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1 Introduction

Let M be a compact manifold, denote by n its dimension. Suppose f : M → R

is a Morse function. Denote by CM∗( f ) the Morse chain groups, i.e. Z2-vector

spaces generated by critical points of f . Morse homology groups HM∗( f ) are
the homology groups of CM∗( f ) with respect to the boundary operator

∂M : CM∗( f )→ CM∗( f ), ∂M(p) :=
∑

q∈Crit ( f )
n(p, q)q, (1)

where n(p, q) is the number of solutions of⎧⎨⎩
dγ
ds
+∇ f (γ (s)) = 0

γ (−∞) = p, γ (+∞) = q.
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Denote by P = T ∗M a cotangent bundle of M . Let H : T ∗M × [0, 1] → R

be a compactly supported Hamiltonian. Denote by L0 = OM a zero section

of T ∗M and by L1 = φH1 (L0) a Hamiltonian deformation of L0. Suppose

that L0 and L1 intersect transversally. Let CF∗(H) denote Floer chain groups

generated by intersection points of L0 and L1 (or, equivalently, by Hamiltonian

paths that begin and end on OM ), also with Z2 coefficients. Floer homology

HF∗(H) is well defined in this situation. It is the homology group of CF∗(H)

with respect to the boundary operator,

∂F : CF∗(H)→ CF∗(H), ∂F(x) :=
∑

y∈L0∩L1

n(x, y)y, (2)

where n(x, y) is the number of the solutions of an elliptic system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u : R× [0, 1] → T ∗M
∂u
∂s
+ J

(
∂u
∂t
− XH (u)

)
= 0

u(s, i) ∈ L0, i ∈ {0, 1}
u(−∞, t) = φHt

(
(φH1 )−1

)
(x)

u(+∞, t) = φHt
(
(φH1 )−1

)
(y), x, y ∈ L0 ∩ L1.

Here J is an almost complex structure (which may smoothly depend on (s, t))
satisfying the following conditions. Let g be a fixed Riemannian metric on M
and Jg a fixed almost complex structure such that:

1) Jg is compatible to the canonical symplectic form ω = ∑ dx j ∧ dy j on
T ∗M (meaning that 〈·, ·〉 := ω(·, J ·) is a Riemannian metric).

2) Jg maps vertical tangent vectors to horizontal ones with respect to Levi–

Civita connection of g.

3) To every vector X ∈ Tq(OM) ∼= TqM , Jg assigns a cotangent vector JgX
such that JgX (ξ) = g(ξ, JgX) for all ξ ∈ TqM .

Now suppose that the almost complex structure J is compatible to ω and that

J ≡ Jg outside some compact subset of T ∗M . We will assume that almost

complex structure J satisfies the above conditions through the rest of the paper.

In [15] we constructed the isomorphism between HM∗( f ) and HF∗(H), fol-

lowing [19]. The purpose of [15] was to prove that isomorphisms in Floer

homology for Lagrangian intersections naturally intertwine with analogous iso-

morphisms in Morse homology. The isomorphism constructed there was based
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on counting the objects of mixed type. More precisely, let p be a critical point

of Morse function f and x(t) a Hamiltonian path that begins and ends on OM .
Considered the spaces of pairs (γ, u)

γ : (−∞, 0] → M, u : [0,+∞)× [0, 1] → T ∗M

that satisfy ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dγ
ds
= −∇ f (γ (s))

∂u
∂s
+ J

(
∂u
∂t
− XρR H (u)

)
= 0

u(0, t), u(s, 0), u(s, 1) ∈ OM
γ (−∞) = p, u(+∞, t) = x(t)

γ (0) = u
(
0,

1

2

)
.

(3)

Here ρR : [0,+∞)→ R is a smooth function such that

ρR(s) =
{
1, s ≥ R + 1

0, s ≤ R
and XρRH is a Hamiltonian vector field corresponding to the Hamiltonian func-

tion ρRH . Denote byM(p, f ; x, H) the set of solutions of (3), see Figure 1.

OM

p x(t)

Figure 1: The element of the spaceM(p, f ; x, H).

Similarly, denote byM(x, H ; p, f ) the set of the pairs (u, γ ),

u : (−∞, 0] × [0, 1] → T ∗M, γ : [0,+∞)→ M

that satisfy ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dγ
ds
= −∇ f (γ (s))

∂u
∂s
+ J

(
∂u
∂t
− X ρ̄R H (u)

)
= 0

u(0, t), u(s, 0), u(s, 1) ∈ OM
u(−∞, t) = x(t), γ (+∞) = p
γ (0) = u (0, 1

2

)
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where ρ̄R(s) = ρR(−s). Let m f (p) be the Morse index of critical point p and

μH (x) the Maslov index of Hamiltonian path x (see [2, 20, 21] for definition

of Maslov index, [17] for its application in grading of Floer homology groups

and [16] for generalizations). We have the following

Proposition 1 [15]. For a generic f and H M(p, f ; x, H) is a smooth mani-
fold of dimension

m f (p)−
(
μH (x)+ n

2

)
and M(x, H ; p, f )

is a smooth manifold of dimension μH (x) + n
2
− m f (p). When m f (p) =(

μH (x)+ n
2

)
, manifolds M(p, f ; x, H) and M(x, H ; p, f ) are compact,

hence finite sets.

For m f (p) = μH (x) + n
2
we denote by n(p, f ; x, H) and n(x, H ; p, f )

the cardinal numbers (mod Z2) ofM(p, f ; x, H) andM(x, H ; p, f ) respec-
tively. Let CMk( f ) be a Z2-vector space generated by set of all critical points of

f that have Morse index equal to k. Similarly, let CFk(H) denote a Z2-vector

space generated by the set of Hamiltonian paths with ends in zero section that

have Maslov index equal to k − n
2
. Define homomorphisms

� : CFk(H)→ CMk( f ), 	 : CMk( f )→ CFk(H) (4)

by

x �→
∑

m f (p)=k
n(x, H ; p, f )p, p �→

∑
μH (x)+ n2=k

n(p, f ; x, H)x

on the generators. Homomorphisms � and 	 are also well defined on HFk(H)

and HMk( f ), i.e.

� ◦ ∂F = ∂M ◦�, 	 ◦ ∂M = ∂F ◦	
where ∂M and ∂F are defined in (1) and (2). Homomorphisms 	 and � are

actually isomorphism, it follows from the following

Proposition 2 [15]. On the homology level it holds:

	 ◦� = IdHF , � ◦	 = IdHM .

The proof of the Proposition 2 is based on the analysis of the boundary

of one dimensional component of certain mixed type object space (see below
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or [19, 15, 13, 14]). In this situation no bubbles appear due to the fact that the

symplectic manifold in consideration is a cotangent bundle, so there is no holo-

morphic spheres or disks with boundary in zero section. There is a construc-

tion of Piunikhin-Salamon-Schwarz homomorphism for Lagrangian intersec-

tions in a general symplectic manifold given in [1]. It is not necessarily an

isomorphism in general.

OM

Figure 2: Objects that define 	 ◦� and � ◦	.

Morse and Floer homologies with Z coefficients are constructed by using

the coherent orientation. This construction of coherent orientation was origi-

nally done for the case of Floer homology for periodic orbits in [10]. Coherent

orientation for Lagrangian Floer homology is discussed in [12] and for Morse

theory in [22].

In this paper we carry out the construction of isomorphisms (4) between

Morse and Floer homologies, but with Z coefficients. More explicitly, the main

result of the paper is the following

Theorem 3. For two given coherent orientations that induce Morse and Floer
homologies HM∗( f,Z) and HF∗(H,Z)withZ coefficients, one can associate a
sign± to every mixed type object, is such way that these signs induce a PSS-type
isomorphism between HM∗( f,Z) and HF∗(H,Z).

In order to prove the Theorem 3, we construct coherent (i.e. compatible with

gluing) and canonical orientationofmixedmoduli spaces described above. These

two orientations induce characteristic signs plus or minus that we associate to

every point of zero-dimensional component. This construction via characteristic

signs was originally given (for the case of Floer homology for periodic orbits)

in [10].

The construction of coherent orientations on moduli spaces involving both

holomorphic disks and gradient trajectories is also relevant to some other pro-

jects, such as definition of cluster homology [4, 5] and generalization [3] of the

original construction by Floer and Hofer [9].

Bull Braz Math Soc, Vol. 40, N. 2, 2009
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2 Orientation and gluing for Fredholm operators

In [15] we proved that the mixed moduli spaceM(p, f ; x, H) is a manifold by

means of the evaluation map, i.e. we treated it as an intersection of certain stable

and unstable manifold. In order to construct the orientation for M(p, f ; x, H)

we need to see it as a zero set of certain Fredholm operator, and to define orien-

tation and gluing for the Fredholm operators of that type. (Gluing of Fredholm

operators and coherent orientation for moduli spaces of the same type was given

in [9], for Floer case and in [22], forMorse case.) We first establish the analytical

setting, i.e. we construct Banach manifolds that are domain and target manifold

of mentioned Fredholm operator. Let p be a critical point of Morse function f .
Denote by C∞(p) the set of all smooth maps γ that satisfy{

γ : (−∞, 0] → M
γ (−∞) = p. (5)

The tangent space space TγC∞(p) at point γ consists of all smooth vector

fields ξ with properties

ξ : (−∞, 0] → T M, ξ(s) ∈ Tγ (s)M, ξ(−∞) = 0.

For r > 1, let ‖ξ‖Lr and ‖ξ‖W 1,r stand for standard Sobolev norms

‖ξ‖Lr =
⎛⎝ 0∫
−∞
|ξ |r ds

⎞⎠
1
r

, ‖ξ‖W 1,r =
⎛⎝ 0∫
−∞

(|ξ |r + |∇sξ |r) ds
⎞⎠

1
r

.

Denote by W 1,r
γ (p) and Lrγ (p) the completions of TγC∞(p) in W 1,r - and Lr -

Sobolev norms. For a smooth γ ∈ C∞(p) and ξ ∈ W 1,r
γ (p), the exponential

map

ξ �→ exp ◦ ξ, ξ(s) �→ expγ (s) ξ(s)

is defined via the exponential map on the Riemann manifold M . Denote by

D ⊂ T M the associated injectivity neighborhood of the zero section of the

tangent bundle T M and define the set P1,r (p) as the union⋃
γ∈C∞(p)

{
exp ◦ ξ | ξ ∈ W 1,r

γ (p), ‖ξ‖W 1,r is small, so that ξ(s) ∈ D} .
FromSobolev embedding theorem (and the condition r > 1) it followsP1,r (p) ⊂
C0(R,M). The set P1,r (p) of all continuous γ that satisfy (5) is equipped with
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a Banach manifold structure (via the exponential map) such that the tangent

space at γ is given by

TγP1,r (p) = W 1,r
γ (p)

(see [22] for more details).

For a Hamiltonian path x(t) with ends in OM , denote by C∞(x) the set of all

smooth maps u that satisfy⎧⎪⎨⎪⎩
u : [0,+∞)× [0, 1] → T ∗M
u(0, t), u(s, 0), u(s, 1) ∈ OM
u(+∞, t) = x(t).

(6)

The tangent space space TuC∞(x) at point u consists of all vector fields ζ such

that ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ : [0,+∞)× [0, 1] → T T ∗M
ζ(s, t) ∈ Tu(s,t)T ∗M
ζ(s, 0), ζ(s, 1), ζ(0, t) ∈ T M ∼= T OM ⊂ T T ∗M
ζ(+∞, t) = 0.

Denote by W 1,r
u (x) and Lru(x) the completions of TuC∞(x) in W 1,r - and Lr -

Sobolev norms:

‖ζ‖Lr =
⎛⎝ ∫∫
[0,+∞)×[0,1]

|ζ |r dsdt
⎞⎠

1
r

‖ζ‖W 1,r =
⎛⎝ ∫∫
[0,+∞)×[0,1]

(|ζ |r + |∇sζ |r + |∇tζ |r) dsdt
⎞⎠

1
r

.

Since u has two-dimensional domain, we will assume that r > 2. Sobolev

Embedding Theorem will provide the continuity of maps and sections involved.

(For r = 2 the above spaces become Hilbert spaces, which is more convenient,

and these spaces can be of use when one deals with Morse case (see [22]).)

Finally, let P1,r (p) be the union⋃
u∈C∞(x)

{
exp ◦ ζ | ζ ∈ W 1,r

u (x), ‖ζ‖W 1,r is small, so that ζ(s) ∈ D̃}
where (

expu ζ
)
(s, t) = expu(s,t) ζ(s, t)
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and D̃ ⊂ T T ∗M is the injectivity neighborhood of the zero section in the tan-

gent bundle T T ∗M . The set P1,r (x) of continuous curves u that satisfy (6) is a

Banach manifold and the tangent space at u is given by

TuP1,r (x) = W 1,r
u (x)

(see [8] for the details).

The topology of P1,r (p)× P1,r (x) (hence the topology ofM(p, f ; x, H) ⊂
P1,r (p)× P1,r (x)) is induced by the topology of W 1,r

γ (p)×W 1,r
u (x) by means

of the above exponential map.

Let ẽv be the following evaluation map:

ẽv : P1,r (p)× P1,r (x)→ M × M,

ẽv(γ, u) =
(
γ (0), u

(
0,

1

2

))
.

The map ẽv is transversal to the diagonal � ⊂ M × M and

P1,r (p, x) := ẽv−1(�)

is infinite-dimensional smooth Banach submanifold of P1,r (p) × P1,r (x). As

before, denote by

W 1,r
(γ,u)(p, x) = T(γ,u)P1,r (p, x)

the corresponding tangent space. Note that

ξ(0) = ζ

(
0,

1

2

)
for all (ξ, ζ ) ∈ T(γ,u)P1,r (p, x).

The spaceM(p, f ; x, H) is the zero set of a restriction of a smooth section

F = F̃ |P1,r (p,x), F̃ = (F1, F2),

F1(γ ) = dγds +∇ f (γ ),

F2(u) = ∂ρR H,J u = ∂u
∂s
+ J

(
∂u
∂t
− XρR H (u)

) (7)

of a Banach bundle

E(p, x)→ P1,r (p)× P1,r (x)
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with a fibre Lrγ (p) × Lru(x) over a point (γ, u) ∈ P1,r (p) × P1,r (x). The

linearization of (7) at the point (γ, u) is

(DF)(γ,u) : W 1,r
(γ,u)(p, x)→ Lrγ (p)× Lru(x),

(DF)(γ,u) = ((DF1)γ , (DF2)u)
(DF1)γ : W 1,r (p)→ Lr (p),
(DF1)γ ξ = ∇ dγ

ds
ξ +∇ξ∇ f (γ )

(DF2)u : W 1,r (x)→ Lr (x)
(DF2)uζ = ∇sζ + J (u)∇tζ +∇ζ J (u)∂t u −∇ζ J XρR H (u).

(8)

Let us consider the trivial case for the moment. If A is an element of

C0((−∞, 0],End(Rn)) such that A(−∞) ∈ GL(n,R) is symmetric non-degen-

erate matrix, then the operator KA : W 1,r ((−∞, 0],Rn) → Lr ((−∞, 0],Rn)
of the type

KA(ξ)(s) = ξ̇ (s)+ A(s)ξ(s) (9)

is Fredholm (see [22]). In our case, the trivialization of the operator (DF1)γ
is of this type, so it is Fredholm. Its Fredholm index is the dimension of the

nonstable manifold of the critical point p:

Ind((DF1)γ ) = m f (p) (10)

(see [22]).

In two-dimensional case, consider the operator L = L(J, B) of the type

L(ζ )(s, t) = ∂ζ

∂s
(s, t)+ J (s, t)∂ζ

∂t
(s, t)+ B(s, t)ζ(s, t) (11)

for some almost complex structure J satisfying conditions described on the

page 254. Suppose that L+(x)(t) = J (+∞, t)ẋ(t) + B(+∞, t)x(t) is a self-

adjoint isomorphism (which means that it holds 〈L+x, y〉L2 = 〈x, L+y〉L2 for

all x , y ∈ W̃ 1,r ) with the domain

W̃ 1,r := {x ∈ W 1,r ([0, 1],R2n) | x(0), x(1) ∈ Rn × {0}}
and the target set Lr ([0, 1],R2n). Then the operator L is Fredholm (see [23]).

This condition is fulfilled in the case of the trivialization of the operator (DF2)u
and

Ind((DF2)u) = n
2
− μH (x) (12)

(see [18]).
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Proposition 4. The operator (DF)(γ,u) in (8) is Fredholm hence the map (7)

is a Fredholm map. Its index is equal to

Ind((DF)(γ,u)) = m f (p)− μH (x)− n
2
.

Proof. We will omit the subscripts u, γ , (γ, u) in order to abbreviate nota-

tions. First we observe that the manifold P1,r (p, x) is of finite codimension in

P1,r (p) × P1,r (x). Indeed, the tangent space W 1,r (p, x) of P1,r (p, x) is the

kernel of the differential Dẽv of the evaluation map. It holds:

W 1,r (p)×W 1,r (x)/Ker(Dẽv) ∼= Im(Dẽv).

The image Im(Dẽv) is of finite dimension since the target space of Dẽv is so.

It follows that W 1,r (p, x) is of finite codimension and from Hahn-Banach the-

orem that it can be complemented in W 1,r (p)×W 1,r (x) by some finite-dimen-

sional space, denote it by X . Since codimM×M(�) = n it holds dim X = n.
We consider the auxiliary operator from above

DF̃ : W 1,r (p)×W 1,r (x)→ Lr (p)× Lr (x)
DF̃ := (DF1, DF2)

defined on the product W 1,r (p)× W 1,r (x) in order to compute the index of the

operator DF in the terms of the indices of DF1 and DF2. Since the operators

DF1 and DF2 are Fredholm (see Chapter 4.1 in [22] and Appendix A in [18])

and it holds

Ker DF̃ = Ker DF1 × Ker DF2, Coker DF̃ = Coker DF1 × Coker DF2

we conclude that DF̃ is also Fredholm with the Fredholm index Ind(DF̃) =
Ind(DF1) + Ind(DF2). The operator DF is a restriction of DF̃ to the space

W 1,r (p, x). Consider the following (disjoint) decompositions of the spaces

W 1,r (p)×W 1,r (x) and Lr (p)× Lr (x):
W 1,r (p)×W 1,r (x) = X1 ⊕ X2 ⊕ X3 ⊕ X4, Lr (p)× Lr (x) = Y1 ⊕ Y2 ⊕ Y
where the subspaces Xi , Yi and Y are defined in the following way:

X3 := W 1,r (p, x) ∩ Ker(DF̃), X1 := W 1,r (p, x)� X3

X4 := X ∩ Ker(DF̃), X2 := X � X4

Yi := DF̃(Xi ), for i = 1, 2, Y := Lr (p)× Lr (x)� (Y1 ⊕ Y2) .
(13)
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The sign A � B stands for a complement of B in A, all the spaces in (13) are

well defined due to the Hahn-Banach theorem. All the spaces except X1 and

Y1 are of finite dimension: X3 and X4 are subspaces of Ker DF̃ – which is of

finite dimension; X2 is the subspace of X – which is of finite dimension; Y2 is the
isomorphic image of X2; finally Y is of finite dimension since it is isomorphic

to the co-kernel of Fredholm operator DF̃ . Set

m2 := dim(X2) = dim(Y2), m3 := dim(X3)

m4 := dim(X4), m := dim(Y ).

We see that

Ker(DF̃) = X3 ⊕ X4, Coker(DF̃) = Y
and, since DF = DF̃ |X1⊕X3

: X1 ⊕ X3→ Y1 ⊕ Y2 ⊕ Y ,
Ker(DF) = X3, Coker(DF) = Y2 ⊕ Y.

We conclude that DF is also Fredholm, and moreover, we compute its index:

Ind(DF) = dim(Ker(DF))− dim(Coker(DF))
= dim(X3)− dim(Y2 ⊕ Y )
= m3 − (m2 + m)

= (m3 + m4)− m − (m2 + m4)

= dim(Ker(DF̃))− dim(Coker(DF̃))− dim(X2 ⊕ X4)

= Ind(DF̃)− dim(X)
= Ind(DF1)+ Ind(DF2)− n

(10),(12)= m f (p)− μH (x)− n
2
. �

Let us start with the construction of coherent orientation in the trivial case. In

local coordinates the operators F1 and F2 in (7) have the forms:

ξ̇ (s)+ A(s)ξ and
∂ζ

∂s
(s, t)+ J (s, t)∂ζ

∂t
(s, t)+ B(s, t)ζ(s, t),

so we define two classes of the operators of the special type as follows. Let us
denote:

W 1,r
1 := W 1,r ((−∞, 0],Rn × {0})

W 1,r
2 :=

{
ζ ∈ W 1,r ([0,∞)× [0, 1],R2n), | ζ(s, 0), ζ(s, 1), ζ(0, t) ∈ Rn × {0}}
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Lr1 := Lr ((−∞, 0],Rn × {0})
Lr2 := Lr

(
[0,∞)× [0, 1],R2n

)
W 1,r :=

{
(ξ, ζ ) ∈ W 1,r

1 ×W 1,r
2 | ξ(0) = ζ

(
0,

1

2

)}
Lr := Lr1 × Lr2.
Let �triv be the set of all linear operators

(K , L) : W 1,r → Lr

such that K : W 1,r
1 → Lr1 is of the form (9), so that K− = A(−∞) is

symmetric non-degenerate matrix and L : W 1,r
2 → Lr2 is of the form (11).

Here L+(x)(t) = J (+∞, t)ẋ(t)+ B(+∞, t)x(t) is a self-adjoint isomorphism

(meaning that 〈L+x, y〉L2 = 〈x, L+y〉L2 for all x , y ∈ W̃ 1,r ) with the domain

W̃ 1,r := {x ∈ W 1,r ([0, 1],R2n) | x(0), x(1) ∈ Rn × {0}} (14)

and the target set Lr ([0, 1],R2n). We will use notations L(B,J ), BL and JL for

L , B and J as in (11).

In non-trivial case (Section 3) we will consider such trivializations

ϕ : u∗T (T ∗M)→ [0,+∞)× [0, 1] × R2n ∼= [0,+∞)× [0, 1] × Cn

of u∗(T T ∗M) (where u ∈ P1,r (x)) that satisfy

ϕ(Hu(t)) = {t} × Rn, ϕ(Vu(t)) = {t} × iRn

where Hz and Vz are horizontal and vertical splitting

u∗T (T ∗M) = Hz ⊕ Vz
with respect to Levi–Civita connection on T ∗M of a fixed Riemannian metric g
on M . This class is not empty because the set [0,+∞) × [0, 1] is contractible
(see [17] for details) and we will denote it by T .

Similarly, we consider only trivializations of w∗(T T ∗M) (where w ∈
P1,r (p, x)) that satisfy the same condition.

It is a special structure of a cotangent bundle as an ambient manifold that

enables us to choose a canonical class T of trivializations. In more general

situation of relatively spin Lagrangian submanifold, the space of holomorphic

disks is also orientable [11]. Although this construction might be generalized

to relatively spin case, since we want to construct a PSS isomorphism as in [15]

with Z coefficients, we work in a cotangent bundle in this paper.

It follows from the Proposition 4 that every operator from �triv is Fredholm.
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Definition 1. Two elements F = (F1, F2),G = (G1,G2) ∈ �triv are equiva-
lent (F ∼ G) if:

F−1 = G−1 , F+2 = G+2 .
Denote by

�̃triv := �triv/ ∼ .

In a standard way, using a linear homotopy as in [9] and [22], one can prove

the next Proposition.

Proposition 5. Let [F = (F1, F2)] be the equivalence class in �̃triv. Then
[F] is contractible considered as a subset of �triv with respect to the topology
induced by the operator norm.

Let Det[F] be the determinant bundle over the class of operator F (for the

construction of a determinant bundle see [6, 7] or [9, 22]).

Corollary 6. The determinant bundle of the family [F], Det[F] is trivial.
It was shown in [9, 22] how to glue Fredholm operators of the same type,

when they are compatible for gluing. More precisely, denote by �M
triv the class

of Fredholm operators

KA ∈ L(W 1,r (R,Rn), Lr (R,Rn))

of the type (9) with K±A = A(±∞) self-adjoint isomorphisms. Suppose that

two operators KAi ∈ �M
triv (for i = 1, 2) are asymptotically constant (which

means Ai (s) = const, for |s| ≥ S, i = 1, 2) with matching ends, i.e. K+1 = K−2 .

Define K1 �ρ K2 as

K1 �ρ K2(ξ)(s) = ξ̇ (s)+ Aρ(s)ξ(s)

where

Aρ(s) :=
{
AK1

(s + ρ), s ≤ 0

AK2
(s − ρ), s ≥ 0,

for ρ large enough.

This gluing construction induces an isomorphism:

Det(K1)⊗ Det(K2) ∼= Det(K1 �ρ K2) (15)

(see [22]) such that, when the operators K1 and K2 are surjective (so Det(Ki ) =
Ker(Ki ), for i = 1, 2), this isomorphism coincides with the isomorphism
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Ker(K1) × Ker(K2) ∼= Ker(K1 � K2) that occurs in the construction of gluing

trajectories (see [22]).

In the Floer case, denote by�F
triv the class of all operators L ∈ L(W 1,r ([0, 1]×

R,R2n), Lr ([0, 1]×R,R2n)) of the special type (11) such that both L±(x)(t) =
J (±∞, t)ẋ(t)+ B(±∞, t)x(t) are self-adjoint isomorphisms (with the domain

and the target set as in (14)). There is a similar gluing construction for Fred-

holm operators L1 = L1(J1, B1), L2 = L2(J2, B2) in �F
triv. Suppose that they

have matching ends L+1 = L−2 and that they asymptotically constant. Define

L1 �ρ L2 as

L1 �ρ L2(ζ )(s, t) = ∂ζ

∂s
(s, t)+ Jρ(s, t)∂ζ

∂t
(s, t)+ Bρ(s, t)ζ(s, t)

where

Bρ(s, t) :=
{
B1(s + ρ, t), s ≤ 0

B2(s − ρ, t), s ≥ 0,

for ρ large enough and

Jρ(s, t) :=
{
J1(s + ρ, t), s ≤ 0

J2(s − ρ, t), s ≥ 0,

for ρ large enough.

As in Morse case, this gluing construction induces an isomorphism:

Det(L1)⊗ Det(L2) ∼= Det(L1 �ρ L2) (16)

which is again, when the operators are surjective, a linearization of gluing iso-

morphism for trajectories (see [9]).

Let us define now gluing of Fredholm operators of mixed type with Fredholm

operators from �M
triv or �F

triv.

Definition 2. Let F = (F1, F2) ∈ �triv, and K ∈ �M
triv, L ∈ �F

triv asymptoti-
cally constant, such that K+ = F−1 , F+2 = L−. Let(

K �ρ F1
)
(ξ)(s) := ξ̇ (s)+ Aρ(s)ξ

where

Aρ =
{
AK (s + 2ρ), s ≤ −ρ
AF1(s), −ρ ≤ s ≤ 0
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for ρ large enough. Define

K �ρ F := (K �ρ F1, F2) ∈ �.

Similarly, define

(
F2 �ρ L

)
u(s, t) := ∂u

∂s
(s, t)+ Jρ(s, t)∂u

∂t
(s, t)+ Bρ(s, t)u(s, t)

for ρ large enough, where

Bρ(s, t) :=
{
BF2(s, t), 0 ≤ s ≤ ρ,

BL(s − 2ρ, t), s ≥ ρ,

Jρ(s, t) :=
{
JF2(s, t), 0 ≤ s ≤ ρ,

JL(s − 2ρ, t), s ≥ ρ
and

F �ρ L :=
(
F1, F2 �ρ L

)
.

Proposition 7. Gluing construction from the Definition 2 induces isomor-
phisms

A : Det(K )⊗ Det(F)
∼=−→ Det(K �ρ F)

B : Det(F)⊗ Det(L)
∼=−→ Det(F �ρ L).

(17)

When K , F, L are surjective, these isomorphisms are actually the gluing iso-
morphisms for trajectories in linearized case.

Proof. Denote by W 1,r
F (resp. LrF ) the sets of all mappings

η : R× [0, 1] → R
2n, η(s, 0), η(s, 1) ∈ Rn × {0}

of the class W 1,r , (resp. Lr ). Let

ψ : Rk → Lr , φ : Rk → LrF

be linear mappings such that the mappings

F̂ψ : Rk ×W 1,r → Lr , F̂ψ(h, w) = Fw + ψh

L̂φ : Rk ×W 1,r
F → LrF , L̂φ(h, u) = Lu + φh
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are surjective. Define

Fψ : Rk ×W 1,r → R
k × Lr , Lφ : Rk ×W 1,r

F → R
K × LrF

Fψ(a, w) := (0, F̂ψ(a, w)), Lφ(a, u) := (0, L̂φ(a, u)).

It holds

Det(Fψ) ∼= Det(F) and Det(Lφ) ∼= Det(L). (18)

The above natural isomorphism is obtained by means of the following abstract

Lemma.

Lemma 8 [7]. Given an exact sequence

0 −→ E1
d1−→ E2

d2−→ · · · dk−1−→ Ek −→ 0

of vector spaces, there exists a canonical isomorphism

φ :
⊗
i even

(
max∧
Ei

)
∼=−→

⊗
i odd

(
max∧
Ei

)
.

For the proof of the Lemma 8 see also [10, 22].

In our case, consider an exact sequence

0 −→ Ker(F) d1−→ Ker(Fψ)
d2−→ R

k d3−→ Coker(F) −→ 0

where

d1(k) = (0, k)
d2(h, k) = h
d3(h) = ψ(h) (mod Im(F)).

It follows from Lemma 8 that there exists a canonical isomorphism

max∧
Ker(F)⊗

(
max∧
R
k

)
∼=−→

max∧
Ker(Fψ)⊗

max∧
Coker(F). (19)

Note that
( max∧

E
)⊗( max∧

E
)∗

is canonically isomorphic withR (the isomorphism

is pairing e⊗ f ∗ �→ f ∗(e)). Multiplying (19) by
( max∧

R
k)∗ ⊗ ( max∧

Coker(F)
)∗
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and using the natural identification A⊗ B ∼= B ⊗ A we get a canonical isomor-

phism

Det(F)
∼=−→

max∧
Ker(Fψ)⊗

max∧
(Rk)∗.

Since Coker(Fψ) = (H1 × Rk)/H1 × {0} ∼= Rk , we conclude

Det(F) ∼= Det(Fψ).

In the same way one obtains the second isomorphism in (18).

For ρ large enough we define glued operator

F̂ψ �ρ L̂φ : Rk × Rk ×W 1,r → Lr

as follows. We can assume that the supports of the mappings ψ(a) and φ(a)
are contained in {|s| ≤ R} for some R > 0 and all a ∈ Rk since the set of

surjective Fredholmoperators is open. Recall F = (F1, F2) and supposeψ(a) =
(ψ(a)1, ψ(a)2). For ρ large enough, define

(F̂ψ �ρ L̂φ)(a, b, (ξ, ζ )) := (ξ1, ζ1)

ξ1(s) := F1(ξ)(s)+ ψ(a)1(s)
ζ1(s, t) := (F2 �ρL)(ζ )(s, t)+ ψ(a)2(s, t)+ φ(b)(s − 2ρ, t).

The above expression makes sense for ρ large enough due to the compactness

of supports of ψ and φ, although the mappings ψ(a), (F �ρL)w and φ(b) are

not a priori defined on the same domains.

The proof of the Proposition 7 will follow from the next auxiliary proposi-

tion. For η ∈ W 1,r
F , denote by ηρ(s, t) := η(s + ρ, t).

Proposition 9. There exists lower bound ρ1 such that, for all ρ ≥ ρ1, the
operator F̂ψ �ρ L̂φ is surjective. Let Projρ denotes the L2-orthogonal projection
in Rk × Rk ×W 1,r to the set Ker(F̂ψ �ρ L̂φ). The map

ϕρ : Ker(F̂ψ)× Ker(L̂φ)→ Ker(F̂ψ �ρ L̂φ)

defined by
((a, ς), (b, η)) �→ Projρ(a, b, ς + η−ρ)

is an isomorphism.

The proof of the Proposition 9 is a linear version of the Proposition 4 in [14],

so we skip it.
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270 JELENA KATIĆ and DARKO MILINKOVIĆ

Define now

Fψ �ρLφ : Rk × Rk ×W 1,r
2 → R

k × Rk × Lr2(a, b, ς)
�→ (0, 0, (F̂ψ �ρ L̂φ)(a, b, ς)).

It holds (Fψ �ρLφ) = (F �ρL)ψ⊕φ−2ρ , where

ψ ⊕ φ−2ρ(a, b)(s, t) = ψ(a)(s, t)+ φ(b)(s − 2ρ, t).

From the standard arguments it follows that there is a natural isomorphism

Det(Fψ �ρLφ) ∼= Det(F �ρL). (20)

The isomorphism ϕρ from the Proposition 9 induces the isomorphism

max∧
(Ker F̂ψ)⊗

max∧
(Ker L̂φ) ∼=

max∧
(Ker F̂ψ �ρ L̂φ). (21)

Since (
max∧
R
k

)∗
⊗
(

max∧
R
k

)∗
∼=
(

max∧
(Rk × Rk)

)∗
,

then multiplying (21) by
( max∧

R
k)∗ × ( max∧

R
k)∗ and using the fact Ker(Fψ) ∼=

Ker(F̂ψ), we get

Det(Fψ)⊗ Det(Lφ) ∼= Det(Fψ �ρLφ).

From (20) and the natural isomorphism Det(Fψ) ∼= Det(F) we obtain the fol-

lowing isomorphism, induced by the gluing construction:

Det(F)⊗ Det(L) ∼= Det(F �ρL),

for ρ large enough. �
The isomorphism A in (17) induces the isomorphism of the determinant bun-

dle of appropriate equivalence classes (which are obviously independent of ρ in

the gluing process), i.e.

A : Det[K ] ⊗ Det[F] ∼=−→ Det[K � F].
The proof is verbatim of arguments in [9]. Let oK and oF be two orientations of

the families [K ] and [F] (i.e. non-zero sections of bundles Det[K ] → [K ] and
Det[F] → [F]). We denote by oK � oF the induced orientation of K � L , i.e.

oK � oF := A ◦
(
oK ⊗ oF

)
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and similarly for the second isomorphism B in (17).

Whenever it makes sense, gluing of orientation is an associative operation, i.e.

if the three operators K , F and L of special type are compatible for gluing, then

it holds

(oK � oF) � oL � oK � (oF � oL).

Namely, for such K , F and L , one of the next three cases is true:

• (K , F, L) ∈ �M
triv ×�M

triv ×�M
triv

• (K , F, L) ∈ �M
triv ×�triv ×�F

triv

• (K , F, L) ∈ �F
triv ×�F

triv ×�F
triv.

The associativity property can be proven by constructing a smooth line bundle

E over [0, 1], such that the boundary fibres E0 and E1 are

E0 = Det((K �ρ1 F)�ρ2 L), E1 = Det(K �ρ3 (F �ρ4 L))

as well as a natural isomorphism of vector bundles

[0, 1] × (Det(K )⊗ Det(F)⊗ Det(L)) E

[0, 1]

∼=

(see [22] for more details).

In the completely analogous way we define the equivalence classes and the

gluing of standard operators and operators of mixed type in the case when the

latter has the first component of type (9) and the second component of the

type (11) (such as the operators that define M(x, H ; p, f )). We will use the

notation �triv for the set of all linear operators of the form (K , L) defined on

the space{
(ζ, ξ) ∈ W 1,r ([0+∞),Rn × {0})×W 1,r ([0, 1] × (−∞, 0],R2n)
| ζ(s, 0), ζ(s, 1), ζ(0, t) ∈ Rn × {0}, ζ

(
0,

1

2

)
= ξ(0)

}
with the values in

Lr
([0,+∞),Rn × {0})× Lr ([0, 1] × (−∞, 0],R2n)
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such that K is of the form (9), but with asymptotic assumption at the opposite

end and L of the form (11) with asymptotic assumption at −∞. Denote the set

of equivalence classes by �̃.

3 Coherent orientation on the manifold T ∗M

In this section we apply the previous construction of coherent orientation to the

class of special Fredholm operators but on manifolds. The main difficulty is to

choose the suitable trivialization which will enable us to transfer all notions from

previous section to the non-linear case.

3.1 Orientation for non-parameterized mixed moduli spaces

Let

D :=
(
(−∞, 0] ×

{
1

2

})
∪ ([0,+∞)× [0, 1]) . (22)

For two symplectic vector bundles E → D and F → D over D, denote by

Sp(E, F) a bundle with a fibre Sp(Ez, Fz) over z ∈ D, consisting of all linear

symplectic maps Ez → Fz . In the trivial case E = F = D × R2n we have

a bundle
Sp(n) −→ Sp(R2n,R2n)

↓
D

where Sp(n) denotes the group of symplectic isomorphisms of R2n (with respect

to standard symplectic form). Denote by GDE,F the space of smooth sections of

the bundle Sp(E, F) and by GD
R2n the space of smooth sections of Sp(R2n,R2n).

Let o and o′ be two orientations of some continuous family of Fredholm oper-

ators f : X → Fred(E, F) (where Fred(E, F) denotes the set of all Fredholm

operators between E and F). We say that o and o′ are compatible if there exists

a mapping

o : [0, 1] × X → Det( f )

which is a continuous family of nowhere vanishing sections of the bundle

Det f → X such that o(0, ·) = o, o(1, ·) = o′. We use the notation o � o′. We

will use the following auxiliary Lemma.

Lemma 10. Let ψ ∈ GD
R2n be such that

ψ(−∞) = ψ(+∞, t) = Id and F = (F1, F2) ∈ �triv.
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Thenψ(F) := ψ ◦F ◦ψ−1 ∈ [F]. If oF is some orientation ofDet F andψ(oF)
is the orientation induced by ψ , then these two orientation are compatible, i.e:

ψ(oF) � oF .

Proof. First we note that ψ ◦ F ◦ψ−1 is an element of �triv: if w ∈ W 1,r , then

ψ ◦ F ◦ ψ−1w ∈ Lr . A straightforward check shows that ψ ◦ F ◦ ψ−1 ∈ [F].
First suppose that F = (F1, F2) is of the following type:

F1 = d
ds
+ Id, F2 = ∂

∂s
+ J ∂

∂t
+ π · . (23)

Obviously, the orientation ψ(o) only depends on the homotopy class of the

mapping ψ in Sp(R2n,R2n) (and not on the choice of a mapping inside the

class). Since the bundle Sp(R2n,R2n) is trivial, it holds:

π1(Sp(R
2n,R2n)) ∼= π1(Sp(n)) ∼= Z.

Therefore, it is enough to prove the proposition in the case when ψ is of the

form:

ψ(s, t) =

⎡⎢⎢⎢⎣
e2π ikφ(s) 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤⎥⎥⎥⎦
where

φ(s) =
{
0, s ≤ 0

1, s ≥ 1.

In the previous equation we assume that the matrix ψ(s, t) has real coefficients
and we use the notation e2π ikφ(s) for a 2× 2 block[

cos(2πkφ(s)) − sin(2πkφ(s))
sin(2πkφ(s)) cos(2πkφ(s))

]
.

If we set φr (s, t) := ψ
( s
r , t
)
, for r > 0, then φr and ψ are homotopic for all r ,

so it suffices to prove the assertion for r large enough. We have φr ◦ F ◦ φr−1 =
(Fr1 , Fr2 ), where

Fr1 = φr ◦ ∂φ
−1
r

∂s
· + Id+ d

ds
= F1 +�r
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and

Fr2 = φr ◦ ∂φ
−1
r

∂s
· + ∂

∂s
+ J ∂

∂t
+ π · = F2 +�r

so (
Fr1 , F

r
2

) = (F1, F2)+ (�r ,�r
)
.

But

�r = φr ◦ ∂φ
−1
r

∂s
= φr ◦ ∂

∂s

⎡⎢⎢⎢⎣
e−2π ikφ( sr ) 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤⎥⎥⎥⎦

= −2π ik
r

φ′
( s
r

)
φr ◦

⎡⎢⎢⎢⎣
e−2π ikφ( sr ) 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤⎥⎥⎥⎦

= −2π ik
r

φ′
( s
r

)⎡⎢⎢⎢⎣
1 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤⎥⎥⎥⎦
and its norm converges to zero, when r → +∞. The operators F1 and F2 are

isomorphisms. The operators F = (F1, F2) and Fr = (Fr1 , Fr2 ) are homotopic

with fixed end points (through linear homotopy τ �→ (1 − τ)F + τ Fr = F +
τ(�r ,�r )) and, for r large enough, all the operators during the homotopy are

invertible. Hence the orientation [(1 ⊗ 1∗) ⊗ (1 ⊗ 1∗)] of (F1, F2) is the same

as ψ(oF) for ψ(F).
The step in the proof that enables us to reduce the proof of Lemma to the special

type of operators (23) on gluing of operators is analogous to the corresponding

step in [9], so we skip it here. �
For D as in (22), denote by C∞(D, T ∗M) the space of all pairs w = (γ, u) of

smooth maps

γ : (−∞, 0] → M, u : [0,+∞)× [0, 1] → T ∗M

such that: ⎧⎨⎩
u(∂([0,+∞)× [0, 1])) ⊂ OM
γ (0) = u

(
0,

1

2

)
.
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For given symplectic trivialization ψ : w∗(T T ∗M)→ D×R2n in T , we define

W 1,r (w∗(T T ∗M)) to be the set of all section ς such thatψ ◦ς ◦ψ−1 is an element

of W 1,r . We similarly define the set Lr (w∗(T T ∗M)). For w ∈ C∞(D, T ∗M)

denote by �w the set of all operators F = (F1, F2) ∈ L(W 1,r (w∗(T T ∗M)),

Lr (w∗(T T ∗M))) such that, for some symplectic trivialization

ψ : w∗(T T ∗M)→ D × R2n

the following holds

ψ(F) := ψFψ−1 ∈ �triv.

Definition 3. Let w1 = (γ1, u1) and w2 = (γ2, u2) be in C∞(D, T ∗M).
Two elements F = (F1, F2) ∈ �w1

and G = (G1,G2) ∈ �w2
are equivalent

(w1, F) ∼ (w2,G)

if:

γ1(−∞) = γ2(−∞), u1(+∞, t) = u2(+∞, t), F−1 = G−1 , F+2 = G+2 .

Denote the equivalence class of (w, F) by [w, F] and the set of equivalence

classes by �̃.

The next step is to define admissible trivializations, i.e. the trivializations

that will allow us to orient equivalent operators simultaneously in a unique way.

Since our domain D is contractible, our approach is simpler than the one in [9].

Definition 4. Let (w1, F) ∼ (w2,G) be as in Definition 3. A pair of symplec-
tic trivializations

φw1
: w∗1(T T ∗M)

∼=−→ D × R2n; ψw2
: w∗2(T T ∗M)

∼=−→ D × R2n

is called admissible if it holds φw1
(−∞) = ψw2

(−∞) and φw1
(+∞, t) =

ψw2
(+∞, t).

There is always an admissible pair of trivializations. Namely, if wi = (γi , ui ),
let w1 · w−12 be a map defined on D̃ := D × {1, 2}/ ∼ , where ∼ is the identifi-

cation of two end points(
−∞,

1

2
, 1

)
∼
(
−∞,

1

2
, 2

)
, (+∞, t, 1) ∼ (+∞, t, 2) .
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(Obviously D̃ has a homotopy type of a circle.) Define

w1 · w−12 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1

(
s,

1

2
, 1

)
, s ∈ [−∞,−1],

(
s,

1

2
, 1

)
∈ D × {1}

u1(s, t, 1), s ∈ [0,+∞], (s, t, 1) ∈ D × {1}
u2(−s, t, 2), s ∈ [0,+∞], (s, t, 2) ∈ D × {2}

γ2

(
−s, 1

2
, 2

)
, s ∈ [−∞, 0],

(
s,

1

2
, 2

)
∈ D × {2}.

A bundle (w1 · w−12 )∗(T T ∗M) is symplectic vector bundle over the space that

has homotopy type of a circle S1, so it is trivial.

In particular, the operators φw1
Fφw1

−1 andψw2
Gψw2

−1 are equivalent in�triv.

The following Lemma shows that admissible trivializations form a class of triv-

ializations that will enable us to transfer the notion of orientation to the non-

linear case.

Lemma 11. Let (w1, F) ∼ (w2,G) be as in Definition 3 and (φw1
, ψw2

),
(φ′w1

, ψ ′w2
) two pairs of admissible trivializations. Let Det F and Det G be

oriented by oF and oG. If the pair (φw1
, ψw2

) induces compatible orientations

φw1
(oF) � ψw2

(oG)

of trivialized class[
φw1
Fφ−1w1

] = [ψw2
Gψ−1w2

] = [φ′w1
Fφ′−1w1

] = [ψ ′w2
Gψ ′−1w2

]
then the same is true for the pair

(
φ′w1

, ψ ′w2

)
, i.e it holds

φ′w1
(oF) � ψ ′w2

(oG). (24)

Proof. Consider an element χ of GD
R2n :

χ := φw1
φ′−1w1

ψ ′w2
ψ−1w2
: D × R2n → D × R2n. (25)

Since by the assumptions

φw1
(−∞) = ψw2

(−∞), φw1
(+∞, t) = ψw2

(+∞, t)
φ′w1

(−∞) = ψ ′w2
(−∞), φ′w1

(+∞, t) = ψ ′w2
(+∞, t)

the section χ satisfies the assumptions of the Lemma 10, so it holds

χ(ψw2
(oG)) � ψw2

(oG). (26)
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By the assumptions we have

ψw2
(oG) � φw1

(oF). (27)

From (25), (26) and (27) we have

φw1
φ′−1w1

ψ ′w2
(oG) � χ(ψw2

(oG)) � ψw2
(oG) � φw1

(oF).

But it implies

ψ ′w2
(oG) � φ′w1

(oF). �
We are now able to orient the class of Fredholm operators in non-trivial case.

Definition 5. Any orientation oF induces a unique orientation of the equiva-
lence class [F]: if F ∼ G we define

oF � oG
if and only if it holds

ψw2
(oF) � φw1

(oG)
for some (hence any) admissible pair of trivializations.

We define pre-gluing of trajectories α and γ , where α ∈ C∞(R,M), γ ∈
C∞((−∞, 0],M) with matching ends, α(+∞) = γ (−∞) = q as follows. Let

β now denote a smooth increasing cut-off function 0 ≤ β(s) ≤ 1, such that

β(s) = 0 for s ≤ 0 and β(s) = 1 for s ≥ 1. We have:

α � 0
ργ (s) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α(s + 2ρ), s ≤ −ρ − 1

expq(β(−s − ρ)ξ(s + 2ρ)), −ρ − 1 ≤ s ≤ −ρ
q, −ρ ≤ s ≤ −ρ

2
− 1

expq
(
β
(
s + ρ

2
+ 1

)
ζ(s)

)
, −ρ

2
− 1 ≤ s ≤ −ρ

2

γ (s), −ρ

2
≤ s ≤ 0

(28)

where expq ξ(s) = α(s), for large positive s and expq ζ(s) = γ (s), for large
negative s.

Similarly, for u ∈ C∞([0,+∞)×[0, 1], T ∗M) and v ∈ C∞(R×[0, 1], T ∗M),

u(s, 0), u(s, 1), u(0, t), v(s, 0), v(s, 1) ∈ OM such that it holds u(+∞, t) =
v(−∞, t) = y(t), we have:

u � 0
ρv(s, t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u(s, t), 0 ≤ s ≤ ρ

2

expy(t)
(
β
(−s + ρ

2
+ 1

)
ξ(s, t)

)
,

ρ

2
≤ s ≤ ρ

2
+ 1

y(t), ρ

2
+ 1 ≤ s ≤ ρ

expy(t)(β(s − ρ)ζ(s − 2ρ, t)), ρ ≤ s ≤ ρ + 1

v(s − 2ρ, t), s ≥ ρ + 1.

(29)
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Here u(s, t) = expy(t)(ξ(s, t)) for all t and s large enough and positive,

v(s, t) = expy(t)(ζ(s, t)) for all t and s large enough and negative.

Using the above gluing maps we construct pre-gluing of mixed trajectories:

Definition 6. For α ∈ C∞(R,M), w = (γ, u) ∈ C∞(D, T ∗M) and v ∈
C∞(R× [0, 1], T ∗M), v(s, 0), v(s, 1) ∈ OM such that

α(+∞) = γ (−∞), u(+∞, t) = v(−∞, t)

we define pre-glued mixed objects as:

α �0ρ w := (α �0ρ γ, u) ∈ C∞(D, T ∗M),

w �0ρ v := (γ, u �0ρ v) ∈ C∞(D, T ∗M).

Using the gluing in �triv, we glue Fredholm operators from �w with stan-

dard operators from �M
α∗(T M) and �F

v∗(T T ∗M). Here �M
α∗(T M) is the set of all

operators K such that for some symplectic trivialization

φ : α∗(T T ∗M)→ R× R2n and φ̃ := φ|T M , φ̃ : α∗(T M)→ R× Rn

it holds

φ̃K φ̃−1 ∈ �M
triv

and �F
v∗(T T ∗M) is the set of all operators L such that for some symplectic trivial-

ization

ϕ : v∗(T T ∗M)→ (R× [0, 1])× R2n

it holds

ϕLϕ−1 ∈ �F
triv.

Definition 7. Let α, w, v be as in Definition 6 and K ∈ �M
α∗(T M), F =

(F1, F2) ∈ �w, L ∈ �F
v∗(T T ∗M). Suppose φα,ψw and ϕv are three trivializations:

φα : α∗(T T ∗M)→ R× R2n, ψw : w∗(T T ∗M)→ D × R2n,

ϕv : v∗(T T ∗M)→ (R× [0, 1])× R2n

defined as follows. Denote by x(t) = u(+∞, t) = v(−∞, t) and let U be some
open set containing x([0, 1]). Smooth trivialization

� : T T ∗M∣∣U ∼=−→ U × R2n
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induces trivializations ψw and ϕv of bundles w∗(T T ∗M) and v∗(T T ∗M) such
that it holds

�
∣∣
w([R,+∞]×[0,1]) = ψw

∣∣[R,+∞], �
∣∣
v([−∞,−R]×[0,1]) = ϕv

∣∣[−∞,−R]

for R large enough (such thatw([R,+∞]×[0, 1]), v([−∞,−R]×[0, 1]) ⊂ U).
Define

ψw � ρϕv(s, t) :=

⎧⎪⎨⎪⎩
ψ(s, t), 0 ≤ s ≤ ρ

2

�w �0ρv
,

ρ

2
≤ s ≤ ρ + 1

ϕ(s − 2ρ, t), s ≥ ρ + 1

for ρ ≥ max{2R, R + 1} and similarly in the case of φα and ψw. Obviously:

φα(+∞) = ψw(−∞), ψw(+∞, t) = ϕv(−∞, t).

Finally, define:

K �ρ F :=
(
φα �ρ ψw

)−1 (
φ(K ) �ρ ψ(F)

) (
φα �ρ ψw

) ∈ �α �ρ w

and, similarly

F �ρ L :=
(
ψw �ρ ϕv

)−1 (
ψ(F) �ρ ϕ(L)

) (
ψw �ρ ϕv

) ∈ �w�ρ v.

It follows easily, due to homotopy invariance, that the above construction in-

duces a gluing operation of the equivalence classes [α, K ], [v, L] and [w, F]
which does not depend on the non-canonical elements. The following step is

to transfer gluing of orientation to the non-linear case. Note that the construc-

tion of gluing of orientation in non-linear case for gradient trajectories in [22]

uses different class of admissible trivializations from the ones we use here

(Definition 4). Let γ1, γ2 ∈ C∞(R,M). Pairs of trivializations considered

in [22] were

φγ1 : γ ∗1 T M
∼=−→ R× Rn; ψγ2 : γ ∗2 T M

∼=−→ R× Rn

such that

φγ1(−∞) = ψγ2(−∞),

φγ1(+∞)ψ−1γ2
(+∞) =

⎡⎢⎢⎢⎣
±1

1
. . .

1

⎤⎥⎥⎥⎦ ∈ Gl(n,R).
(30)
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We will slightly modify the class of admissible trivializations in order to adapt

it to our situation. First, we consider only symplectic trivializations

ψγ : γ ∗(T T ∗M)→ R× R2n.

Then, for the pair

φγ1 : γ ∗1 (T T ∗M)
∼=−→ R× R2n; ψγ2 : γ ∗2 (T T ∗M)

∼=−→ R× R2n

we require

φγ1(±∞) = ψγ2(±∞)

instead of (30). Such a pair of trivializations we call admissible. The proof

of the fact that the pair of admissible trivializations always exist is completely

analogous to the proof of the same claim when the basis is D (due to the ho-

motopy equivalence of R and D). The fact that admissible pairs induce the

orientation in non-linear case can be also analogously proved as in the case of

“mixed domain” D.

In the case of the spaces of smooth disks in C∞(R × [0, 1], T ∗M) with the

boundary in OM we consider the setting for the gluing of orientation in non-linear

case as in [9]. Our situation differs from the one in [9] because the domain of

the disk u is contractible here unlike there where it was a cylinder. The class of

admissible trivializations is the same in our case of mixed type objects as it was

there. More precisely, we call the pair of symplectic trivializations

φu : u∗(T T ∗M)
∼=−→ (R× [0, 1])× R2n

ψv : v∗(T T ∗M)
∼=−→ (R× [0, 1])× R2n

admissible if

φu(±∞, t) = ψv(±∞, t) for all t ∈ [0, 1].
Again, one can prove that admissible trivializations exist and that they induce

orientations in non-linear case in the same way as in Lemma 10 and Lemma 11.

We assume now that the gluing of orientations of trajectories from C∞(R,M)

in Morse case and disks in C∞(R× [0, 1], T ∗M) with ends in OM from Floer’s

(i.e. the classes of corresponding operators of special type) is defined in the sim-

ilar way as in [9, 22] with the only change of notion of admissible trivializations

for γ ∈ C∞(R,M) discussed above. We glue two orientations of a mixed and

non-mixed object in following way. Let α, w = (γ, u), v, K , F , L , φα, ψw and
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ϕv be as in Definition 7. If oK , oF and oL are three orientation from Det[K ],
Det[F] and Det[L] then we set

oK � oF :=
(
φα �ρ ψw

)−1(
φα(oK ) �ψw(oF)

)
and, similarly

oF � oL :=
(
ψw �ρ ϕv

)−1(
ψw(oF) � ϕv(oL)

)
.

Asbefore, one canprove that this definition is independent of all choices involved.

Once again, we can repeat the same construction to define orientation com-

patible for gluing of standard operators and the mixed type operators with the

domain

D′ := ((−∞, 0] × [0, 1]) ∪ ([0,+∞)× 1

2

)
The notations are the following. For w = (u, γ ) ∈ C∞(D′, T ∗M), such

that u(s, 0), u(s, 1), u(0, t), γ (s) ∈ OM , denote by �w the set of all operators

F = (F1, F2) ∈ L(W 1,r (w∗(T T ∗M)), Lr (w∗(T T ∗M))) such that, for some

symplectic trivialization

ψ : w∗(T T ∗M)→ D′ × R2n

the following holds

ψ(F) := ψFψ−1 ∈ �triv.

The set L(W 1,r (w∗(T T ∗M)), Lr (w∗(T T ∗M))) is defined in the same way as

in the case of �w (page 275).

The operation � is associative:(
oK �oF

)
�oL = oK �

(
oF�oL

)
since it holds in the trivial case. We will denote the orientation for the equiv-

alence classes of operators which is coherent, i.e. which commutes with the

gluing operation by σ.

Remark 12. There is an isomorphism

D �ρ : Ker
(
Dw

)× Ker
(
Dv

) ∼=−→ Ker
(
Dw �ρv

)
obtained as the differential of the gluing map (see [14]). This isomorphism

induces the orientation which is compatible with the glued orientation ow � ov.
Namely the operations �ρ and �0ρ are homotopic in the space C∞(D, T ∗M).

From the very construction of gluing orientations � one sees that this operation

is defined using the isomorphism which arises from pre-gluing of trajectories

�0ρ and Fredholm operators (see [14]). It follows that the glued orientation and

the one induced by �̂ = D �0ρ are compatible.
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3.2 Orientation for R-parameterized moduli spaces

In order to prove that � and 	 in (4) are isomorphisms we consider the set

M(R; p, q, f ; H) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(γ−, u, γ+, R)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ− : (−∞, 0] → M
γ+ : [0,+∞)→ M
u : R× [0, 1] → T ∗M
dγ±
ds
= −∇ f (γ±)

∂u
∂s
+ J

(
∂u
∂t
− XρR H (u)

)
= 0

γ−(−∞) = p, γ+(+∞) = q
u(∂(R× [0, 1])) ⊂ OM
u(±∞, t) = γ±(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (31)

Here ρR satisfies

ρR(s) =
{
1, |s| ≤ R
0, |s| ≥ R + 1.

We will also consider the set

MR(p, q, f ; H) :={
(γ−, γ+, u) | (γ−, γ+, u) is a solution of (31) for fixed R

}
.

(32)

For a linear version, we define the equivalence relation in a special class of

operators

� := {F = (F1, F2, F3) |
Fi is of the type (9) for i = 1, 3, F2 is of the type (11)

} (33)

(we omit the subscript triv to abbreviate the notations) with domain

D̃ = (−∞, 0] ∪ (R× [0, 1]) ∪ [0,+∞)

in a following way:

F = (F1, F2, F3) ∼ G = (G1,G2,G3) if and only if

F−1 = G−1 and F+3 = G+3 .
We denote the set of equivalence classes by �̃. Using linear homotopy one can

show that the equivalence class of this type of operators, considered as a subset of

operators, is contractible with respect to the operator norm. We define gluing of

maps from C∞(D̃, T ∗M) with the standard trajectories and gluing of operators
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of this type with the standard ones (whenever they are compatible for gluing)

in an obvious way. A construction of gluing of orientations (both in trivial and

non-trivial case) for the triples of operators with the standard operators of special

type can be done in a complete analogy as in the case of the pairs.

We treat the tangent space of manifold MR(p, q, f ; H) as the zero set

of a triple of operators (F1, F2, F3) defined above. The case of manifold

M(R; p, q, f ; H) is different, it is a zero set of Fredholm map F in two vari-

ables: in R ∈ R and in wR = (γ−, u, γ+). Its linearization D2F in second

variable wR is the Fredholm operator of the type (33). Extending [22] to this

situation, we see that there exists a canonical bundle isomorphism

Det D2F ⊗ T∗R ∼= �max Ker DF

so the choice of the fixed orientation ∂
∂R ≡ 1 on T∗R gives rise to natural isomor-

phism between determinant bundle of the operator D2F of a special type (33)

and the orientation of the tangent bundle ofM(R; p, q, f ; H):

Det D2F ∼= �max Ker DF. (34)

So the orientation of the operator D2F induces the orientation of the tangent space

T(R,wR)M(R; p, q, f ; H). Gluing of trajectories, operators and orientation can

be constructed in an analogous way as in unparameterized case. Again the two

orientation: the first one – induced by the differential D � and the second one –

glued, are compatible.

Note that we can glue two operators G ∈ � and H ∈ � to obtain the operator

from� (unparameterized or parameterized – when R→+∞, see [15] or [13]).

We can also glue the operators from�with the operators from�M and the result

will be operators from�. Gluing of orientation induced by gluing of operators in

this case is also associative. Since the details of this construction are analogous

to the previous ones, we skip them.

3.3 Coherent orientation

In this section we show that a coherent orientation exists for operators of mixed

type and standard operators together. We will divide this construction in several

steps.

Morse trajectories. Fix an arbitrary critical point p0 of f and consider it to be

the constant curve. The operator:

K0 = d
ds
+ A0 ∈ �p∗0T M
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is an isomorphism and hence Det K0 = R⊗ R∗. Fix the orientation

σ
([p0, K0]

) := 1⊗ 1∗ (35)

for Det K0.

We first orient the classes of maps in C∞(R,M) and corresponding operators

as in [22], by choosing [p0, K0] to be the “anchoring class”. More precisely,

consider the sets

T − := {[γ, K ] ∈ �M | γ (−∞) = p0, K− = K0

}
and

T + := {[γ, K ] ∈ �M | γ (+∞) = p0, K+ = K0

}
.

There is a bijection between T − and T +:

T − � [γ, K ] �→ [γ , K ], where γ (s) := γ (−s), K = K .

We orient the set T −\{[p0, K0]} arbitrarily. Then we orient the set

T +\{[p0, K0]} using the condition

σ
([γ, F]) � σ ([γ , F]) � σ

([p0, K0]
)
.

For any class [γ, F] from C∞(R,M)we find the unique class [α, F1] ∈ T − and

[β, F2] ∈ T + such that

α(+∞) = γ (−∞), β(−∞) = γ (+∞); F+1 = F−, F−2 = F+.
Define an orientation of [γ, F] by the condition

σ
([α, F1]) � σ ([γ, F]) � σ ([β, F2]) � σ

([p0, K0]
)

(see Chapter 3.2. in [22] for more details).

Floer trajectories. Now we orient the classes of maps in C∞(R×[0, 1], T ∗M)

and corresponding operators. Denote by [u, K ] the ∼ equivalence class of path

u and operator K , where (u1, K1) ∼ (u2, K2) if u1(±∞, t) = u2(±∞, t) and
K±1 = K±2 . Define:

P− = {[w, F] | w = (γ, u), γ (−∞) = p0, F = (F1, F2) ∈ �w, F−1 = K0

}
.

Fix any class [w0 = (γ0, u0), F0 = (F01, F02)] from P− such that F0 is an

isomorphism (such a class obviously does exist) and orient it by

σ
([w0, F0]

) := 1⊗ 1∗. (36)
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Let x0(t) := u0(+∞, t). Denote by L−0 the operator F+02 where F0 = (F01, F02).
The set

S− := {[u, K ] ∈ �F | u(−∞, t) = x0(t), K− = L−0
}

contains the class [x0,C0] such that x0(s, t) = x0(t) and C0(s, t) = ∂
∂s +

JL0
(−∞, t) ∂

∂t + BL0
(−∞, t) is an isomorphism. Orient class [x0,C0] by

σ
([x0,C0]

) := 1⊗ 1∗ (37)

and the rest of the set S− arbitrarily. The orientation of classes from the set

S+ := {[u, K ] ∈ �F | u(+∞, t) = x0(t), K+ = L−0
}

are determined by the requirement that for [u1, K1] ∈ S−, [u2, K2] ∈ S+ with

K+1 = K−2 and u1(+∞, t) = u2(−∞, t) it holds

σ
([u1, K1]

)
� σ
([u2, K2]

) � σ
([x0,C0]

)
.

For any class [u, L] in�F , we find unique classes [u1, K1] ∈ S− and [u2, K2] ∈
S+ such that

u1(+∞, t) = u(−∞, t), u(+∞, t) = u2(−∞, t); K+1 = L−, L+ = K−2
and define an orientation of [L] by the condition

σ([u1, K1])�σ ([u, L])�σ ([u2, K2]) � σ([x0,C0])
(see Theorem 12 in [9] for more details about the orientation of the operators of

the type �F ).

PSS trajectories. The next step is to orient the set of classes of mixed objects.

Let w0 = (γ0, u0) be already mentioned fixed class and [w = (γ, u), F =
(F1, F2)] be such that F ∈ �w. There are unique classes [α, K ] ∈ �M , [v, L] ∈
�F of a special type operators such that

α(−∞) = γ (−∞), α(+∞) = γ0(−∞) = p0,
u0(+∞, t) = v(−∞, t), v(+∞, t) = u(+∞, t)
K− = F−1 , K+ = F−01 F+02 = L−, L+ = F+2 .

Define the orientation of [w, F] in a following way:

σ
([w, F]) := σ

([α, K ])�σ ([w0, F0]
)
�σ
([v, L]).
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Due to (35), (37) and (36) this definition is consistent in the relation to anchoring

class [w0, F0].
If F ′ ∈ �w′ we orient the class [w′, F ′] similarly. We choose the orientation

of some fixed class, for example [w0, F0], where

w0 = (ū, γ0), γ0(s) := γ (−s), u0(s, t) := u(−s, 1− t), F := (F2, F1)

to be 1⊗ 1∗ and we orient the rest of the set � by requiring:

σ
([u, L]) � σ ([w0, F]

)
� σ
([γ, K ]) � σ

([w′, F ′])
where [u, L] and [γ, K ] are, similarly as before, unique classes that connect,

respectively, w0(−∞) with w′(−∞) and w′(+∞) with w0(+∞) and the cor-

responding operators.

Glued PSS trajectories. Finally, for arbitrary class [wR, FR] ∈ �̃ we find

classes [w1,G1] ∈ �̃ and [w2,G2] ∈ �̃ such that

[w1,G1]�[w2,G2] = [wR, FR].
Define σ([wR, FR]) as σ([w1,G1]) � σ ([w2,G2]).These two classes do not have

to be unique, but the glued class does not change. Indeed, let [w1,G1], [w2,G2]
and [w′1,G ′1], [w′2,G ′2] be two pairs of such classes, with [w1,G1](+∞) =
[w2,G2](−∞) = (x,G) and [w′1,G ′1](+∞) = [w′2,G ′2](−∞) = (x ′,G ′).
There exists unique class [u, K ] ∈ �F that connects (x,G) and (x ′,G ′).
Then we have:

σ
([w1,G1]

)
� σ
([w2,G2]

) � σ
([w′1,G ′1]) �σ ([u, K ])� σ ([w2,G2]

)
� σ

([w′1,G ′1]) � σ ([u, K ]) � σ ([ū, K ])� σ ([w′2,G ′2])
� σ

([w′1,G ′1]) � σ ([w′2,G ′2]).
(38)

Here [ū, K ] is unique class such that

ū(±∞) = u(∓∞), (K )± = K∓.
The last equality in (38) is true due to the above construction of coherent ori-

entation of �F . Indeed, if [u, K ] ∈ �F let [v, L], [w, F] ∈ �F be the unique

classes such that

(u, K )(−∞) = (v, L)(+∞), (u, K )(+∞) = (w, F)(−∞),

(v, L)(−∞) = (v0,C0)(−∞), (w, F)(+∞) = (v0,C0)(+∞),
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i.e. (v, L) ∈ S−, (w, F) ∈ S+. From
σ
(
([v, L] � [u, K ] � [w, F]) � ([v, L] � [u, K ] � [w, F])) =

σ
(
([v, L] � [u, K ] � [w, F]) � ([w, F] � [ū, K ] � [v̄, L])) � 1⊗ 1∗

σ
([v, L] � ([v̄, L])) � 1⊗ 1∗ σ

([w, F] � ([w, F])) � 1⊗ 1∗

it follows

σ
([ū, K ]) � σ ([u, K ]) � 1⊗ 1∗.

Thus the definition is correct.

Since the gluing of orientations is an associative operation, the coherent ori-

entation is well defined by the above description.

Denote by � the set of equivalence classes of maps and operators of all

mentioned types: trajectories, disks, mixed objects (of all three types) and R-
parameterized mixed objects and by C� the set of all coherent orientations on

�. Consider the action of a group

� := { f ∈ {−1, 1}� | f ([w, F]�[u, L]) = f ([w, F]) f ([u, L])}
under a pointwise multiplication. We assume here that the classes [w, F] and
[u, L] are of any type admissible for gluing.

Proposition 13. The group � acts freely and transitively on C� by

( f · σ)([w, F]) = f ([w, F])σ ([w, F]).

Proof. Let σ1 and σ2 be two coherent orientations. Define f such that σ1 =
f ·σ2. We want to check that f is indeed an element in �. For [u, K ] and [v, L]
compatible for gluing we have

σ1([u, K ]) � σ1([v, L]) � σ1([u, K ] � [v, L])
� f ([u, K ] � [v, L])σ2([u, K ] � [v, L])
� f ([u, K ] � [v, L])σ2([u, K ]) � σ2([v, L])
� f ([u, K ] � [v, L]) f ([u, K ]) f ([v, L])σ1([u, K ]) � σ1([v, L])

which exactly means that

f ([u, K ] � [v, L]) = f ([u, K ]) f ([v, L]). �
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4 Canonical orientation and construction of isomorphism using

characteristic signs

In this chapter we construct canonical orientation and compare it to the coherent

one, constructed in the previous chapter, in order to associate a sign + or − to

each isolated trajectory involved in our construction of isomorphism (4).

The canonical orientation for mixed moduli space is given only for its zero-

dimensional components. Unlike in [22] and [9] we have no R-action in defi-

nition ofM(p, f ; x, H) andM(x, H ; p, f ). Thus an element from the kernel

of the operator F = (F1, F2), a mixed object w, is an isolated trajectory if the

linearization of F, DwF has trivial kernel. The determinant bundle, Det[w], is
trivial, and we can orient zero-dimensional components canonically, by 1 ⊗ 1∗.

We also need to orient canonically the isolated non mixed objects, gradient

trajectories and (perturbed) holomorphic disks. In this case there is an R-action.

Denote byM(p, q, f ) the set of solutions of:⎧⎨⎩
dγ
ds
+∇ f (γ ) = 0

γ (−∞) = p, γ (+∞) = q,
and byM(x, y, H) the set of solutions of:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u
∂s
+ J ( ∂u

∂t − XH (u)
) = 0

u(s, i) ∈ L0, i ∈ {0, 1}
u(−∞, t) = x(t)
u(+∞, t) = y(t).

Let M̂(p, q, f ) and M̂(x, y, H) denote these sets modulo R− action γ (·) �→
γ (·+τ), and u(·, ·) �→ u(·+τ, ·). Hence γ ∈ Ker K and u ∈ Ker L are isolated

if Ker Dγ K and Ker DuL are one-dimensional. We have the “flow orientation”

determined by

0 �= dγ
ds
∈ Ker Dγ K

forM(p, q, f ) and

0 �= ∂u
∂s
∈ Ker DuL

for M(x, y, H). We denote these canonical orientations by [1⊗ 1∗w], [γs]
and [us].

Now define numbers τ(γ ), τ (u) and τ(w) in {−1, 1} to satisfy:

σ([w]) = τ(w)[1⊗ 1∗w], σ ([γ ]) = τ(γ )[γs], σ ([u]) = τ(u)[us].
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Using these signs we define homomorphisms

	 : CMk( f )→ CFk(H), � : CFk(H)→ CMk( f )

by

p �→
∑

w∈M(p, f ;x,H)

τ (w)x, x �→
∑

w∈M(x,H ;p, f )
τ (w)p

on the generators. Homomorphisms 	 and � induce homomorphisms on

homologies if

	 ◦ ∂M = ∂F ◦	, � ◦ ∂F = ∂M ◦�.

The first equality is equivalent to

∑
γ1∈M̂(p,r, f )

⎛⎝ ∑
w1∈M(r, f ;x,H)

τ (w1)τ (γ1)

⎞⎠ =
∑

w2∈M(p, f ;y,H)

⎛⎝ ∑
u2∈M̂(y,x,H)

τ (u2)τ (w2)

⎞⎠ .

(39)

The proof of (39) will follow from the identity

∂M(p, f ; x, H) =⋃
M̂(p, r, f )×M(r, f ; x, H) ∪

⋃
M(p, f ; y, H)× M̂(y, x, H),

(40)

the fact that the number of the boundary of one-dimensional manifold is even

and the next Theorem. (The proof of the second identity is analogous.) The

proof of the identity (40) follows from Gromov compactness and gluing argu-

ments (see [13, 14]).

Theorem 14. Let m f (p) =
(
μH (x)+ n

2

) + 1. Assume that M(p, f ; x, H)

has only one connected non-compact component, i.e. M(p, f ; x, H) ≈
(−1, 1). The boundary of component M(p, f ; x, H) can be one of the next
three possibilities:

1. (γ1, w1) ∈ M̂(p, r, f ) ×M(r, f ; x, H) and (γ1, w2) ∈ M̂(p, r ′, f ) ×
M(r ′, f ; x, H);

2. (w1, u1) ∈ M(p, f ; y, H) × M̂(y, x, H) and (w2, u2) ∈ M(p, f ;
y′, H)× M̂(y′, x, H);
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3. (γ1, w1) ∈ M̂(p, r, f )×M(r, f ; x, H) and (w2, u2) ∈M(p, f ; y, H)×
M̂(y, x, H). For each of these possibilities it holds:

1. τ(γ1)τ (w1) = −τ(γ1)τ (w2);
2. τ(w1)τ (u1) = −τ(w2)τ (u2);
3. τ(γ1)τ (w1) = τ(w2)τ (u2).

Proof. Case 1. It holds

[γ1s]�[1⊗ 1w1
] (i)�

(
τ(γ1)σ ([γ1])

)
�
(
τ(w1)σ ([w1])

)
(i i)� τ(γ1)τ (w1)

(
σ([γ1])�σ ([w1])

)
(i i i)� τ(γ1)τ (w1)

(
σ([γ1�w1])

)
(iv)� τ(γ1)τ (w1)

(
σ([γ1�w2])

)
(v)� τ(γ1)τ (w1)

(
σ([γ1])�σ ([w2])

)
(vi)� τ(γ1)τ (w1)

(
τ(γ1)[γ2s]�τ(w2)[1⊗ 1w2

]
)

(vi i)� τ(γ1)τ (w1)τ (γ1)τ (w2)
(
[γ2s]�[1⊗ 1w2

]
)
.

(41)

Equalities (i) and (vi) are just the definitions of the characteristic numbers τ ;

(i i) and (vi i) follow from the definition of gluing of orientation. Equalities

(i i i) and (v) follow from the fact that σ is coherent; finally equality (iv) is true
because γ1�

0w1 ∼ γ2�
0w2. So the assertion for the first case will follow from[
γ1s
]
�
[
1⊗ 1w1

] � −[γ2s
]
�
[
1⊗ 1w2

]
. (42)

To prove (42) consider the set

M(p, f ; x, H) ≈ (−1, 1) (43)

and suppose that its orientation is given by
d
dτ
∈ Tτ (−1, 1). With the identifi-

cation (43), gluing is the map

� : {γ1

}× {w1

}× (ρ0,+∞
)→ (− 1,−1+ ε

)
.
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All the isolated points of form {w1} are canonically and uniformly oriented,

hence gluing can also be considered as the map

� : {γ1

}× (ρ0,+∞
)→ (− 1,−1+ ε

)
.

Since γ1 is in M̂(p, r, f ) andM(p, r, f ) = M̂(p, r, f )× R, γ1 ∈ M̂(p, r, f )
corresponds to γ1 × R ∈ M(p, r, f ). We identify R ≈ (ρ0,+∞) by the

orientation preserving map, so we have an identification(
ρ0,+∞

) ≈ {γ1

}× (ρ0,+∞
) ≈ {γ1

}× R
such that the following correspondence holds

Det Dγ1K �
[
γ1s
]↔ d

dρ
∈ Tρ

(
ρ0,+∞

)
.

Hence gluing � is a mapping

� : (ρ0,+∞
)→ (− 1,−1+ ε

)
that does not preserve the orientation since the point +∞ corresponds to the

point −1. Analogously, for the other pair γ1 and w2, the gluing (denote it by �′)
can be considered as the map

�′ : (ρ0,+∞
)→ (

1− ε, 1
)
,

which preserves orientation because the point +∞ corresponds to point 1 now.

So (42) follows.

Case 2 is completely analogous to the Case 1.

Case 3. It follows from the same arguments as in (41) that[
γ1s
]
�
[
1⊗ 1w1

] � τ
(
γ1

)
τ
(
w1

)
τ
(
w2

)
τ
(
u2
)([

1⊗ 1w2

]
�
[
u2s
])

,

so the only thing we have to verify is[
γ1s
]
�
[
1⊗ 1w1

] � [1⊗ 1w2

]
�
[
u2s
]
. (44)

We do have the same identifications as in Case 1, and the mappings � and �′ as

� : (ρ0,+∞
)→ (− 1,−1+ ε

)
, �′ : (ρ0,+∞

)→ (
1− ε, 1

)
.

But for gluing �, γ1 is the first trajectory in the definition (28), and for gluing �′,
u2 is the second in (29), so ρ appears with the opposite sign there. Thus there is

one more reverse of orientation than in Case 1, so (44) holds. �
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The fact that homomorphisms� and	 are isomorphisms with Z2 coefficients

follows from the analysis of the boundary ofM(R; p, q, f ; H) defined by (31)

(see [15] and [13]). In order to show that � and 	 defined in this way (with Z

coefficients) are also isomorphisms, we need to choose the canonical orientations

for zero dimensional component ofMR(p, q, f ; H) andM(R; p, q, f ; H). We

orient all these zero dimensional components canonically by 1 ⊗ 1∗.

Remark 15. Form f (p) = m f (q)−1,M(R; p, q, f ; H) is zero-dimensional

manifold and its tangent space is zero of certain Fredholm operator, denote it

by DF. Then DF = (D1F, D2F), where D1 = DR and D2 = DwR are the

derivatives in R and wR respectively. Since m f (p) = m f (q) − 1, the operator

DF2 is injective and has one-dimensional cokernel. After stabilization by the

R direction it becomes an isomorphism so that its determinant bundle has a

canonical orientation.

As before, denote by τ(·) the characteristic sign which relates coherent and

canonical orientation.

Remark 16. For m f (p) = m f (q), M(R; p, q, f ; H) is one-dimensional

manifold and its tangent space is zero of Fredholm operator DF = (D1F, D2F),
as in Remark 15. The value R is regular with respect to

π :M(R; p, q, f ; H)→ [R0,+∞)

if and only if D2F is onto. Recall the isomorphism (34) between Det D2F
and �max Ker DF . It identifies the canonical orientation 1 ⊗ 1∗ on [D2F] with

that orientation of Ker DF = T(R,w)M(R; p, q, f ; H) which is mapped (by π )

onto the canonical orientation d/dR of [R0,+∞).

In [15] we showed that, for m f (p) = m f (q), the boundary of M(R; p, q,
f ; H) is identified with

∂M(R; p, q, f ; H) = ∂1 ∪ ∂2 ∪ ∂3 ∪ ∂4, (45)

where (see Figure 3)

∂1 =MR0(p, q, f ; H),

∂2 =
⋃

m f (r)=m f (p)−1
M̂(p, r, f )×M(R; r, q, f ; H),

∂3 =
⋃

m f (r)=m f (q)+1
M(R; p, r, f ; H)× M̂(r, q, f ),

∂4 =
⋃

μH (x)=m f (p)
M(p, f ; x, H)×M(x, H ; q, f ).
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Consider homomorphisms

T : CMk( f )→ CMk( f ), p �→
∑

m f (q)=k
nR0(p, q, f ; H)q

where

nR0(p, q, f ; H) :=
∑

wR0∈MR0 (p,q, f ;H)

τ (wR0)

and

K : CMk( f )→ CMk+1( f ), p �→
∑

m f (q)=k+1
n(R; p, q, f ; H)q,

where

n(R; p, q, f ; H) :=
∑

(R,wR)∈M(R;p,q, f ;H)

τ ((R, wR)).

In order to prove that � ◦	 = Id we have to check that:∑
(w1,w2)∈∂4

τ(w1)τ (w2)−
∑

wR0∈∂1
τ(wR0) =

∑
(u,γ2)∈∂3

τ(u)τ (γ2)+
∑

(γ1,v)∈∂2
τ(γ1)τ (v).

(46)

From (46) it follows that

� ◦	 − T = ∂M ◦ K + K ◦ ∂M ,
i.e. � ◦ 	 is chain homotopic to T . By deforming the two dimensional piece

in the mixed object that defines T (i.e. an element ofMR0(p, q, f ; H)) one can

prove that the mapping T induces the identity on the homology. This proves the

Proposition 2 (see [15]).

The connected non-compact component of M(R; p, q, f ; H) is identified

with one the next four intervals:

1. [0, 1] – both ends are in ∂1 ∪ ∂4;
2. [0,+∞) – one end is in ∂1 and the other in ∂2 ∪ ∂3;
3. (−∞, 1] – one end is in ∂2 ∪ ∂3 and the other in ∂4;
4. (−∞,+∞) – both ends are in ∂2 ∪ ∂3.
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Figure 3: One-dimensional manifoldM(R; p, q, f ; H).

We will discuss four cases separately (see also Figure 3 for illustration of

every particular case). For the sake of simplicity we always denote the ends of

the connected component ofM(R; p, q, f ; H) (of any type) by w1 and w2.

Case 1. If both ends, w1 and w2, are in ∂1, then it follows from (34) that

the coherent orientations of isolated trajectories inMR0(p, q, f ; H), induce the

coherent orientation of one-dimensional componentM(R; p, q, f ; H) and from

Remark 16 that we can identify the canonical orientation with π−1∗
( d
dR

)
. So we

conclude:

τ
(
w1

) = −τ(w2

)
.

If the ends w1 and w2 belong to different sets ∂1 and ∂4, then w2 = (u1, u2) ∈
M(p, f ; x; H)×M(x, H ; q, f ). Denote by

(
R1, wR1

)
the element u1 � u2 of a

zero-dimensional component ofM(R; p, q, f ; H), for R1 large enough. From

the construction of coherent orientation in Chapter 3.3 we have

σ
(
u1
)
� σ
(
u2
) � σ

((
R1, wR1

)) � σ
(
wR1

)
for R1 regular with respect to π . It holds

τ
(
u1
)
τ
(
u2
)[
1⊗ 1∗u1

]
�
[
1⊗ 1∗u2

] � σ
(
u1
)
� σ
(
u2
) � σ

(
wR1

)
� τ

(
wR1

) [
1⊗ 1∗wR1

]
� τ

(
wR1

) [
1⊗ 1∗u1

]
�
[
1⊗ 1∗u2

]
,
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so we have τ(wR1) = τ(u1)τ (u2). Since from the Remark 16 it follows

τ(wR1) = τ(w1), we conclude

τ
(
w1

) = τ
(
u1
)
τ
(
u2
)
.

If both ends, w1 = (u1, v1) and w2 = (u2, v2), are in ∂4, in the same way

as in the previous case, using the construction of coherent orientation and the

Remark 16, we conclude

τ
(
u1
)
τ
(
v1
) = −τ(u2)τ(v2).

Case 2. Reasoning as in the Case 1, we conclude

σ
(M(R; p, q, f ; H)

) � τ
(
w1

)
σR, (47)

where σR denotes canonical orientation of M(R; p, q, f ; H) identified with

π−1∗ ( ddR ). If the other end, w2, belongs to ∂2, denote by u2 and v2 the parts of

broken trajectory w2, w2 = (u2, v2). Reasoning in the same way as in the proof

of the Theorem 14, we see that canonical orientation of u2 and reversed canonical

orientation of v2 (because of the Remark 15) induce the same orientation σR , so:

−σ (M(R; p, q, f, g; H, J )
) � −σ (u2) � σ (v2)

� τ
(
u2
)
τ
(
v2
)[
u2s
]
�
[− 1⊗ 1∗v2

] � τ
(
u2
)
τ
(
v2
)
σR.

(48)

From (47) and (48) we conclude

τ
(
w1

) = −τ(u2)τ(v2).
On the other hand, if w2 ∈ ∂3, w2 = (u2, v2), the trajectory v2 is now the one

which gives the canonical orientation of w2 (unlike before), and it is the second

ingredient in gluing process, so it holds

τ
(
w1

) = −τ(u2)τ(v2).
Case 3. Here both ends are broken, but w1 = (u1, v1) is the element of ∂2 ∪ ∂3
and w2 = (u2, v2) of ∂4. As in Case 1 we have τ(wR) = τ(u2)τ (v2) for R large

enough. Now in the same way as in Case 2 we see that it holds:

τ
(
u1
)
τ
(
v1
) = τ

(
u2
)
τ
(
v2
)

if w2 ∈ ∂2 ∪ ∂3.

Case 4. Reasoning in the similar way as in previous discussion we obtain:

τ
(
u1
)
τ
(
v1
) = −τ(u2)τ(v2).
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Hence we conclude that in (46), in both left and right side, we count only the

ends that are the ends of either [0,+∞) or (−∞,+∞], exactly with signs as

in (46).

The first half of the Proposition 2, the identity 	 ◦ � = IdHF , also holds

in homology with Z coefficients. To prove this, we introduce the following

auxiliary spaces. For two Hamiltonian paths x and y with the ends in OM ,
define:

M(ε, x, y, H ; f ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u−, u+, γ )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u− : (−∞, 0] × [0, 1] → T ∗M

u+ : [0,+∞)× [0, 1] → T ∗M

γ : [−ε, ε] → M
dγ
dt
= −∇ f (γ )

∂u±
∂s
+ J

(
∂u±
∂t
− XρR H (u±)

)
= 0

u−
(
∂((−∞, 0] × [0, 1])) ⊂ OM

u+
(
∂([0,+∞)× [0, 1])) ⊂ OM

u±
(
0,

1

2

)
= γ (±ε)

u−(−∞, t) = x(t)
u+(+∞, t) = y(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
where ρR now is a smooth function such that

ρR(t) =
{
1, |t | ≤ R
0, |t | ≥ R + 1

for fixed R > 0. Define also

Mε(x, y, H ; f ) :=
{
(u−, u+, γ, ε) | (u−, u+, γ ) ∈M(ε; x, y, H ; f )}.

We define a special class of Fredholm operators associated to the above spaces

and the corresponding equivalent class in the same way as in the case of the

classes from�. We construct a coherent orientation for these classes of operators

similarly as in the Section 3.3, by gluing an orientation of a class from �̃ with

an orientation of a class from �̃. The canonical orientation is again 1 ⊗ 1∗ for
every zero dimensional component. As before, we define a sign τ as a number

±1 such that σ(w) = τ(w)[1⊗ 1∗].
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Now define

P : CHk(H)→ CHk(H), x �→
∑

μH (y)=k
nε(x, y, H ; f )y

where

nε(x, y, H ; f )y :=
∑

wε∈Mε(x,y,H ; f )
τ (wε)

and

L : CHk(H)→ CHk+1(H), x �→
∑

μH (y)=k+1
n(ε; x, y, H ; f )y,

where

n(ε; x, y, H ; f )y :=
∑

(ε,wε)∈M(ε,x,y,H ; f )
τ (ε,wε).

The symbolwε stands for the triple (u−, u+, γ ). From an analysis of the bound-

ary of one-dimensional manifoldM(ε, x, y, H ; f ) similar to one given for the

case � ◦	, we conclude

	 ◦�− P = L ◦ ∂M + ∂M ◦ L ,
i.e. the map 	 ◦� is chain homotopic to L , which is again the identity map in

the homology.

5 Conclusion

We proved that, given the coherent orientation for all trajectory spaces involved

(mixed and non-mixed, parameterized and non-parameterized objects) there ex-

ists the isomorphism between Morse and Floer homology with Z coefficients.

We also showed that this coherent orientation exists. The question is whether

there exists such coherent orientation (and, consequently, the isomorphism) in

the case when two coherent orientations forMorse and Floer homology are given
as in [22] and [9] respectively.

Let σ M and σ F be the given coherent orientations for operators in Morse and

Floer homologies respectively. Let p0, K0, P−, w0, F0, x0, v0 and C0 be as in

Chapter 3.3, and σ the coherent orientation given there. Let

σ1 := σ |�M σ2 := σ |�F .
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Since σ1 and σ M (σ2 and σ F respectively) are two coherent orientation of �M

(respectively �F ), we can choose f M ∈ �M f F ∈ �F such that

f M σ M = σ1, f F σ F = σ2

where CM� , CF� are the groups of transformations for coherent orientation in

Morse and Floer homology. We can construct the extension f ∈ � that satisfies

f |CM� = f M , f |CF� = f F .

It is determined uniquely by value of f atw0, since the sets�
M and�F (and the

corresponding coherent orientations) are disjoint. So choose f ([w0, F0]) := 1

and extend f to C� by the requirements

f |CM� = f M , f |CF� = f F , f ([w, F]�[u, L]) = f ([w, F]) f ([u, L]),
for all [w, F], [u, L] compatible for gluing. By inspection one shows that f ∈ �.

Define the coherent orientation by

σ ′ := f σ.

Due to the construction it follows that σ ′ is coherent and that it coincides with

σ M and σ F on CM� and CF� . So we proved the following Theorem, and hence

the Theorem 3.

Theorem 17. For two given coherent orientation of �M and �F that induce
Morse and Floer homologies HM∗( f,Z) and HF∗(H,Z) with Z coefficients,
there exists a coherent orientation of � (the set of all involved classes of op-
erators) that coincides with two given coherent orientations on corresponding
classes, inducing the isomorphism between HM∗( f,Z) and HF∗(H,Z). �
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