1.

We conclude that U log

C is a non-empty Zariski open set because it is a finite

intersection of non-empty Zariski open sets. �
The next lemma concerns the infinitely near points of generic polar curves

and, in particular, it allows to show the equality of the sets UC and U log

C .

Lemma 2. Consider two foliations F,Lλ ∈ G∗
C,λ. Let �F[a:b] and �

Lλ

[a:b] be
generic polar curves of F and Lλ respectively. Then, for each irreducible com-
ponent E of π−1

C (0), we have that

π∗
E�

F
[a:b] ∩ Ered = π∗

E�
Lλ

[a:b] ∩ Ered

Bull Braz Math Soc, Vol. 40, N. 2, 2009



196 NURIA CORRAL

and the multiplicities satisfy that mP(π
∗
E�

F
[a:b]) = mP(π

∗
E�

Lλ

[a:b]) at each point
P ∈ π∗

E�
F
[a:b] ∩ Ered . Moreover, if E 
= E1, the sets above does not depend on

[a : b], that is,
π∗

E�
F
[a:b] ∩ Ered = π∗

E�
F
[a′:b′] ∩ Ered = π∗

E�
Lλ

[a:b] ∩ Ered = π∗
E�

Lλ

[a′:b′] ∩ Ered

for all [a : b], [a′ : b′] generic.
Proof. Take an irreducible component E ofπ−1

C (0) and letπE : ME → (C2, 0)

be the reduction of πC to E . If E is not a bifurcation divisor, then π∗
E�

F
[a:b] ∩Ered

and π∗
E�

Lλ

[a:b] ∩ Ered coincide with π∗
EC ∩ Ered because �

F
[a:b] and �

Lλ

[a:b] are strict
adjoint curves of C ; in particular, the points of the set π∗

E�
F
[a:b] ∩ Ered does not

depend on [a : b]. Moreover, mP(π
∗
E�

F
[a:b]) = mP(π

∗
E�

Lλ

[a:b]) = mP(π
∗
EC) − 1

at each point P ∈ π∗
EC ∩ Ered by theorem 1.

Assume now that E is a bifurcation divisor with v(E) = p. In order to

simplify notations, we suppose that E is the first bifurcation divisor and that the

coordinates (x, y) are adapted to E ; otherwise we work in a similar way as in the

proof of proposition 3. Consider two 1-forms ωF = AF(x, y)dx + BF(x, y)dy
and ωL = AL(x, y)dx + BL(x, y)dy such that F and L = Lλ are defined by

ωF = 0 and ωL = 0 respectively.

Take (xp, yp) coordinates in the first chart of Ered such that πE(xp, yp) =
(xp, x p

p yp) and Ered = (xp = 0). Let ωE
F and ωE

L be the strict transforms of ωF
and ωL by πE with

ωE
F = AE

F
(
xp, yp

)
dxp + xpBE

F
(
xp, yp

)
dyp, (6)

ωE
L = AE

L
(
xp, yp

)
dxp + xpBE

L
(
xp, yp

)
dyp. (7)

Denote by {RE
1 , . . . , RE

bE
} the points of the set π∗

EC ∩ Ered and assume that

each point RE
l = (0, cE

l ) in the coordinates (xp, yp). The singular points of π
∗
EF

and π∗
EL in the first chart of Ered coincide with the points of π∗

EC ∩ Ered since

F and L belong to GC . Moreover, mRE
i
(π∗

EF) = mRE
i
(π∗

EL) = mRE
i
(π∗

EC).

Thus, up to divide ωE
F and ωE

L by a constant, we have that

AE
F (0, y) = AE

L(0, y) =
bE∏
l=1

(
y − cE

l
)rl

(8)

with rl = mRE
l
(π∗

EC). By theorem 1, we also have that mRE
l
(π∗

E�
F
[a:b]) =

mRE
l
(π∗

E�
L
[a:b]) = mRE

l
(π∗

EC) − 1. Thus we only need to show that the sets
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π∗
E�

F
[a:b] ∩ Ered�π∗

EC ∩ Ered and π∗
E�

L
[a:b] ∩ Ered�π∗

EC ∩ Ered coincide. Using

similar arguments as in the proof of proposition 3, we obtain that the points of

π∗
E�

F
[a:b] ∩ Ered � π∗

EC ∩ Ered are given by xp = 0 and HE
F (yp) = 0 where

HE
F (y) =

⎧⎨
⎩ BE

F (0, y)
/∏bE

l=1
(
y − cE

l
)rl−1

, if p > 1;

(aAr−1
F (1, y)+ bBr−1

F (1, y))
/∏bE1

l=1
(
y − cE1

l
)rl−1

, if p = 1,

and Ar−1
F (x, y)dx + Br−1

F (x, y)dy is the jet of order ν0(F) = r − 1 of ωF .
We obtain in a similar way a polynomial HE

L (y) for the foliation L. In order to

prove the lemma we only need to show that the polynomials HE
F (y) and HE

L (y)
coincide.

Taking into account that L is a logarithmic model of F , we get that the

Camacho-Sad indices IRE
l
(π∗

EF, Ered) and IRE
l
(π∗

EL, Ered) are equal for l =
1, . . . , bE . From the definition of the Camacho-Sad index given in (2) and

equations (6), (7) we obtain that

IRE
l

(
π∗

EF, Ered
) = Resy=cEl

−BE
F (0, y)

AE
F(0, y)

;

IRE
l

(
π∗

EL, Ered
) = Resy=cEl

−BE
L (0, y)

AE
L(0, y)

.

If p > 1, the computation of the indices gives that

IRE
l

(
π∗

EF, Ered
) = −HE

F
(
cE
l
)

∏bE
j=1
j 
=l

(
cE
l − cE

j
) ;

IRE
l

(
π∗

EL, Ered
) = −HE

L
(
cE
l
)

∏bE
j=1
j 
=l

(
cE
l − cE

j
)

and hence HE
F (cE

l ) = HE
L (cE

l ) for l = 1, 2, . . . , bE . Consequently, we deduce

that the polynomials HE
F (y) and HE

L (y) are equal.
Consider now the case p = 1 which corresponds to E = E1. We can write

HE1

F (y) = aA�
F(y)+ bB�

F (y); HE1

L (y) = aA�

L(y)+ bB�

L(y)

with A�
−(y), B

�
−(y) ∈ C[y]. Since πE1

is the blowing-up of the origin, it is easy

to see that

AE1

F (0, y) = Ar−1
F (1, y)+ yBr−1

F (1, y); BE1

F (0, y) = Br−1
F (1, y)
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and similar equalities hold for the foliation L. Thus, from equation (8), we

deduce that

A�
F(y)+ yB�

F(y) = A�

L(y)+ yB�

L(y) =
bE1∏
l=1

(y − cE1

l ).

Furthermore, the equality of the Camacho-Sad indices implies that B�
F (y) =

B�

L(y) and consequently A�
F(y) = A�

L(y). We conclude that HE1

F (y) = HE1

L (y)
and this finish the proof of the lemma. �

Proof of theorem 3. From the previous lemma we deduce that λ ∈ U log

C if and

only if, each foliationF ∈ G∗
C,λ is Zariski-general. This implies thatUC = U log

C
and the theorem follows straightforward. �

Remark 1. Note that there are non Zariski-general foliations, even hamiltonian

ones. For instance, take f = y(y − x2)(2y − (1 + √−3)x2) and ω = d f ; a
generic polar curve of ω = 0 is irreducible with one Puiseux pair equal to (5, 2)

andhence the reduction of singularities of f = 0 is not a reduction of singularities

of a generic polar curve. Moreover, in this example (1, 1, 1) 
∈ UC whereas for

g = y(y − x2)(y + x2) a generic polar curve of dg = 0 has two branches with

coincidence equal to two and hence (1, 1, 1) ∈ UC . This shows that the set UC
depends on the analytic type of the curve C .

Corollary 2. IfF ∈ G∗
C,λ is a Zariski-general foliation, then the curves C∪�F

and C ∪ �Lλ
are equisingular.

Observe that the reciprocal of the corollary above is not true. Consider F
defined by ω = 0 with ω = (4i xy2+2x6y)dx+ (y2−2i x2y− x4− x7)dy. The
foliationF belongs toG∗

C,λwithC = (y(y−x2)(y+x2) = 0) andλ = (1,−i, i).
The curves�F and�Lλ

are both irreducible with one Puiseux pair equal to (5, 2).

Hence C ∪ �F and C ∪ �Lλ
are equisingular. However, πC is not a reduction

of singularities of any of the generic polar curves and then λ 
∈ UC . We also

remark that F belongs to G∗
C although (1,−i, i) is resonant.

5 Kind equisingularity type

Let us consider a curve C ⊂ (C2, 0) which can have singular branches and take

ρ : (C2, 0) → (C2, 0) any C-ramification. The existence of a curve Z such that

ρ−1Z is a perfect adjoint curve of ρ−1C can not be assured in general. We look

for conditions over C that guarantee the existence of perfect adjoint curves of

ρ−1C and, in this case, we also define the equisingularity type χC .
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Definition 4. We say that a curve C has a kind equisingularity type if for each
dead arc of G(C) with bifurcation divisor Eb and terminal divisor Et we have
that m(Eb) = 2m(Et).

Let us explain what having a kind equisingularity type means in terms of the

equisingularity type of C . If Eb is a bifurcation divisor of G(C) belonging to

a dead arc with terminal divisor Et , then m(Eb) = nEbm(Et) by appendix A.

Hence, the curve C has a kind equisingularity type if, and only if, nEb = 2 for

each bifurcation divisor Eb of G(C) which belongs to a dead arc. In particular,

this implies that each dead arc in G(C) has only two vertices: the bifurcation

divisor and the terminal divisor. Observe that this property does not characterize

the fact of having a kind equisingularity type; it is enough to consider the curve

y3 − x5 = 0 which does not have kind equisingularity type. We have the

following result of characterization for kind equisingularity types:

Proposition 4. The following statements are equivalent:

• The equisingularity type ε(C) is kind.
• There is a germ of curve Z ⊂ (C2, 0) such that ρ−1Z is a perfect adjoint
of ρ−1C for any C-ramification ρ.

Moreover ε(C ∪ Z) does not depend on the choice of Z.

Proof. Let C ⊂ (C2, 0) be a plane curve and consider ρ : (C2, 0) → (C2, 0)

any C-ramification.

Assume first that there is a curve Z such that ρ−1Z is a perfect adjoint curve

of ρ−1C . Take any bifurcation divisor E of G(C) which belongs to a dead arc

with terminal divisor Et . Then E is a Puiseux divisor and m(E) = nEnE with

nE ≥ 2 and m(Et) = nE . Let us prove that nE = 2.

Let {Ẽ j }nE
j=1 be the divisors associated to E in G(ρ−1C). We have that

bẼ j = (bE − 1)nE for all j = 1, . . . , nE . (9)

Let us denote by b∗
Ẽ j the number of edges and arrows which leave from Ẽ j in

G(ρ−1C ∪ ρ−1Z). Taking into account that ρ−1Z is a perfect adjoint of ρ−1C ,

from corollary 1 we have that

b∗Ẽ j = 2bẼ j − 1 for all j = 1, . . . , nE . (10)

Moreover, using the relationship between G(C ∪ Z) and G(ρ−1C ∪ ρ−1Z), we

can compute b∗
Ẽ j in terms of b∗E , where b∗E is the number of edges and arrows
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which leave from E in G(C ∪ Z). In fact, note that E is also a Puiseux divisor

in G(C ∪ Z) and then there are two possibilities:

b∗Ẽ j =
{ (

b∗E − 1
)
nE , if E belong to a dead arc in G(C ∪ Z);(

b∗E − 1
)
nE + 1, otherwise.

The first situation is not possible, because the equality b∗
Ẽ j = (b∗E − 1)nE and

equations (9), (10) would imply that 2nE(bE − 1)− 1 = (b∗E − 1)nE and hence

nE = 1 against the hypothesis. Then the second situation holds so b∗
Ẽ j = (b∗E −

1)nE+1. Using again equations (9) and (10), we get that (2bE−b∗E−1)nE = 2.

Thus the only possible values are nE = 2 and b∗E = 2bE − 2.

Assume now that C has a kind equisingularity type. Let Z be a plane curve

such that πC gives a reduction of singularities of Z ∪ C and that G(C ∪ Z) is

obtained by adding to each divisor E of G(C) the following number of arrows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

bE − 1, if E is a bifurcation divisor which does not belong to a dead arc in

G(C);

bE − 2, if E is a bifurcation divisor which belongs to a dead arc in G(C);

1, if E is the terminal divisor of a dead arc in G(C);

0, in any other case.

Let us show that ρ−1Z is a perfect adjoint curve of ρ−1C . By the description of

the reduction of singularities of Z given above, it is clear that ρ−1Z is composed

only by non-singular branches. We first prove that πρ−1C gives a reduction of

singularities of ρ−1C ∪ ρ−1Z . Take any branch γ of Z and consider the divisor

E of G(C) such that π∗
Cγ ∩ E 
= ∅. Let us see that πρ−1C desingularizes ρ−1γ .

There are three possible situations:

• E is a contact divisor with associated divisors {Ẽ j }nE
j=1. Then ρ−1γ is

composed by nE non-singular branches and each of them cuts one and

only one divisor Ẽ j .

• E is aPuiseuxdivisorwith associated divisors {Ẽ j }nE
j=1. Thenρ

−1γ is com-

posed by nEnE non-singular branches and there are exactly nE branches

of ρ−1γ which cut each Ẽ j in nE different points (see appendix B).

• E is the extremity of a dead arc with bifurcation divisor Eb. Let {Ẽ j
b }

nEb
j=1

be the divisors associated to Eb. Then ρ−1γ is composed by nEb
= m(E)

branches and each of them cuts one and only one of the divisors Ẽ j
b .
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Moreover, πρ−1C is a reduction of singularities of ρ−1Z . In fact, consider two

branches γ and γ ′ of Z which cut the same divisor E and let σ and σ ′ be two
branches of ρ−1γ and ρ−1γ ′ respectively, such that they cut the same divisor

Ẽ j . Then σ and σ ′ cut Ẽ j in different points since otherwise the coincidence

between γ and γ ′ would be greater than v(E). A similar argument proves that

πρ−1C is the minimal reduction of singularities of ρ−1C ∪ ρ−1Z .
In order to assure that ρ−1Z is a perfect adjoint of ρ−1C we also need to check

if b∗
Ẽ
= 2bẼ − 1 for each bifurcation divisor Ẽ of G(ρ−1C). Let E be the

bifurcation divisor of G(C) which Ẽ is associated to. Let us consider the three

possible cases for E :

• E is a contact divisor in G(C) and we have that bẼ = bE and b∗E =
2bE − 1. But E is also a contact divisor in G(C ∪ Z) and hence b∗

Ẽ
= b∗E .

We deduce that b∗
Ẽ
= 2bẼ − 1.

• E is a Puiseux divisor belonging to a dead arc in G(C) and hence

bẼ = (bE − 1)nE and b∗E = 2bE − 2. In this case, E is a Puiseux divisor

without dead arc in G(C ∪ Z) and we have that b∗
Ẽ
= (b∗E −1)nE +1. We

deduce that b∗
Ẽ
= 2bẼ −nE +1 and the result follows since by hypothesis

nE = 2.

• E is a Puiseux divisorwithout a dead arc inG(C), thusbẼ = (bE−1)nE+1

and b∗E = 2bE − 1. The divisor E is also a Puiseux divisor without a dead

arc in G(C ∪ Z), so b∗
Ẽ
= (b∗E − 1)nE + 1. Hence we conclude that

b∗
Ẽ
= 2bẼ − 1.

It is clear that the equisingularity type ε(C ∪ Z) does not depend on the choice

of the curve Z . �
IfC is a curve with kind equisingularity type, we say that Z is a perfect adjoint

curve of C if ρ−1Z is a perfect adjoint curve of ρ−1C , for any C-ramification ρ.

We are interested in the description of the equisingularity type χC = ε(C ∪ Z).

A first result in this direction is the following lemma:

Lemma 3. Consider a curve C with kind equisingularity type and let Z be a
perfect adjoint curve of C with Z = ∪E∈B(C)Z E. Then C(ζ E , ξ E) = v(E) for
any two branches ζ E , ξ E of Z E .

Proof. The result follows from corollary 1 and equation (12). �
The next proposition gives a completely description of χC = ε(C ∪ Z) in

terms of ε(C):
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Proposition 5. Let C be a curve with kind equisingularity type and Z a perfect
adjoint curve of C. Then πC gives a reduction of singularities of Z ∪ C. More-
over, the branches of Z intersect an irreducible component E of the exceptional
divisor of πC as follows:

• If E is a bifurcation divisor of G(C), the number of branches of Z cutting
E equals to bE − 2 if E is in a dead arc and to bE − 1 otherwise.

• If E is a terminal divisor of a dead arc of G(C), there is exactly one branch
of Z through E.

• Otherwise, no branches of Z intersect E.

Remark that the fact that “πC gives a reduction of singularities of C ∪ Z” does
not imply that πρ−1C desingularizes ρ−1C ∪ ρ−1Z . However, the description of
the dual graph G(C ∪ Z) given in proposition 5 characterizes the fact of Z being

a perfect adjoint curve of C whenever C has a kind equisingularity type. In fact,

in proposition 4 we have already proved that, if C has a kind equisingularity

type, a curve Z such that G(C ∪ Z) is as described in proposition 5 is a perfect

adjoint curve of C and the proof of proposition 5 will show the reciprocal.

In order to prove proposition 5 we first describe the equisingularity type of

the irreducible components of Z in terms of the equisingularity data of C =
∪r

i=1Ci . Given an irreducible component Ci ofC we denote by {β i
0, β

i
1, . . . , β

i
gi }

its characteristic exponents, {(mi
j , ni

j )}gij=1 the Puiseux pairs of Ci and ni is the

multiplicitym0(Ci ) at the origin. We use the notations introduced in appendix A

for the dual graph G(C).

Lemma 4. Consider a curve C with kind equisingularity type and let Z be
perfect adjoint curve of C with decomposition Z = ∪E∈B(C)Z E. Then, for each
E ∈ B(C), we have that

(i) If E is a contact divisor, then the curve Z E has bE − 1 irreducible compo-
nents. Each irreducible component ζ of Z with characteristic exponents
{νζ

0 , ν
ζ

1 , . . . , ν
ζ

kE } given by

ν
ζ

0 = m0(ζ ) = nE , ν
ζ

l = nEβ
i
l /n

i for l = 1, 2, . . . , kE ,

for any i ∈ IE .

(ii) If E is a Puiseux divisor which belongs to a dead arc, the curve Z E has one
irreducible component ζ0 with characteristic exponents {νζ0

0 , ν
ζ0
1 , . . . , ν

ζ0
kE }

given by

ν
ζ0
0 = m0(ζ0) = nE , ν

ζ0
l = nEβ

i
l /n

i for l = 1, 2, . . . , kE ,
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and bE − 2 irreducible components such that each branch ζ ⊂ Z E � ζ0
has characteristic exponents {νζ

0 , ν
ζ

1 , . . . , ν
ζ

kE , ν
ζ

kE+1} given by

ν
ζ

0 = m0(ζ ) = nEnE , ν
ζ

l = nEnEβ
i
l /n

i for l = 1, 2, . . . , kE + 1,

for any i ∈ I ∗E .

(iii) If E is a bifurcation divisor which does not belong to a dead arc, then Z E

has bE − 1 irreducible components. Each irreducible component ζ of Z
with characteristic exponents {νζ

0 , ν
ζ

1 , . . . , ν
ζ

kE , ν
ζ

kE+1} given by

ν
ζ

0 = m0(ζ ) = nEnE , ν
ζ

l = nEnEβ
i
l /n

i for l = 1, 2, . . . , kE + 1,

for any i ∈ I ∗E .

Proof. Consider any C-ramification ρ : (C2, 0) → (C2, 0) and denote C̃ =
ρ−1C . Let {Ẽl}nE

l=1 be the divisors of G(C̃) associated to a divisor E of G(C).

By the results in section 2, we have that ρ−1Z E = ∪nE
j=1 Z̃ Ẽ j

where Z̃ =
∪Ẽ∈B(C̃) Z̃ Ẽ is the decomposition of Z̃ = ρ−1Z . Let us study the different

possibilities for E :

(i) E is a contact divisor: then v(E) = mE/nE with mE > mi
kE and nE =

ni
1 · · · ni

kE for any i ∈ IE . Consequently, the kE first Puiseux pairs of an irre-

ducible component ζ E of Z E coincide with the ones of Ci , for any i ∈ IE , since
C(ζ E ,Ci ) = v(E). Thus, a Puiseux series of ζ E is given by

ϕζ (x) =
∑
i<τ

ai xi + aτ xτ + · · · + aζ xv(E) + · · · ,

where τ = mi
kE /nE and aτ 
= 0. This implies that m0(ζ

E) = d · nE . Let us

show that m0(ζ
E) = nE .

We have that ζ̃ E = ρ−1ζ E ⊂ ∪nE
l=1 Z̃ Ẽl , and if we write ζ̃ E = ∪nE

l=1ζ̃
Ẽl with

ζ̃ Ẽl ⊂ Z̃ Ẽl , then m0(ζ̃
Ẽl ) ≥ 1. By corollary 1, each curve ζ̃ Ẽl has m0(ζ̃

Ẽl )

non-singular irreducible components and the coincidence between two of them

is equal to v(Ẽl). Moreover, the irreducible components of ζ̃ E are in bijective

correspondence with the Puiseux series of ζ E . Then, if aζ 
= 0, the coeffi-

cients of xv(E) in the different Puiseux series of ζ E are given by aζ ξ v(E)m0(ζ
E )

with ξm0(ζ
E ) = 1. But since

v(E) · m0

(
ζ E) = mE

nE
· m0

(
ζ E) = mE · d
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then aζ ξ v(E)m0(ζ
E ) takes at most nE different values and hence d = 1. If aζ =

0, then m0(ζ
E) = nE since otherwise one of the curves ζ̃ Ẽl has at least two

irreducible components with coincidence greater than v(Ẽl).

We deduce that each irreducible component ζ E of Z E has multiplicity equal to

nE . Since m0(Z E) = nE(bE − 1), then Z E has exactly bE − 1 irreducible com-

ponents with multiplicity nE . Moreover, the Puiseux pairs of each irreducible

component ζ of Z E coincide with the kE first Puiseux pairs of Ci for i ∈ IE and

the characteristic exponents {νζ

0 , ν
ζ

1 , . . . , ν
ζ

kE } of ζ are given by ν
ζ

l = nEβ
i
l /ni

for l = 0, 1, . . . , kE .

(ii) E is a Puiseux divisor which belongs to a dead arc: we have that v(E) =
mE/nEnE with nE = 2 because C has a kind equisingularity type and then

m0(Z E) = nE(nE(bE − 1)− 1) = nEnE(bE − 2)+ nE .

An irreducible component ζ E of Z E has at least the kE first Puiseux pairs equal

to the ones of Ci with i ∈ IE . Thus m0(ζ
E) ≥ nE . A Puiseux series ϕζ (x) of

ζ E is given by

ϕζ (x) =
∑

l<v(E)

al xl + aζ xv(E) + . . . ,

but since nEnE does not divide m0(Z E), then there is at least one irreducible

component ζ E
0 of Z E such that the coefficient aζ0 of xv(E) is zero. Moreover,

ζ E
0 must be unique because the existence of another irreducible component δE

0

of Z E with aδ0 = 0 would imply that C(ζ E
0 , δE

0 ) > v(E) in contradiction with

lemma 3. Let us show that m0(ζ
E
0 ) = nE . In fact, m0(ζ

E
0 ) = d · nE with d ∈ N.

Consider the curve ζ̃ E
0 = ρ−1ζ E

0 and write

ζ̃ E
0 =

nE⋃
l=1

ζ̃
Ẽl
0 with ζ̃

Ẽl
0 ⊂ Z̃ Ẽl .

By corollary 1, the number of irreducible components of Z̃ Ẽl is equal to its

multiplicity, hence m0(ζ̃
Ẽl
0 ) = 1 since otherwise the coincidence between two

branches of ζ̃
Ẽl
0 will be greater than v(Ẽl). Hence m0(ζ

E
0 ) = nE . Consequently,

we have that

m0(Z E � ζ E
0 ) = nEnE(bE − 2).

Consider now an irreducible component ζ E of Z E � ζ E
0 . The coefficient aζ in

ϕζ (x) must be non-zero and thus m0(ζ
E) ≥ nEnE . With similar arguments as

above, we show that m0(ζ
E) = nEnE .
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We have proved that Z E has one irreducible component ζ E
0 with multiplicity

nE and bE − 2 irreducible components with multiplicity nEnE . The charac-

teristic exponents {νζ0
0 , ν

ζ0
1 , . . . , ν

ζ0
kE } of ζ E

0 are given by ν
ζ0
l = nEβ

i
l /ni , for

l = 1, . . . , kE , and the characteristic exponents {νζ

0 , ν
ζ

1 , . . . , ν
ζ

kE+1} of a branch
ζ E of Z E � ζ E

0 are given by ν
ζ

l = nEnEβ
i
l /ni for l = 0, 1, . . . , kE + 1 and

i ∈ IE .

(iii) E is a Puiseux divisor which does not belong to a dead arc: we have that

v(E) = mE/nEnE with nE > 1. Take any irreducible component ζ E of Z E .

Let us see that m0(ζ
E) = nEnE . Consider

ϕζ (x) =
∑

l<v(E)

al xl + aζ xv(E) + · · ·

a Puiseux series of ζ E . The hypothesis over E imply that (mE , nE) is not a

Puiseux pair of C j if j ∈ IE � I ∗E , or equivalently, the coefficient of xv(E)

in the Puiseux series of C j is zero. In particular, we deduce that aζ 
= 0 for

all irreducible components ζ E of Z E since C(C j , ζ
E) = v(E). Consequently,

(mE , nE) is a Puiseux pair of ζ E and the kE + 1 Puiseux pairs of ζ E coincide

with the ones of Ci with i ∈ I ∗E . With similar arguments as in case (i) we prove

that m0(ζ
E) = nEnE .

From the fact that m0(Z E) = nEnE(bE − 1), we deduce that Z E has exactly

bE − 1 irreducible components, each of them with multiplicity nEnE . Hence,

the characteristic exponents {νζ

0 , ν
ζ

1 , . . . , ν
ζ

kE+1} of a branch ζ E of Z E are given

by ν
ζ

l = nEnEβ
i
l /ni for l = 1, . . . , kE + 1 and i ∈ I ∗E . �

The previous description of the equisingularity type of the irreducible compo-

nents of Z E will be useful in the proof of proposition 5.

Proof of proposition 5. Let C be a curve with kind equisingularity type and

let πC : M → (C2, 0) be its minimal reduction of singularities. Consider Z
a perfect adjoint curve of Z with decomposition Z = ∪E∈B(C)Z E satisfying

properties D1.-D5. in section 2. It is clear that the points of π∗
C Z ∩ π−1

C (0)

coincide with the union of the sets π∗
C Z E ∩ π−1

C (0) for E ∈ B(C). We deduce

that if Z cuts a divisor E , then E is either a bifurcation divisor or it belongs to a

dead arc, but since each dead arc of G(C) has only to vertices, then E is either

a bifurcation or a terminal divisor.

Assume first that E is a bifurcation divisor without a dead arc attached to it.

Then properties D3.-D5. of the decomposition of Z imply that each irreducible
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component ζ E of Z E cuts E , i.e., π∗
Eζ

E ∩ Ered 
= ∅. Moreover, the number of

points of π∗
E Z E ∩ Ered is equal to the number of irreducible components of Z E .

In fact, if π∗
Eζ

E ∩ Ered = π∗
Eξ

E ∩ Ered then C(ζ E , ξ E) > v(E) in contradiction

with lemma 3. The present hypothesis correspond to the cases (i) and (iii) of

lemma 4, hence the number of points of π∗
E Z E ∩ Ered is equal to bE − 1. It is

clear that πE is a reduction of singularities of each irreducible component ζ E of

Z E since each curve π∗
Eζ

E is an Ered-curvette by lemma 4.

Assume now that E is a bifurcation divisor which belong to a dead with

terminal divisor Et . By properties D3.-D5. of the decomposition of Z , we
have that either π∗

Eζ
E ∩ Ered 
= ∅ or π∗

Eζ
E ∩ π ′

E(Et) 
= ∅ for an irreducible

component ζ E of Z E . By lemma 4, there is an irreducible component ζ E
0 of

Z E with multiplicity nE , thus π∗
Eζ

E
0 ∩ π ′

E(Et) 
= ∅ since each curve γ with

π∗
Eγ ∩ Ered 
= ∅ must have multiplicity ≥ m(E) = nEnE . Moreover, ζ E

0 is

the only irreducible component of Z E which cuts Et because the existence of

another one ξ E
0 would imply that C(ζ E

0 , ξ E
0 ) ≥ v(Et) > v(E) in contradiction

with lemma 3. Finally, the number of points of π∗
E Z E ∩ Ered coincides with the

number of irreducible components of Z E � ζ E
0 which is bE − 2. We also have

that πE is a reduction of singularities of Z E since ζ E
0 is a π ′

E(Et)-curvette and

ζ E is an Ered-curvette for each ζ E ⊂ Z E � ζ E
0 by lemma 4.

The fact that πC gives a reduction of singularities of C ∪ Z follows using

property D2. and the result is proved. �

6 Proof of the main theorem

Consider a curve C = ∪r
i=1Ci which can have singular branches. Let UC be the

set of λ ∈ Pr−1
C

such that there exists F ∈ G∗
C,λ with ρ−1�F a perfect adjoint

curve of ρ−1C , for any C-ramification ρ. This section is devoted to prove the

following result:

Theorem 4. The set UC is a non-empty Zariski open set if and only if C has a
kind equisingularity type. Moreover, in this case ℘(F) = χC for any F ∈ G∗

C
with λ(F) ∈ UC.

Take any C-ramification ρ : (C2, 0) → (C2, 0) given by x = un, y = v.

Consider a foliation F ∈ G∗
C,λ, then the transform ρ∗F belongs to G∗

ρ−1C,λ∗

where λ∗ = λ(ρ∗F) ∈ Pm−1
C

and m = m0(C) is the multiplicity of C at the

origin. We denote by �F and �ρ∗F two generic polar curves of F and ρ∗F
respectively.
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It is clear that the foliation ρ∗F has a curve of separatrices with only non-

singular branches. Consequently, by the results of section 4, �ρ∗F is a perfect

adjoint curve of ρ−1C if and only if λ∗ ∈ Uρ−1C and in that case, ε(�ρ∗F ∪
ρ−1C) = χρ−1C . However, in general, ρ−1�F and �ρ∗F are not equisingular

(see [5]). Consider the following properties:

(A) : ε(�ρ∗F ∩ ρ−1C) = χρ−1C

(B) : ε(ρ−1�F ∩ ρ−1C) = χρ−1C

Proposition 6. Property (A) implies (B). Moreover, both properties are equiv-
alent if the curve C has at most two different tangent lines.

Observe that properties (A) and (B) above do not depend on the choice of the

C-ramification ρ.

Definition 5. We say that F is a Zariski-general foliation when property (B)

holds.

Notation. In this section, we denote by C̃ and �̃ the curves ρ−1C and ρ−1�F
respectively; the transform of the polar ρ−1�(F; [a : b]) will be denoted by

�̃[a:b] or �̃F when the explicit direction of polarity or the foliation are needed.

If πC̃ : M̃ → (C2, 0) is the minimal reduction of singularities of C̃ , we denote

by Ẽ an irreducible component of π−1
C̃

(0) and by πẼ : M̃Ẽ → (C2, 0) the

morphism reduction of πC̃ to Ẽ . The reader could refer to appendix B for a

detailed description of the ramification tools.

Let us state two lemmas concerning the infinitely near points of �̃ and �ρ∗F .

Lemma 5. Consider a foliation F ∈ G∗
C and let Ẽ1 be the irreducible compo-

nent of π−1
C̃

(0) with v(Ẽ1) = n. Then the set

π∗
Ẽ1
�̃[a:b] ∩ Ẽ1,red � π∗

Ẽ1
C̃ ∩ Ẽ1,red

has exactly bẼ1
− 1 points which depend on [a : b].

Proof. Observe that the divisor Ẽ1 of π−1
C̃

(0) is associated to the divisor E1

of π−1
C (0) and hence the coordinates (x, y) and (u, v) are adapted to E1 and

Ẽ1, respectively. Let ω = A(x, y)dx + B(x, y)dy be a 1-form defining F .

Then �[a:b] is defined by aA(x, y) + bB(x, y) = 0 and �̃[a:b] is given by

aA(un, v)+ bB(un, v) = 0. Take coordinates (ũ, ṽ) in the first chart of Ẽ1 such
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that πẼ1
(ũ, ṽ) = (ũ, ũn ṽ) and Ẽ1 = (ũ = 0). The strict transform π∗

Ẽ1
�̃[a:b] is

given by

π∗
Ẽ1
�̃[a:b] = {aAν(1, ṽ)+ bBν(1, ṽ)+ ũ(· · · ) = 0},

where ν = ν0(F) and Aν(x, y)dx + Bν(x, y)dy is the ν-jet of ω. Then the

points of π∗
Ẽ1
�̃[a:b] ∩ Ẽ1,red are defined by ũ = 0 and aAν(1, ṽ)+ bBν(1, ṽ) =

0. Taking into account that �̃[a:b] is a strict adjoint of C̃ and using similar

arguments as in the proof of proposition 3 case p = 1, we get that the points of

π∗
Ẽ1
�̃[a:b] ∩ Ẽ1,red � π∗

Ẽ1
C̃ ∩ Ẽ1,red are given by ũ = 0 and H Ẽ1(ṽ) = 0 with

H Ẽ1(v) = aA�
ν(v)+ bB�

ν(v),

where A�
ν(v) and B�

ν(v) do not have common roots. Thus the result follows

straightforward. �

Corollary 3. Given a foliation F ∈ G∗
C, the set π∗

E1
�
F
[a:b] ∩ E1,red � π∗

E1
C ∩

E1,red has exactly bE1
− 1 points which depend on [a : b].

Proof. The result follows from the fact that there is a bijection between the

points in E1,red and the ones in Ẽ1,red (see lemma 8). �

Lemma 6. Consider a foliation F ∈ G∗
C. Then we have that

π∗
Ẽ �̃ ∩ Ẽred = π∗

Ẽ�ρ∗F ∩ Ẽred

for each irreducible component Ẽ of π−1
C̃

(0) with v(Ẽ) > n. Moreover,
mP(π

∗
Ẽ
�̃) = mP(π

∗
Ẽ
�ρ∗F) for each P ∈ π∗

Ẽ
�̃ ∩ Ẽred .

Proof. Let ω = A(x, y)dx + B(x, y)dy be a 1-form defining F . Then the

curves �̃ and �ρ∗F are given by

�̃ = {aA(un, v)+ bB(un, v) = 0};
�ρ∗F = {aA(un, v)nun−1 + bB(un, v) = 0}

Take any irreducible component Ẽ of π−1
C̃

(0) with v(Ẽ) = p > n and assume

that (u, v) are coordinates adapted to Ẽ . By the results in section 3, it is enough
to prove that

I n p(aA∗ + bB̃; u, v) = I n p(a Ã + bB̃; u, v) = I n p(bB̃; u, v) (11)
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where Ã(u, v) = nun−1A(un, v), B̃(u, v) = B(un, v) and A∗(u, v) = A(un, v).

Let i + pj = k be the equation of the line which contains the side of

N (ρ∗F; u, v) with slope equal to −1/p. Then it is clear that �(ρ∗ω) ⊂
{(i, j) ∈ R2 : i+ pj ≥ k}. Moreover,�(a Ã+bB̃) ⊂ {(i, j) : i+ pj ≥ k− p}
by lemma1. Let us prove that�( Ã) and�(A∗) are contained in {(i, j) : i+pj >
k − p}. Consider two cases:

• If (i, j) ∈ �( Ã) then (i + 1, j) ∈ �(ρ∗ω) and hence i + pj ≥ k − 1 >

k − p.

• If (i, j) ∈ �(A∗) then (i + n, j) ∈ �(ρ∗ω) and consequently i + pj ≥
k − n > k − p.

Thus the equalities in (11) hold and the lemma is proved. �
Let us show now that being a Zariski-general foliation only depends on λ(F).

Proposition 7. A foliation F ∈ G∗
C,λ is Zariski-general if and only if Lλ is a

Zariski-general foliation.

Proof. Let �F and �L be generic polar curves of F and L = Lλ, respec-

tively, and put �̃F = ρ−1�F and �̃L = ρ−1�L. Let us prove that the infinitely
near points of �̃F and �̃L coincide at each irreducible component Ẽ of π−1

C̃
(0),

Ẽ 
= Ẽ1. In fact, by lemma 2, we have that π∗
Ẽ
�ρ∗F ∩ Ẽred = π∗

Ẽ
�ρ∗L ∩ Ẽred

for each irreducible component Ẽ of π−1
C̃

(0), and from lemma 6, we deduce that

π∗
Ẽ �̃F ∩ Ẽred = π∗

Ẽ�ρ∗F ∩ Ẽred; π∗
Ẽ �̃L ∩ Ẽred = π∗

Ẽ�ρ∗L ∩ Ẽred

if Ẽ 
= Ẽ1. Consequently, π
∗
Ẽ
�̃F ∩ Ẽred = π∗

Ẽ
�̃L ∩ Ẽred provided that Ẽ 
= Ẽ1.

Moreover, the sets π∗
Ẽ1
�̃F ∩ Ẽ1,red � π∗

Ẽ1
C̃ ∩ Ẽ1,red and π∗

Ẽ1
�̃L ∩ Ẽ1,red �

π∗
Ẽ1
C̃ ∩ Ẽ1,red have always bẼ1

− 1 different points by lemma 5. Then the result

follows straightforward applying the criterion given in proposition 1. �
Now we are ready to prove proposition 6:

Proof of proposition 6. LetF be a foliation inG∗
C . By the results of section 4,

it is clear that

ε(�ρ∗F ∩ ρ−1C) = χρ−1C if and only if, λ∗ = λ(ρ∗F) ∈ Uρ−1C =
⋂

Ẽ∈B(C̃)

U Ẽ
C̃ ,
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where B(C̃) is the set of bifurcation divisors of π−1
C̃

(0) and U Ẽ
C̃
⊂ Pm−1

C
are the

Zariski-open sets defined in section 4. From lemmas 5 and 6 we deduce that

ε(ρ−1�F ∩ ρ−1C) = χρ−1C if and only if λ∗ ∈
⋂

Ẽ∈B(C̃)�{Ẽ1}
U Ẽ

C̃ .

Consequently property (A) implies (B).

Assume now thatC has atmost two different tangent lines, i.e., bE1
= bẼ1

≤ 2.

If bẼ1
= 1, then Ẽ1 is not a bifurcation divisor. If bẼ1

= 2, we can see that

U Ẽ1

C̃
= Pm0(C)−1

C
(see its definition in section 4). It follows that (A) and (B) are

equivalent when C has at most two different tangent lines. �
The setUC is equal to the set of λ such that eachF ∈ G∗

C,λ is a Zariski-general

foliation. It is an open subset of Pr−1
C

but it could be empty. In fact, remark that

λ = (λ1, . . . , λr ) ∈ UC if and only if,

λ∗ = (

n1︷ ︸︸ ︷
λ1, . . . , λ1, . . . ,

nr︷ ︸︸ ︷
λr , . . . , λr ) ∈

⋂
Ẽ∈B(C̃)

Ẽ 
=Ẽ1

U Ẽ
C̃ ⊂ Pm0(C)−1

C

where ni = m0(Ci ) for i = 1, . . . , r . The theorem 4 characterizes the equisin-

gularity types ε(C) such that UC 
= ∅.
Proof of theorem 4. Let us see that, for each bifurcation divisor E of G(C),

we can construct an open set UE
C ⊂ Pr−1

C
such that

λ ∈ UC if and only if λ ∈
⋂

E∈B(C)

UE
C and

r∑
i=1

kiλi 
= 0 for k ∈ Rε(C).

Moreover, we prove that a necessary and sufficient condition to assure that each

UE
C is non-empty is that C has a kind equisingularity type.

Consider a logarithmic foliation Lλ ∈ G∗
C . Denote by �λ a generic polar curve

of Lλ and put �̃λ = ρ−1�λ. Take a bifurcation divisor E of G(C) and let Ẽ be

any bifurcation divisor of G(C̃) associated to E . Let us determine the conditions

over λ which are equivalent to the fact that the set π∗
Ẽ
�̃λ ∩ Ẽred � π∗

Ẽ
C̃ ∩ Ẽred

has exactly bẼ − 1 different points. By lemma 5, we only need to check this

condition for Ẽ 
= Ẽ1 and hence, by lemma 6, we have that

π∗
Ẽ �̃λ ∩ Ẽred � π∗

Ẽ C̃ ∩ Ẽred = π∗
Ẽ�λ∗ ∩ Ẽred � π∗

Ẽ C̃ ∩ Ẽred
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where �λ∗ is a generic polar curve of Lλ∗ = ρ∗Lλ.

Up to a coordinate change, we can assume that (u, v) are coordinates adapted
to Ẽ . Let πẼ : M̃Ẽ → (C2, 0) be the morphism reduction of πC̃ to Ẽ and take

coordinates (u p, vp) in the first chart of Ẽred such that Ẽred = (u p = 0) and

πẼ(u p, vp) = (u p, u p
pvp). Consider the 1-form

ω Ẽ
λ∗ = AẼ

λ∗(u p, vp)du p + u pB Ẽ
λ∗(u p, vp)dvp

such that the strict transform π∗
Ẽ
Lλ∗ is defined by ω Ẽ

λ∗ = 0. By the results of

section 4, we know that the singular points of π∗
Ẽ
Lλ∗ in the first chart of Ẽred

are given by u p = 0 and AẼ
λ∗(0, vp) = 0 and the points of π∗

Ẽ
�λ∗ ∩ Ẽred are

given by u p = 0 and BẼ
λ∗(0, vp) = 0. Denote by {RẼ

1 , . . . , RẼ
bẼ
} the points of the

set π∗
Ẽ
C̃ ∩ Ẽred with RẼ

i = (0, cẼ
i ) in the coordinates (u p, vp). Note that these

points are also the singular points of π∗
Ẽ
Lλ∗ in the first chart of Ẽred . We deduce

that, up to divide by a constant, we have that

AẼ
λ∗(0, v) =

bẼ∏
i=1

(v − cẼ
i )

ri ,

where ri = mRẼ
i
(π∗

Ẽ
C̃). We put AẼ(v) = AẼ

λ∗(0, v). Moreover, the points of

the set π∗
Ẽ
�λ∗ ∩ Ẽred � π∗

Ẽ
C̃ ∩ Ẽred are given by u p = 0 and H Ẽ

λ∗(vp) = 0 with

H Ẽ
λ∗(v) =

BẼ
λ∗(0, v)∏bẼ

i=1(v − cẼ
i )

ri−1
.

The polynomial H Ẽ
λ∗(v) has degree bẼ − 1 as a polynomial in v and its coef-

ficients depend linearly on λ; we denote H Ẽ
λ (v) = H Ẽ

λ∗(v). Let DẼ(λ) be the

discriminant of H Ẽ
λ (v) as a polynomial in v and we define UE

C to be the set of

λ such that DẼ(λ) 
= 0 for all divisor Ẽ ∈ B(C̃) associated to E . Let us show
that each set UE

C is a non-empty Zariski open set if and only if C has a kind

equisingularity type.

First we compute the polynomials above in terms of the Puiseux series of

the branches of C . The expression of the polynomials AẼ(v) and BẼ
λ∗(0, v)

for a logarithmic foliation with only non-singular separatrices in terms of the

parameterizations of its separatrices was described in the proof of proposition 3.

To compute these polynomials in our situation we must take into account that

the curve C̃ is obtained by ramification from C = ∪r
i=1Ci . Consider a Puiseux
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series yi (x) =∑
s≥ni ai

s xs/ni for each curve Ci where ni = m0(Ci ). Thus all the

Puiseux series of Ci are given by

yij (x) =
∑
s≥ni

ai
s(εi )

s j xs/ni , for j = 1, 2, . . . , ni ,

where εi is a primitive ni -root of the unity. Put vi
j (u) = yij (un). Then ρ−1Ci =

{σ i
j }nij=1 where σ i

j = (v − vi
j (u) = 0).

Let {Ẽ i }nE
i=1 be the vertices of G(C̃) associated to E and assume that Ẽ = Ẽ l

for a certain l ∈ {1, . . . , nE}. By the results of appendix B, we know that the

choice of a vertex Ẽ l is equivalent to the choice of a nE -th root ξl of the unity.

Given any i ∈ IE , we denote eiE = ni/nE and we consider {ζilt}e
i
E

t=1 the eiE -th
roots of ξl . Thus, if we denote by {σ i

lt}e
i
E

t=1 the branches of ρ
−1Ci such that Ẽl

belongs to their geodesics, then σ i
lt = (v − ηi

lt(u) = 0) where

ηi
lt(u) =

∑
s≥ni

ai
s(ζilt)

susn/ni , for t = 1, . . . , eiE .

The use of the expressions above to compute the polynomials AẼl
(v) and

BẼl
λ (v) = BẼl

λ∗ (0, v) gives that

AẼl
(v) =

∏
i∈IE

eiE∏
t=1

(
v − ai

niv(E)
(ζilt )

niv(E)
)

(∗1)

BẼl
λ (v) =

∑
i∈IE

λi
∏
j∈IE
j 
=i

e j
E∏

t=1

(
v − a j

n jv(E)
ζ
n jv(E)
jlt

) eiE∑
t=1

eiE∏
k=1
k 
=t

(
v − ai

niv(E)
ζ
niv(E)
ilk

)
(∗2)

Since both polynomials only depend on the invariants associated to E , we
consider the three possibilities for a divisor E of G(C) in order to obtain a more

precisely expression of them:

(i) E is a contact divisor: we have that v(E) = mE/nE and nE = 1. Then

niv(E) = eiEmE for each i ∈ IE and consequently (ζilt)
niv(E) = ξ

mE
l for each

t ∈ {1, . . . , eiE}. Thus we have that
AẼl

(v) =
∏
i∈IE

(
v − ai

niv(E)
ξ
mE
l
)eiE

B Ẽl

λ (v) =
∏
j∈IE

(
v − a j

n jv(E)
ξ
mE
l
)e j

E−1∑
i∈IE

λi eiE
∏
j∈IE
j 
=i

(
v − a j

n jv(E)
ξ
mE
l
)
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Denote by I s
Ẽl =

{
i ∈ IE : ai

niv(E)
ξ
mE
l = cẼl

s
}
for s = 1, . . . , bẼl . Thus rs =∑

i∈I s
Ẽl
eiE and we have that

H Ẽl

λ (v) =
bẼl∑
i=1

( ∑
s∈I i

Ẽl

λsesE

) bẼl∏
j=1
j 
=i

(
v − cẼl

j
)

which is a polynomial of degree bẼl − 1 in v. Observe that bẼl = bE . The

discriminant DẼl
(λ) of H Ẽl

λ (v) as a polynomial in v is a non-zero polynomial.

Hence, the setUE
C = {λ : DẼl

(λ) 
= 0 for l = 1, . . . , nE} is a non-empty Zariski

open set.

(ii) E is a Puiseux divisor with a dead arc: we have that v(E) = mE/nEnE
with nE > 1 and (mi

kE+1, n
i
kE+1) = (mE , nE) for each i ∈ IE . It follows

that niv(E) = eiEmE/nE and the set {ζ niv(E)
ilt }eiEt=1 has nE different values which

coincide with the nE -th roots {θlt}nE
t=1 of ξ

mE
l . Moreover, we have that

nE∏
s=1

(
v − ai

niv(E)
θls
) = vnE − αi

Ẽl with αi
Ẽl =

(
ai
niv(E)

)nE
ξ
mE
l

and
nE∑
t=1

nE∏
p=1
p 
=t

(
v − ai

niv(E)
θlp
) = nEv

nE−1.

Thus the expressions (∗1) and (∗2) become

AẼl
(v) =

∏
i∈IE

(
vnE − αi

Ẽl

)eiE/nE

B Ẽl

λ (v) = nEv
nE−1

∏
i∈IE

(
vnE − αi

Ẽl

) eiE
nE

−1∑
i∈IE

λi
eiE
nE

∏
j∈IE
j 
=i

(
vnE − α

j
Ẽl

)

In this case we have that bẼl = nE(bE − 1) and hence there are exactly bE − 1

different values {φ Ẽl
s }bE−1

s=1 in the set {αi
Ẽl
}i∈IE . Denote I sẼl = {i ∈ IE : αi

Ẽl = φ Ẽl
s }

and rs =∑
i∈I s

Ẽl
eiE/nE . Then we have that

AẼl
(v) =

bE−1∏
s=1

(
vnE − φ Ẽl

s
)rs
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and

H Ẽl

λ (v) = vnE−1
bE−1∑
s=1

(∑
i∈I s

Ẽl

λi eiE

) bE−1∏
j=1
j 
=s

(
vnE − φ Ẽl

j
)
.

In this situation DẼl
(λ) 
≡ 0 if and only if nE = 2. Hence, we conclude that UE

C
is a non-empty Zariski open set if and only if C has a kind equisingularity type.

(iii) E is a Puiseux divisor without a dead arc: we have that v(E) = mE/

nEnE with nE > 1 and bẼl = 1 + nE(bE − 1). We know that (mE , nE) =
(mi

kE+1, n
i
kE+1) for each i ∈ I ∗E and a j

niv(E)
= 0 for i ∈ IE � I ∗E (see ap-

pendix A). Denote by r0 = �(IE � I ∗E). With similar arguments and notations

as in case (ii), we get that

AẼl
(v) = vr0

∏
i∈I ∗E

(
vnE − αi

Ẽl

)eiE/nE

B Ẽl

λ (v) = vr0−1
∏
i∈I ∗E

(
vnE − αi

Ẽl

) eiE
nE

−1
{
vnE

∑
i∈I ∗E

λi eiE
∏
j∈I ∗E
j 
=i

(
vnE − α

j
Ẽl

)

+
∏
j∈I ∗E

(
vnE − α

j
Ẽl

)( ∑
i∈IE�I ∗E

λi

)}

Let {φ Ẽl
s }bE−1

s=1 be the bE − 1 different values in the set {α Ẽl
i }i∈I ∗E . Denote I s

Ẽl =
{i ∈ I ∗E : αi

Ẽl = φ Ẽl
s } and rs =∑

i∈I s
Ẽl
eiE/nE . Thus we have that

AẼl
(v) = vr0

bE−1∏
i=1

(
vnE − φ Ẽl

s
)ri

H Ẽl

λ (v) = vnE

bE−1∑
s=1

(∑
i∈I s

Ẽl

λi eiE

) bE−1∏
j=1
j 
=s

(
vnE − φ Ẽl

j
)

+
( ∑

j∈IE�I ∗E

λ j

) bE−1∏
s=1

(
vnE − φ Ẽl

s
)
.

It is clear that in this case DẼl
(λ) 
≡ 0 for each l = 1, . . . , nE . Consequently,

UE
C is a non-empty Zariski open set.

We conclude that a necessary and sufficient condition to assure that all the

setsUE
C are non-empty Zariski open sets is that C has a kind equisingularity type

and the result follows straightforward. �
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With similar arguments to the ones in the proof above we can show that:

Corollary 4. The following statements are equivalent:

• The curve C has a kind equisingularity type;

• There exists a foliation F ∈ G∗
C such that ρ∗F is Zariski-general.

In particular, if F ∈ G∗
C,λ with λ ∈ UC , the equisingularity type of a generic

polar curve �F is completely determined in terms of C and πC gives a reduc-

tion of singularities of C ∪ �F . Moreover, we get that the irreducible compo-

nents of �F cut the exceptional divisor π−1
C (0) as described in proposition 5;

we get a more specific description than the one of Lê-Michel-Weber in [12].

Observe that the property “πC gives a reduction of singularities of �F ∪ C”

does not imply that F is a Zariski-general foliation. Moreover, this property

does not determine the equisingularity type of �F ∪ C even if we fix λ.

Example 1. Consider the foliations F1, F2 and F3 given by ωi = 0 with

ω1 = −11x10dx + 5y4dy;
ω2 = 11

(− x10 + y2x6
)
dx + 5(y4 − x7y)dy;

ω3 = 11
(− x10 + yx8

)
dx + 5

(
y4 − x9

)
dy

respectively. All the foliations have the same separatrix C = (y5 − x11 = 0)

which does not have a kind type of equisingularity, therefore F1, F2 and F3

cannot be Zariski-general foliations. The generic polar curves �F1
, �F2

and �F3

are not equisingular but the minimal reduction of singularities of C is also a

reduction of singularities of the curves �F1
, �F2

and �F3
.

E1 E2

E3

E4

E5

E6

E7

G(C ∪ ΓF1) G(C ∪ ΓF2) G(C ∪ ΓF3)
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Appendix A. Equisingularity data: the dual graph

Let us recall the construction of the dual graph which is one of the different ways

to represent the equisingularity data of a plane curve (see [1] for more details).

Let C ⊂ (C2, 0) be a plane curve and πC : M → (C2, 0) be its minimal

reduction of singularities. The dual graph G(C) is constructed as follows: each

irreducible component E of π−1
C (0) is represented by a vertex which we also

call E (we identify a divisor and its associated vertex in the dual graph). Two

vertices are joined by an edge if and only if the associated divisors intersect.

Each irreducible component of C is represented by an arrow joined to the only

divisor which meets the strict transform of C by πC . If we give a weight to

each vertex E of G(C) equal to the self-intersection of the divisor E ⊂ M ,

this weighted dual graph is equivalent to the equisingularity data of C .

Wedenote by E1 the irreducible component ofπ−1
C (0)obtainedby the blowing-

up of the origin. Thus the first divisor E1 gives an orientation to the graph G(C).

The geodesic of a divisor E is the path which joins the first divisor E1 with the

divisor E . The geodesic of a curve is the geodesic of the divisor that meets

the transform strict of the curve. In this way, there is a partial order in the set

of vertices of G(C) given by E < E ′ if and only if the geodesic of E ′ goes
through E .
Let us introduce some notations concerning the dual graph of a curve. Given

a vertex E of G(C) we define the number bE as follows: bE + 1 is the valence

of E if E 
= E1 and bE1
is the valence of E1. Observe that bE1

is the number of

different lines in the tangent cone of C . We say that E is a bifurcation divisor
if bE ≥ 2 and E is a terminal divisor if bE = 0. A dead arc in G(C) is an arc

which joins a bifurcation divisor with a terminal one without passing through

other bifurcation divisors. Observe that a bifurcation divisor can belong only to

one dead arc.

A curvette γ̃ of a divisor E is a non-singular curve transversal to E at a non-

singular point of π−1
C (0). The projection γ = πC(γ̃ ) is a germ of plane curve in

(C2, 0) and we say that γ is an E-curvette. We denote by m(E) the multiplicity

at the origin of any E-curvette. Take γ̃ , γ̃ ′ two curvettes of E which intersect E
in two different points, we denote by v(E) the coincidence C(πC(γ̃ ), πC(γ̃

′));
then v(E) < v(E ′) if E < E ′. Recall that the coincidence C(γ, δ) between two
irreducible curves γ and δ is defined as

C(γ, δ) = sup
1≤i≤m0(γ )
1≤ j≤m0(δ)

{
ordx(yγ

i (x)− yδ
j (x))

}

where {yγ

i (x)}m0(γ )

i=1 , {yδ
j (x)}m0(δ)

j=1 are the Puiseux series of γ and δ respectively.
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Given any irreducible component E of the exceptional divisor π−1
C (0), we

denote by πE : ME → (C2, 0) the reduction of πC to E , that is, the morphism

which satisfies that

• there is a factorization πC = π ′
E ◦ πE where π ′

E and πE are composition

of punctual blow-ups;

• the divisor E is the strict transform by π ′
E of an irreducible component

Ered of π−1
E (0) and Ered ⊂ ME is the only component of π−1

E (0) with

self-intersection equal to −1.
It is clear that πE is obtained from πC by blowing-down successively the di-

visors which are different from E and whose self-intersection is equal to −1.
Take any curvette γ̃E of E , then π ′

E(γ̃E) is also a curvette of Ered ⊂ ME . Let

{βE
0 , βE

1 , . . . , βE
g(E)} be the characteristic exponents of γE = πC(γ̃E). It is clear

that m(E) = βE
0 = m0(γE) and there are two possibilities for the value v(E):

1. either πE is the minimal reduction of singularities of γE and then v(E) =
βE
g(E)/β

E
0 . We say that E is a Puiseux divisor for πC .

2. or πE is obtained by blowing-up q ≥ 1 times after the minimal reduction

of singularities of γE and in this situation v(E) = (βE
g(E)+ qβE

0 )/βE
0 . We

say that E is a contact divisor for πC .

Observe that m(E) = m(Ered) and v(E) = v(Ered). Moreover, E can belong

to a dead arc only if it is a Puiseux divisor.

Consider a bifurcation divisor E of G(C) and let {(mE
1 , nE

1 ), (mE
2 , nE

2 ), . . . ,

(mE
g(E), nE

g(E))} be the Puiseux pairs of an E-curvette γE , we denote

nE =
{

ng(E), if E is a Puiseux divisor;

1, otherwise,

and nE = m(E)/nE . Observe that, if E belongs to a dead arc with terminal

divisor F , then m(F) = nE . We define kE to be

kE =
{

g(E)− 1, if E is a Puiseux divisor;

g(E), if E is a contact divisor.

Let us explain these notations in terms of the equisingularity data of the

curve C = ∪r
i=1Ci . Denote by {(mi

l , ni
l )}gil=1 the Puiseux pairs of Ci and by

{β i
0, β

i
1, . . . , β

i
gi } its characteristic exponents. Denote I = {1, 2, . . . , r} and let

IE be the set of indices i ∈ I such that E belong to the geodesic of Ci . Take

i ∈ IE . There are several possibilities for the value of v(E) depending on E :
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(i) If E is a contact divisor, then there exists j ∈ IE such that v(E) =
C(Ci ,C j ).

(ii) If E is a Puiseux divisor which belongs to a dead arc, then v(E) =
β i
kE+1/β

i
0.

(iii) If E is a Puiseux divisor which does not belong to a dead arc, we de-

note by I ∗E the set of indices i ∈ IE such that v(E) = β i
kE+1/β

i
0. Then

C(Ci ,C j ) = v(E) for i ∈ I ∗E and j ∈ IE � I ∗E . Moreover, C(C j ,Cl) >

v(E) if j, l ∈ IE � I ∗E .

Consequently, we have that (mi
l , ni

l ) = (mE
l , nE

l ), for l = 1, . . . , kE , and nE =
ni
1 · · · ni

kE for any i ∈ IE .

Appendix B. Ramification

Consider a plane curve C = ∪r
i=1Ci ⊂ (C2, 0). Let ρ : (C2, 0) → (C2, 0)

be any C-ramification, that is, ρ is transversal to C and C̃ = ρ−1C has only

non-singular irreducible components. Assume that the ramification is given by

x = un, y = v.

Denote by {(mi
l , ni

l )}gil=1 the Puiseux pairs of Ci and by {β i
0, β

i
1, . . . , β

i
gi } the

characteristic exponents of Ci . If ni = m0(Ci ), then it is necessary that n ≡ 0

mod (n1, n2, . . . , nr ) in order to have that C̃ has only non-singular irreducible

components. Moreover, the number of irreducible components of C̃ is equal

to m0(C) = n1 + · · · + nr . More precisely, each curve ρ−1Ci has exactly ni

irreducible components. In fact, let yi (x) = ∑
l≥ni ai

l xl/ni be a Puiseux series

of Ci , thus all its Puiseux series are given by

yij (x) =
∑
l≥ni

ai
l ε

l j
i xl/ni for j = 1, 2, . . . , ni ,

where εi is a primitive ni -root of the unity. Then

fi (x, y) =
ni∏
l=1

(
y − yil (x)

)
is a reduced equation of Ci . If we put v

i
j (u) = yij (un), then vi

j (u) ∈ C{u} since
n/ni ∈ N. It is clear that the curve σ i

j = (v − vi
j (u) = 0) is non-singular and it

is one of the irreducible components of ρ−1Ci . Then

gi (u, v) = fi (un, v) =
ni∏
l=1

(
v − vi

l (u)
)
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is an equation of ρ−1Ci . We conclude that the irreducible components {σ i
j }nij=1

of ρ−1Ci are in bijection with the Puiseux series of Ci .

It is well-known that the equisingularity type of a curve C is determined by the

characteristic exponents {β i
0, β

i
1, . . . , β

i
gi }ri=1 of its irreducible components and

the intersection multiplicities {(Ci ,C j )0}i 
= j . Let us show that we can obtain all

this information from ρ−1C . The next lemma states the relationship between the

intersection multiplicity (γ, δ)0 and the coincidence C(γ, δ) (see Zariski [17],

prop. 6.1 or Merle [13], prop. 2.4):

Lemma 7. Let γ and δ be two germs of irreducible plane curves of (C2, 0).
If {β0, β1, . . . , βg} are the characteristic exponents of γ and α is a rational
number such that βq ≤ α < βq+1 (βg+1 = ∞), then the following statements
are equivalent:

1. C(γ, δ) = α

m0(γ )

2.
(γ, δ)0

m0(δ)
= β̄q

n1 · · · nq−1
+ α − βq

n1 · · · nq

where {(mi , ni )}gi=1 are the Puiseux pairs of γ (n0 = 1) and {β̄0, β̄1, . . . , β̄q} is
a minimal system of generators of the semigroup S(γ ) of γ .

In particular, the equisingularity type of C is also determined by the charac-

teristic exponents of each Ci and the coincidences {C(Ci ,C j )}i 
= j . Let us show

that these data could be obtained from ρ−1C . Given an irreducible component

σ of ρ−1C , we take an equation (v − vσ (u) = 0) of σ with

vσ (u) =
∑
l≥1

aσ
l u

l ∈ C{u}.

Given two irreducible components σ, σ ′ of ρ−1C , we say that they are equivalent

σ ∼ σ ′ if and only if (aσ
j )

n = (aσ ′
j )n for all j ∈ N. Denote by [σ ] the equivalence

classes of a curve σ . Thus the number of irreducible components r of C is equal

to the number of equivalence classes for the irreducible components of ρ−1C .

Let [σ 1], . . . , [σ r ] be these equivalence classes. Up to reorder, we can assume

that [σ i ] corresponds to ρ−1Ci , for i = 1, . . . , r . Thus the multiplicity ni of

ρ−1Ci is equal to the number of elements in the equivalence class [σ i ]. We put

ρ−1Ci = {σ i
l }nil=1. Hence β i

0 = ni and the other characteristic exponents of Ci
are obtained from the computation of the coincidences among the curves in the

equivalence class [σ i ] since{C(σ i
j , σ

i
l ) : j 
= l

} = {
β i
1, . . . , β

i
gi

}
.
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Thus we only need to compute the coincidences between any two branches Ci
and C j . But they are obtained from the following equality

C(Ci ,C j ) = 1

n
sup

1≤l≤ni
1≤s≤n j

{C(σ i
l , σ

j
s )
}
, (12)

which is true for any two irreducible curves. Hence we conclude that the equi-

singularity data of C can be recovered from ρ−1C .

Ramification of the dual graph. Let πC : M → (C2, 0) be the minimal

reduction of singularities of C and denote by πC̃ : M̃ → (C2, 0) the minimal

reduction of singularities of C̃ = ρ−1C . Let us explain the relationship between

G(C) and G(C̃).

Let Ki be the geodesic inG(C) of a branchCi ofC and let K̃i be the sub-graph

of G(C̃) corresponding to the geodesics of the irreducible components {σ i
l }nil=1

of ρ−1Ci . Let us see how to construct K̃i from Ki . Observe first that, if Ẽ and

Ẽ ′ are two consecutive vertices of G(C̃) with Ẽ < Ẽ ′, then v(Ẽ ′) = v(Ẽ)+ 1.

Thus, G(C̃) is completely determined once we know the bifurcation divisors,

the order relations among them and the number of edges which leave from each

bifurcation divisor. Denote by B(K̃i ) and B(Ki ) the bifurcation vertices of K̃i
and Ki respectively. We say that a vertex Ẽ of B(K̃i ) is associated to a vertex E
of B(Ki ) if v(Ẽ) = nv(E).

Let E be a vertex of B(Ki ). Assume first that E is the first bifurcation divisor

of B(Ki ) and take E ′ its consecutive vertex in B(Ki ). Then E has only one

associated vertex Ẽ in B(K̃i ) and there are two possibilities for the number of

edges which leave from it:

• If E is a Puiseux divisor, then there are ni
1 edges which leave from Ẽ in

K̃i ; then E ′ has ni
1 associated vertices in B(K̃i ).

• If E is a contact divisor, then there is only one edge which leave from Ẽ
in K̃i and thus E ′ has only one vertex associated in B(K̃i ).

Take now any vertex E of B(Ki ) and assume that we know the part of K̃i
corresponding to the vertices of Ki with valuation ≤ v(E). Then there are

nE = ni
1 · · · ni

kE vertices {Ẽl}nE
l=1 associated to E and

• If E is a Puiseux divisor, then there are nkE+1 edges which leave from each

vertex Ẽl in K̃i .

• If E is a contact divisor, then there is only one edge which leaves from

each vertex Ēl in K̃i .

Bull Braz Math Soc, Vol. 40, N. 2, 2009



INFINITESIMAL ADJUNCTION AND POLAR CURVES 221

The dual graph G(C̃) is constructed in the natural way by gluing the graphs K̃i .

From the construction described above, we deduced that

bẼ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bE , if E is a contact divisor;

(bE − 1)nE , if E is a bifurcation divisor which belong

to a dead arc;

(bE − 1)nE + 1, if E is a bifurcarion divisor which does not

belong to a dead arc.

Observe that, in general, non-bifurcation divisors of G(C) have no associated

divisors in G(C̃). Let us illustrate with some examples the relationship between

G(C) and G(C̃):

Example 2. Consider the curve C = (y2 − x3 = 0) and the ramification

ρ(u, v) = (u2, v). Then C̃ has two irreducible components given by v− u3 = 0

and v + u3 = 0. The next figure represents the dual graphs of C and ρ−1C :

C

E1
E3

E2

Ẽ1 Ẽ3

G(C) G(ρ−1C)

where Ẽ1, Ẽ3 are the vertices associated to E1 and E3 respectively.

Consider now a curve C with characteristic exponents {4, 6, 7}. Take ρ the

ramification given by ρ(u, v) = (u4, v) and put C̃ = ρ−1C . Then we have that

C

E1

E2

E3

E4

E5 Ẽ1 Ẽ3

Ẽ15

Ẽ25

G(C) G(C̃)

Note that E3 has one associated vertex Ẽ3 and that E5 has two associated

vertices Ẽ1
5 and Ẽ2

5 in G(C̃).

Remark 2. Let us denote by Ẽ1 the divisor of G(C̃) with v(Ẽ1) = n. It is

unique since it precedes all the other bifurcation divisors and it could be or not

a bifurcation divisor. Moreover, Ẽ1 is a bifurcation divisor of G(C̃) if and only
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if E1 is a bifurcation divisor of G(C) and bẼ1
= bE1

. Then, the divisor E1 of

G(C) has always a unique divisor, denoted by Ẽ1, which is associated to it in

G(C̃) even if E1 
∈ B(C). Recall that E1 is a bifurcation divisor if and only if

the number of different tangent lines in the tangent cone of C is ≥ 2.

We have seen that there is a bijection between the Puiseux series of Ci and

the irreducible components of ρ−1Ci . In particular, this implies that the choice

of a vertex Ẽ l ∈ B(K̃i ) associated to a bifurcation divisor E is equivalent to the

choice of a nE -th root of the unity ξl . Thus there are eiE = ni/nE irreducible

components {σ i
lt}e

i
E

t=1 of ρ−1Ci such that Ẽl belongs to their geodesics. More-

over, the curve σ i
lt is given by (v − ηi

lt(u) = 0) where

ηi
lt(u) =

∑
s≥ni

ai
s(ζilt)

susn/ni , for t = 1, . . . , eiE .

and {ζilt}e
i
E

t=1 are the eiE -th roots of ξl . Additionally , if γE is an E-curvette
of a bifurcation divisor E of G(C), the curve ρ−1γE has m(E) = nEnE irre-

ducible components which are all non-singular and each divisor Ẽl belongs to the

geodesic of exactly nE branches of ρ−1γE which are curvettes of Ẽ l in different

points. In particular, we can prove the following result

Lemma 8. Let E be either a bifurcation divisor of G(C) or E = E1 and
consider any of its associated divisors Ẽ in G(C̃). Then there exists a morphism
ρẼ,E : Ẽred → Ered which is a ramification of order nE .

Proof. Consider aC-ramification ρ : (C2, 0) → (C2, 0) given by x = un, y =
v. Let πẼ : M̃Ẽ → (C2, 0) be the reduction of πC̃ to Ẽ and πE : ME → (C2, 0)

be the reduction of πC to E . Let us define the map ρẼ,E : Ẽred → Ered . The

map ρẼ,E sends the “infinity point” of Ẽred (that is, the origin of the second chart

of Ẽred) into the “infinity point” of Ered . For any other point P of Ẽred , we

consider an Ẽ-curvette γ P
Ẽ
= (v − ψ P

Ẽ
(u) = 0) with

ψ P
Ẽ (u) =

v(Ẽ)−1∑
i=1

aẼ
i u

i + aP
v(Ẽ)

uv(Ẽ),

and such that π∗
Ẽ
γ P
Ẽ
∩ Ẽred = {P}. Let γ P

E be the curve given by the Puiseux

series

yP(x) =
v(Ẽ)−1∑
i=1

aẼ
i x i/m(E) + aP

v(Ẽ)
xv(Ẽ)/m(E).
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Thus γ P
E is an E-curvette and we define ρẼ,E(P) to be the only point

π∗
Eγ

P
E ∩ Ered . From the properties of ρ we deduce that ρẼ,E is a ramification

of order nE . �
Remark also that, if γEt is a curvette of a terminal divisor Et of a dead arc with

bifurcation divisor E , then ρ−1γEt is composed by m(Et) = nE non-singular

irreducible components and each divisor Ẽl belongs to the geodesic of exactly

one branch of ρ−1γEt , where {Ẽl}nE
l=1 are the divisors associated to E in G(C̃).

For more results concerning foliations, ramifications and blow-ups, the reader

can refer to [9].
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