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Symmetries of quadratic form classes and
of quadratic surd continued fractions.
Part I: A Poincaré tiling of the de Sitter world

Francesca Aicardi

Abstract. The problem of classifying the indefinite binary quadratic forms with inte-
ger coefficients is solved by introducing a special partition of the de Sitter world, where
the coefficients of the forms lie, into separate domains. Under the action of the spe-
cial linear group acting on the integer plane lattice, each class of indefinite forms has a
well-defined finite number of representatives inside each such domain.
In the second part, we will show how to obtain the symmetry type of a class and also
the number of its points in all domains from a single representative of that class.
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Introduction

In this paper, by form, we mean a binary quadratic form:

f = mx2 + ny2 + kxy, (1)

where m, n, and k are integers and (x, y) ranges the integer plane lattice.

Definition. The discriminant of the form (1) is the integer number

k2 − 4mn.

We denote it by �.

Following [1], we say that a form is elliptic if � < 0, hyperbolic if � > 0,
and parabolic if � = 0.
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In the usual terminology, the elliptic forms are said to be definite and the
hyperbolic forms are said to be indefinite.

Given a topological space and a group acting on it, the images of a single
point under the group action form an orbit of the group action. A fundamental
domain is a connected subset of the space which contains exactly one point from
each orbit.

The problem of classifying and counting the orbits of binary quadratic forms
under the action of SL(2,Z) on the xy plane dates back to Gauss and Lagrange
([5], [6]).

The description of the orbits of the positive definite forms under the action
of the modular group on the Poincaré model of the Lobachevsky disc is well
known: in this model, there is a special tiling of the disc into fundamental
domains. In this way, the tiles (or fundamental domains) are in one-to-one
correspondence with the group elements, namely, each tile corresponds to the
element that sends a chosen domain (called principal fundamental domain) to it.
The upper sheet of the two-sheeted hyperboloid that contains the points (m, n, k)
determining the positive definite forms with a given discriminant, is represented
by the Lobachevsky disc in such a way that each class of forms has exactly one
representative in each domain.

The complement to the Lobachevsky disc in the projective plane containing
it, to which the hyperbolic forms are projected, is not tiled by the same net of
lines (for instance, the straight lines of the Klein model, separating the domains
of the Lobachevsky disc) into domains of finite area.

In this article, we show that the one-sheeted hyperboloid where the coefficients
of the forms with a given discriminant lie can be specially partitioned into separate
domains: in each such domain, each orbit has a finite (well-defined) number of
points.1

This situation is intrinsically different from that of the Lobachevsky disc,
where all domains of the partition can be chosen as principal. In our tiling
of the de Sitter world, there are two special domains, which we call principal
domains. An SL(2,Z) change of coordinates in the xy plane (and, consequently,
on the hyperboloid) changes the shape of only a finite set of tiles of the partition
(including the principal domains) but preserves all the peculiar properties of the
tiling:

1. The complement to the principal domains of the hyperboloid is sepa-
rated by the principal domains into four regions: two of them (called

1This is surprising. Indeed, the orbit of a generic point (i.e., with irrational coordinates) on the de
Sitter world is dense, as Arnold proved [2]. Our results imply only that the number of points of
such an orbit is unbounded in each domain.
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upper regions) are bounded from the circle at+∞ of the hyperboloid, and
the other two regions (lower regions) are bounded from the circle at −∞.
The circles at infinity are invariant under the action of the group.

2. Each of the upper and lower regions are partitioned into a countable set of
domains in one-to-one correspondence with the elements of the semigroup
of SL(2,Z) which are generated by A = (10 1

1) and B = (11 0
1).

3. Every orbit has a fixed finite number of points, Nu for example, in each
domain of the upper regions, and a fixed finite number of points, Nd for
example, in each domain of the lower regions. The principal domains
contain N = Nu + Nd points of that orbit.

To understand this unusual situation in which the partition changes without
changing the number of integer points in the corresponding domains, we give
an example where the properties 1 and 3 above are illustrated on a finite set of
domains (also see Fig. 15 for more points of the orbits and more domains).

upper  regions

lower regions

upper  regions

lower regions

Principal  domains

This figure shows some tiles of two different partitions related by a change of
coordinates (namely, by the operator B A) on the hyperboloid projected onto an
open cylinder and the points of the three different classes of integer quadratic
forms with k2 − 4mn = 32, lying in these tiles.
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The principal domains are marked by a thick black boundary: they contain
five points of the first orbit (circles), five points of the second orbit (black discs),
and four points of the third orbit (squares).

Each domain in the upper regions contains four points of the first orbit, one
point of the second orbit, and two points of the third orbit. Each domain in the
lower regions contains one point of the first orbit, four points of the second orbit,
and two points of the third orbit.

The classical reduction theory introduced by Lagrange for indefinite forms
states that there is a finite number of forms such that m and n are positive and
m+n is less than k. The reduction procedure, which allows finding these forms,
can be described in terms of the tiling introduced in this work. We will see this
relation in more detail in Part II.

The reduction theory that follows directly from our tiling is closer to that
expounded in [4] because the ‘reduced’ forms here are those with mn < 0, as
in our definition. The number of reduced forms by Lagrange is equal to the
number nu of forms in each domain of the upper regions in our partition, while
the number of reduced forms by our definition is the number nu + nd of reduced
forms in the principal domains.

The essential new element with respect to the known theories is the geometric
standpoint, which allows seeing the action of the group in the space of forms,
exactly as for the modular group action on the Lobachevsky disc.

Here we also introduce a classification of the types of symmetries of the classes
of forms. This classification allows us to classify the symmetries of the periods
of the continued fractions of the quadratic irrationalities (or surds), answering
more recent questions posed by Arnold [3], as we will show in Part II, where
we will also see how to calculate the number of points in each domain for every
class of hyperbolic forms in terms of the coefficients of a form belonging to that
class.

I am deeply grateful to Arnold, who posed the problem of the missing geo-
metrical model for hyperbolic forms in [1]. A special thank to Ricardo Uribe
Vargas, for his genuine interest in this work and to the referee for his accurate
reading to correct the style of the manuscript.

1 The space of forms and their classes

Besides the coordinates m, n, k in the space of forms, we will systematically use
also the following coordinates:

K = k,
D = m − n,
S = m + n.
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Remark. A point having integer coordinates K , D, S represents a form if and
only if D ≡ S mod 2. In such coordinates, the discriminants is

� = K 2 + D2 − S2.

Definition. A point having integer coordinates (m, n, k) or integer coordinates
[K , D, S] such that D ≡ S mod 2 is called a good point and is denoted by a
bold letter.

Notation. To avoid confusion, the [K , D, S] coordinates of a good point will
be indicated in square brackets whereas the coordinates (m, n, k) in round
brackets.

1.1 Action of SL(2,Z) on the form coefficients

Let f be the triple (m, n, k) of the coefficients of the form (1), and let f ′ be the
triple (m ′, n′, k ′) corresponding to the form f ′ obtained from f by the action
of an operator L of SL(2,Z) on Z2. That is, if v = (x, y), then we define
f ′(v) = f (L(v)).

With L, we thus associate the operator L acting on Z3 as

f ′ = Lf . (2)

This defines an homomorphism: L �→ L from SL(2,Z) to SL(3,Z). Let
T denote the image of this homomorphism. The subgroup T is isomorphic to
PSL(2,Z) because L and −L have the same image.

Definition. The orbit or class of a good point f is the set of points obtained by
applying all elements of the group T to f . The class of f = (m, n, k) is denoted
by C(f) or by C(m, n, k).

The following statements are obvious or easy to prove:

– All points of the orbit of a good point are good.

– All forms of one orbit have the same discriminant, say �, that is, they
belong to the hyperboloid

K 2 + D2 − S2 = �.
Moreover, in the elliptic case, the orbit lies entirely either on the upper or
the lower sheet of the hyperboloid; in the parabolic case, it lies entirely
either on the upper or the lower cone.
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1.2 The semigroups T + and T −

We consider the generators of the group SL(2,Z)

A =
(

1 1
0 1

)
, B =

(
1 0
1 1

)
, R =

(
0 1
−1 0

)
(3)

and their inverse operators denoted by A−1, B−1, and R−1.
Note that

R = B−1AB−1 = AB−1A and R−1 = A−1BA−1 = BA−1B. (4)

Let A, B, and R denote the corresponding operators of T obtained from
Eq. (2) and A−1, B−1, and R−1 denote their inverses.

Observe that A and R are sufficient to generate SL(2,Z) and constitute the
standard basis of this group.

Remark. In the coordinates (m, n, k) the matrices of the generators A, B, and
R of the group T , are

A =
⎛
⎝ 1 0 0

1 1 1
2 0 1

⎞
⎠ , B =

⎛
⎝ 1 1 1

0 1 0
0 2 1

⎞
⎠ , R =

⎛
⎝ 0 1 0

1 0 0
0 0 −1

⎞
⎠ .

The matrices of the same generators in the coordinates [K , D, S] are

A =
⎛
⎝ 1 1 1
−1 1/2 −1/2
1 1/2 3/2

⎞
⎠ , B =

⎛
⎝ 1 −1 1

1 1/2 1/2
1 −1/2 3/2

⎞
⎠ ,

R =
⎛
⎝ −1 0 0

0 −1 0
0 0 1

⎞
⎠ .

The matrices of A and B are the transposes of each other, and the same holds for
A and B, while the transpose of R is equal to R−1. Since the transpose and the
inverse of R are both equal to R, relations (4) become

R = B−1 AB−1 = AB−1 A = A−1 B A−1 = B A−1 B. (5)

Let T + (T −) denote the multiplicative semigroup of the elements of T gen-
erated by the identity and by the operators A and B (respectively by A−1 and
B−1).
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Definition. A product of n operators
∏n

i=1 Ti , where either Ti = A or Ti = B,
is called word of length n in A and B.

Lemma 1.1.

(a) Each operator T ∈ T + (T ∈ T −) is written uniquely as word in A and
B (in A−1 and B−1).

(b) Each operator T ∈ T can be written as the product V SU, where S belongs
to T + and the operators U and V belong to the set {E, R}, where E is
the identity. Statement (b) also holds with T + replaced with T −.

Proof.

(a) There is no relation involving only the operators A and B in SL(2,Z), and
hence no relation involving only A and B.

(b) Relations (5) allow transforming any word in A, B, R, and their in-
verse operators into a word of type V SU . �

Figure 3 shows the one-to-one correspondence between the tiles of the Loba-
chevsky disc and the elements of the group T � PSL(2,Z): the domain corre-
sponding to a given element of the group is the image of the principal fundamental
domain (I ) by that element. Thus, by Lemma 1.1, any domain is the image of
I by an element of T of the form V SU .

Indeed, any domain in the right half-disc is obtained from I by an operator
of the form SU (using the notation of Lemma 1.1). The same holds for the
domains in the left half-disc replacing T + with T −. The multiplication by R
from the left acts as a reflection with respect to the center. Hence, each domain
in one half-disc can be obtained from I by the operator corresponding to the
domain symmetric to it with respect to the center, multiplied from the left by R.

1.3 Symmetries of the form classes

We present some different types of symmetries that the classes of forms may
have.

To each form f = (m, n, k), there correspond eight forms, obtained from f

by combining three involutions (see Fig. 1):

fc = (n,m,−k),
f = (m, n,−k), (6)

f∗ = (−n,−m, k).

Bull Braz Math Soc, Vol. 40, N. 3, 2009
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All these involutions commute and preserve the discriminant because they
correspond to changes of sign of some of the coordinates K , D, S. In these
coordinates,

fc = [−K ,−D, S], f = [−K , D, S], f∗ = [K , D,−S].
Thus, the eight forms defined by these involutions on the form f lie on the same
hyperboloid as f .

asymmetric k-symmetric (m+n)-symmetric

D

S

antisymmetric

f

*

*

f

f

f

 supersymmetric

fc

-f

fc
mn

k -f

Figure 1: For every symmetry type, the forms denoted by the same symbol and
the same color belong to the same class.

The complementary form fc always belongs to the class of f because fc = Rf

and R ∈ T . We note that the complementary form fc of the form f satis-
fies fc(x, y) = f (y,−x) = f (−y, x) in the xy plane, and the corresponding
PSL(2,Z) change of coordinates is a rotation by π/2.

The complementary of the conjugate form fc = (n,m, k) of the form f =
(m, n, k) is obtained by the reflection of the xy plane with respect to the diagonal,
whose operator (01

1
0) does not belong to SL(2,Z).

The opposite form −f = (−m,−n,−k) = [−K ,−D,−S] is the comple-
mentary of the adjoint of f , i.e., −f = f∗c .

The forms obtained from a form f by conjugation and/or adjunction may or
may not belong to C(f). But if a class contains a pair of forms related by one of
the above involutions or a form that is invariant under such an involution, then
the entire class is invariant under that involution.

Proposition 1.2. Let σ be one of the involutions: σ(f) = f̄ , σ(f) = f∗ or
σ(f) = f

∗. If, for some f , σ(f) ∈ C(f), then any g ∈ C(f) satisfies σ(g) ∈ C(f).

Proof. We must first prove the following lemma.

Bull Braz Math Soc, Vol. 40, N. 3, 2009
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Lemma 1.3. The following identities hold:

1. (Af)∗ = B−1f∗; (Bf)∗ = A−1f∗;
2. Af = A−1 f; Bf = B−1 f;
3. (Af)∗ = Bf

∗; (Bf)∗ = Af
∗
.

(7)

Proof of the lemma. Let f = (m, n, k). We have Af = (m,m+n+k, k+2m)
and Bf = (m + n + k, n, k + 2n).

1. Since f∗ = (−n,−m, k), we have (Af)∗ = (−m−n−k,−m, k+2m) and
B−1f∗ = (−n−m−k,−m, k+2m); (Bf)∗ = (−n,−n−m−k, k+2n)
and A−1(f∗) = (−n,−m − n − k, k + 2n).

2. Since f = (m, n,−k), we have Af = (m,m + n + k,−k − 2m) and
A−1 f = (m,m + n + k,−k − 2m); Bf = (m + n + k, n,−k − 2m) and
B−1 f = (m,m + n + k,−k − 2m).

3. Since f
∗ = (−n,−m,−k), we have Af = (m,m + n + k,−k − 2m),

(Af)∗ = (−n−m−k,−m,−k−2m), and Bf
∗ = (−n−m−k,−m,−k−

2m); Bf = (m+n+k, n,−k−2n), (Bf)∗ = (−n,−n−m−k,−k−2n),
and Af

∗ = (−n,−m − n − k,−k − 2n). �

Proof of Proposition 1.2. If g ∈ C(f) then g = T f for some operator T ∈ T .
But any operator T ∈ T can be written as a word in A and B and their inverses.
Then Lemma 1.3 implies that σ(T f) = T ′σ(f) for some T ′ ∈ T . Therefore, if
σ(f) ∈ C(f), then σ(g) = T ′σ(f) ∈ C(f). �

Definition. A class of forms is said to be (see Fig. 1)

1. asymmetric if it is only invariant under reflection with respect to the axis
of the coordinate S (K = 0, D = 0). (It contains only pairs of comple-
mentary forms);

2. supersymmetric if it contains all eight forms obtained by combining the
three involutions.

3. k-symmetric if it is not supersymmetric but is invariant under reflection
with respect to the plane k = 0 (K = 0). (It contains the conjugate form
f for each f);

Bull Braz Math Soc, Vol. 40, N. 3, 2009
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4. (m+n)-symmetric if it is not supersymmetric but is invariant under reflec-
tion with respect to the plane m + n = 0 (S = 0). (It contains the adjoint
form f∗ for each f);

5. antisymmetric if it is not supersymmetric but is invariant under reflection
with respect to the planes m = 0 and n = 0 (|S| + |D| = 0). (It contains
the antipodal form f

∗ = (−n,−m,−k) = [−K , D,−S] for each f).

Remarks.

1. Each of the above types of classes is invariant under reflection with re-
spect to some plane or some axis through the origin of the coordinate
system, a plane or axis that is noninvariant under the action of the group
T . Hence, these symmetries a priori no longer hold in another system of
coordinates. But we proved (Proposition 1.2) that the action of the group
T preserves each of the symmetries, and the same symmetry definitions
hence hold in any system of coordinates obtained by a T coordinate trans-
formation. This is equivalent to saying that a symmetry of a class of forms
is a symmetry with respect to all infinite planes (or axes) that are the images
under T of one of such symmetry planes (or axes).

2. The opposite form,−f , belongs to the class of f only if the class is (m+n)-
symmetric or supersymmetric (see Fig. 1).

2 Elliptic forms

In this section, we treat the classification of positive definite forms to introduce
some notions and terms that are used in Secs. 3 and 4.

We define a map from one sheet of the two-sheeted hyperboloid to the open
unitary disc, which gives the explicit one-to-one correspondence between the
integer points of an orbit on the hyperboloid and the domains of the classical
Poincaré tiling of the Lobachevsky disc.

Let P be the following normalized projection from the upper sheet of the
hyperboloid K 2 + D2 − S2 = � (� < 0) to the disc of unit radius. Let
p = [K , D, S] be a point on the hyperboloid (see Fig. 6, left), p′ be its projection
from the point O ′ = [0, 0,−ρ] (ρ = √−�) to the disc of radius ρ in the plane
S = 0. The image of the normalized projection Pp is defined by

Pp =
{ K̃ = K

ρ+S

D̃ = D
ρ+S .

(8)
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Let L = (ac b
d) be an operator of SL(2,Z) and L be its corresponding operator

of T defined by (2).
Let L̃ denote the operator acting on the disc of radius 1 by the rule

L̃(Pp) = P(Lp). (9)

Besides L̃ , the operator L ∈ SL(2,Z) determines another map from the disc
to itself. Let HL be the homographic operator acting on the upper complex
half-plane {z ∈ C : Im(z) ≥ 0}:

HL z = az + b
cz + d

. (10)

The following map π : z → w sends the upper complex half-plane to the
unitary complex disc {w ∈ C : |z| ≤ 1} (Fig. 2):

w = π z = 1+ i z
1− i z

. (11)

0 1-1

1
0

1

-1
2

2

-2
-2

Figure 2: The map π from the upper-half plane to the Lobachevsky disc. The
standard principal fundamental domain is shown in gray color.

We define the operator L̂ acting on the complex unit disc by

L̂(w) = π(HL ◦ π−1(w)). (12)

Proposition 2.1. The actions of the operators L̂ and L̃ on the unitary disc
coincide under the identification

D̃ = Re(w), K̃ = Im(w).

We prove it by writing the operators corresponding to the SL(2,Z) genera-
tors explicitly and by comparing their actions on the coordinates of a point of
the disc.
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Remark. The group of operators defined by Eq. (9) is isomorphic to the ho-
mographic group of the operators HL and to the group T , i.e., to PSL(2,Z).
We designate its generators by the same letters as the corresponding genera-
tors of T .

We take the pair (K̃ , D̃) as coordinates in the Lobachevsky disc. Hence, our
Lobachevsky disc is obtained from the unitary complex disc with the coordinate
w = u + iv (see Figs. 2 and 3) by reflection with respect to the diagonal v = u.

The Lobachevsky disc is shown in Figure 3. The principal fundamental do-
main is indicated by the letter I (the bold line at the boundary belongs to it and
the dotted line does not). The other domains are obtained by applying some
elements of PSL(2,Z), written in terms of R, A, B, and their inverses to I.

I

AA

A

AAA

R
BR

B

AR

B

A

AR

BR

AA

AAA

AAR

BBBB

BBBR

BBRBBR

BBBR

AAR

ABR

AB

BA

BAR

BA

ABR

AB

BAR

BBA

BBB
BBAR

BBA

AAAR
AAB
AABRAABR

AABR
AAAR

K

Dp

p

p

1

3

2

BBAR
BBB

Figure 3: A finite set of domains in the Lobachevsky disc with coordinates K̃ , D̃.

The expressions are not unique because of relations (5) involving these gen-
erators. We have chosen this representation in order to see the meaning of
Lemma 1.1, which is decisive in Sec. 4.

Remark. The choice of a fundamental domain as principal is arbitrary, as well
as the choice of a coordinate system in the plane of forms related to the canonical
one by an element of PSL(2,Z).

In the figures, the inverse operators A−1 and B−1 are denoted by A and B.
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Each orbit has exactly one point in each domain. In Figure 4, the Lobachevsky
disc with a finite subset of domains is shown together with a finite part of the
three distinct orbits in the case � = −31.

Figure 4: Finite subsets of the three distinct orbits in the case � = −31, pro-
jected to the Lobachevsky disc, with coordinates (K̃ , D̃). The projection of the
representative point (m, n, k) of each orbit lies in the principal fundamental do-
main. Two asymmetric orbits are shown by boxes (2,4,−1) and rhombi (2,4,1),
and one k-symmetric orbit is shown by circles (1,8,1).

Remark. The opposite, the antipodal, and the adjoint of a positive-definite or
negative-definite quadratic form f are respectively negative-definite or positive-
definite quadratic forms; hence, they cannot belong to the same class of f .
Therefore, a class of elliptic forms can have only two types of symmetries: it is
either k-symmetric or asymmetric.

2.1 The hierarchy of the points at infinity

This section is important for our study of hyperbolic forms.
Let C denote the circle at infinity bounding the Lobachevsky disc. By the

PSL(2,Z) action, the points of C with rational coordinates inherit a hierarchy
(explained below), on which our partition of the de Sitter word is based.

Bull Braz Math Soc, Vol. 40, N. 3, 2009
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Let π ′ denote the composition of the map π (see eq. (11)) with the reflection
of the disc-image (|w| ≤ 1) with respect to the diagonal (Im(w) = Re(w)).

We consider only the right half of the circle C because of the symmetry of
the picture. This semicircle (K̃ ≥ 0) is the image under π ′ of the real half-
line (together with the infinite) x ≡ Re(z) > 0 of the half-plane where the
homographic operators act.

The endpoints of this semicircle, p1 : (K̃ , D̃) = (0, 1) and p2 : (K̃ , D̃) =
(0,−1), are the points of the zeroth generation, being the images under π ′ of the
points x1 = 0 and x2 = ∞.

The rational points xi of the real half-line are written as fractions: 0 ≡ 0/1,
∞ ≡ 1/0, q ≡ q/1 if q ∈ Z, etc., and the points pi are their images under π ′
on C .

Here, A and B are the generators of the homographic group associated with
the generators A and B of SL(2,Z):

A : x → x + 1

1
; B : x → x

x + 1
. (13)

We consider the iterated action of such generators on the points x1 = 0 and
x2 = ∞. We first have

Ax1 = x3, Bx1 = x1, Ax2 = x2, Bx2 = x3, (14)

where x3 = 1/1 is the preimage under π ′ of the point p3 with coordinates
K̃ = 1, D̃ = 0.

Definition. The points of the nth generation (n > 1) in R+ are obtained
from the point x3 = 1/1 of first generation by applying all the 2n words of
length n in the generators A and B to it.

The hierarchy and the order of these points is shown in the following scheme,
where T denotes any word of length n − 1 in the generators A and B:

 T 

A

n+2

generation

n+1

n

B

AAABBABB  T  T  T  T 

 T  T 

(1/1)

(1/1) (1/1)(1/1)(1/1)

(1/1)(1/1)

The points of all generations have a nice algebraic property that we recall.

Definition. We call the points TA(1/1) and TB(1/1) of the (n+1)th genera-
tion sons (respectively, the A-son and the B-son) of the point T(1/1) of the nth
generation. Thus, T(1/1) is the father of his sons. In the scheme above, the
segments indicate the father-son relations.
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Remark. The following order relations hold: TB(1/1) < T(1/1) < TA(1/1).
Moreover,

TBU(1/1) < T(1/1) < TAV(1/1),

where U and V are arbitrary words in the generators A and B. That is, all de-
scendants from the B-son of a number xi are less than all descendants from the
A-son of xi .

Farey rule. The coordinate of a point xi of the nth generation can be calcu-
lated directly from those of his father and his nearest ancestor (i.e., the point,
among its ancestors, which is the closest to it in R+), by the rule shown in the
following scheme:

p/q

r/s

(p+r) / (q+s)

n-k
generation

  n

n-1

...

In the following scheme of the hierarchy, each point xi is connected by seg-
ments to its two sons, to its father, and to its closest ancestor. Note that the
descendants of B(1/1) are the inverse fractions of the descendants of A(1/1).

4/7

1/0

5/71/5

1/2

3/12/3

3/8

1/3

1/1

3/2

2/1

7/27/3

0/1

5/4 8/5

3/5 3/41/4 2/5 4/15/24/3 5/3

5/8 4/52/7 3/7 5/18/37/5 7/4

I

II

III

IV

V

0
generation

Remark. All positive rational numbers are covered by this procedure.

The point xi = p/q is sent by π ′ to the point of C with the coordinates (K̃ , D̃):

K̃ = 2pq
p2 + q2

, D̃ = p2 − q2

p2 + q2
. (15)

The map π ′, restricted to the right half line, induces an ordering and a hier-
archy on the rational points of the right half-circle, from those of the positive
rational points.
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We will define a similar ordering and hierarchy on the rational points of the
left half-circle. Observe that the point (K̃ , D̃) = (−1, 0) of C is the image under
π ′ of the point −1/1. The above construction can be repeated by the iterated
action of the inverse generators A−1 and B−1 on the point (−1/1) by regarding
the point −1/0 = −∞ as the preimage of the point p2. The rational points
in the real half-line x < 0 are thus endowed with an ordering and a hierarchy
which are inherited by the points with rational coordinates on the left half of
the circle C .

3 Parabolic forms

The map π ′ sends the rational numbers to the Pythagorean triples {(a, b, c) ∈
Z

3 : a2 + b2 = c2}:
p
q
→ (

2pq, q2 − p2, p2 + q2
)
. (16)

Definition. A good point [K , D, S] is said to be Pythagorean if K 2 + D2 =
S2. If K , D, and S have no common divisors, then the triple is said to be simple.
If [K , D, S] is Pythagorean, then the set of points {[λK , λD, λS], λ ∈ Z},
all Pythagorean, is called a Pythagorean line.

The Pythagorean points belong to the cone � = 0, and any good point be-
longing to the cone is Pythagorean.

Lemma 3.1. There exists a one-to-one correspondence between the Pythago-
rean lines and the points with rational coordinates pi on the circle C.

Proof. By formula (16) we associate a Pythagorean triple with each point pi
on the circle C . This triple represents a good point because b − c ≡ 0 mod 2.
On the other hand, given a simple good point [K , D, S], the equations

K = 2pq, D = p2 − q2, S = p2 + q2

have the solution

p =
√
(S + D)

2
, q =

√
(S − D)

2
, i.e., p = √m, q = √n.

Since S = m + n and D = m − n and in this case K = 2
√

mn, m and n
have no common divisors; otherwise, the triple [K , D, S] would not be simple.
But the equality K 2 = 4mn with m and n relatively prime implies that m = p2
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and n = q2 for some integers p and q. Hence, we associate a point pi on the
circle C with each simple Pythagorean triple, and vice versa. The Pythagorean
line corresponding to pi = (K̃ , D̃) is the line through 0 and [K̃ , D̃, 1] on the
cone of parabolic forms. �

Theorem 3.2. The set of classes of forms with � = 0 is parametrized by
the forms of type ax2, with a ∈ Z.

Proof. We prove that for all a ∈ Z, the orbits containing the points [K , D, S] =
[0, a, a] are distinct. Let us suppose that the point r := [0, b, b] belongs to the
same orbit of the point p = [0, a, a]. The form f = ax2 is therefore in the
same class as the form f ′ = bx2. This means that there exists an operator
L = (α

γ

β

δ

)
of SL(2,Z) such that a(αx + βy)2 = bx2. This can be satisfied only

by β = 0, and by α = δ = 1 because αδ− γβ = 1. Hence, a = b. On the other
hand, any parabolic form f = mx2 + ny2 + kxy, satisfying k2 − 4mn = 0, can
be written as a(αx + βy)2, where a is the greatest common divisor of (m, n, k).
The integers α and β are relatively prime because they are the elements of a row
of an SL(2,Z)matrix. For every pair of relatively prime integers α and β, there
exist two integers γ and δ such that αδ − γβ = 1. Hence, the inverse of the
operator L is the operator of SL(2, Z) transforming f into ax2. �

4 Hyperbolic forms

Let X be the set of planes through the origin in the three-dimensional space with
coordinates K , D, S obtained from the plane D = 0 by the action of group T .
These planes subdivide the interior of the cone (K 2 + D2 < S2) into domains
(some of these planes are shown in Fig. 5). These planes intersect both sheets
of the two-sheeted hyperboloid and subdivide them into domains; the domains
that belong to the upper sheet are projected by P (see Sec. 2) to the domains of
the Lobachevsky disc.

The closure X of X contains the planes tangent to the cone along all Pytha-
gorean lines.

The intersections of the planes of X with the one-sheeted hyperboloid H
(K 2 + D2 − S2 = 1) form a net of lines that is dense in H .

In the interior of the unit disc, the intersections of the plane S = 1 with the
planes of the set X are the lines of the Klein model of the Lobachevsky disc.
The arcs of circles joining pairs of points of the circle at infinity of the Poincaré
model are substituted by the chords connecting these points. We are interested
in the prolongations of these chords outside the disc. The description of the de
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S

K
-D

fundamental   domain

Figure 5: The principal fundamental domain in the space of form coefficients.

Sitter world is based on the “limit” chords, i.e., the tangents to the circle at all
rational points of it.

4.1 The Poincaré tiling of the de Sitter world

Let H� denote the one sheeted hyperboloid with equation K 2 + D2 − S2 = �,
� > 0, in the coordinates [K , D, S].

By analogy with the standard projection P from the upper sheet of the two-
sheeted hyperboloid to the Lobachevsky disc, we have chosen the following
projection Q from H� to the open cylinder CH :

CH =
{[K , D, S] : K 2 + D2 = 1, |S| < 1

}
.

The coordinates (s, φ) of the cylinder CH are obtained from the coordi-
nates K , D, S of H� by:

s = S
r + ρ , where r =

√
K 2 + D2 and ρ = √�, (17)

and φ is the angle defined by the relations K = r cosφ and D = r sin φ (see
Fig. 6, right).

Remark. Two points f and f ′ belonging to different hyperboloids H� and H�′
have the same projection in CH iff f ′ = αf , where α = √�′/�.
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The border of the cylinder consists of two circles, denoted by c1 (s = 1) and
c2 (s = −1).

p

q'

p'

S

KO

q

p

1
p'

K

D

K

D

O'

S

q'

2

s
1

0

q

=0

O'

ρ ρ
ρ

Figure 6: Projection P, left, and Q, right.

0 2πφ
-1

1

s

Figure 7: Projection on the cylinder CH of some lines, intersection of H with
the planes tangent to the cone along Pythagorean lines.

Let H 0 and H 0
R denote the open domains

H 0 = {[K , D, S] ∈ H : |S| < |D|, D > 0
};

H 0
R = {[K , D, S] ∈ H : |S| < |D|, D < 0

}
.

Observe that H 0
R = RH 0.

Remark. Since the planes tangent to the cone intersect the hyperboloid H
along two of its generatrices, the boundaries of H 0 and H 0

R are straight half-
lines.

For simplicity, we let the same letters denote the domains on H and their
images under Q on the cylinder CH .

The circles c1 and c2 in the respective planes S = 1 and S = −1 coincide with
the circle C at infinity of the Lobachevsky disc. Hence, the points with rational
coordinates (K̃ , D̃) on c1 and c2 are also mapped, according to (15), into the
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−1/1   1/2 1/0  0/1   1/1  −2/1  2/1−1/2 −1/1

-1

1

HR

  0  0H

a b

Figure 8: a) The Poincaré tiling of the de Sitter world: domains of the first,
second, and third generations are indicated by I, II, and III. b) The segments
at the border of a connected component are solid if they belong to it, dashed
otherwise. The vertices are represented by black discs if they belong to the
connected component, by white discs otherwise.

points pi of the first, second, third, . . . generations with the hierarchy explained
in Sec. 2.1.

On the upper circle c1 in Figure 8, the points pi up to the second generation
are denoted by the corresponding rational numbers xi .

Note that the upper and lower vertices of the domains H 0 and H 0
R have the

coordinates φ = π/2 and φ = 3π/2, and correspond to the points x1 = 0/1 and
x2 = 1/0 = ∞.

Definition. Let H xi and H−1/xi denote the domains obtained from H 0 and
H 0

R by a rigid rotation of CH about the S-axis such that the upper vertex of H 0

transfers to the point π ′(xi ) and the upper vertex of H 0
R transfers to the point

π ′(−1/xi ). The domains H xi thus inherit the hierarchy of the points xi . We
call H 0 = H 0/1 and H 0

R = H 1/0 rhombi2 of the zeroth generation, H 1/1 and
H−1/1 rhombi of the first generation, H 1/2, H−2/1, H−1/2, and H 2/1 rhombi of
the second generation, and so on.

Let H O , H I , H I I , H I I I , . . . denote the unions of the rhombi of the zeroth,
first, second, third, . . . generations.

2Evidently, they are not exactly rhombi neither in H nor in CH .
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Definition. We call Poincaré tiling of the de Sitter world the cylinder CH
provided with the subdivision into domains obtained by the following proce-
dure. Let H 0 = H 0 ∪ H 0

R be the domain of the zeroth generation. Let H I =
H I \ H O be the domain of the first generation,H I I = H I I \ (H O ∪ H I ) be the
domain of the second generation, and so on; the domain of the nth generation
is thus obtained as

H n = H n \ (H O ∪ H I ∪ H I I ∪ · · · ∪ H n−1
)
.

The partition of CH we have introduced is the projection of the partition of H
by planes through the origin. Therefore, the Poincaré tiling is a universal model
for the hyperboloid H (� = 1) as well as for H�, for every positive �.

Figure 8 shows the domains of different generations. For n > 0, the domain
of the nth generation, H n, has 2n+1 connected components.

Each connected component ofH n, n > 0, has the form of a rhomboid in CH .
Observe that the two segments bordering the bottom of a connected component
belong to this connected component iff s ≥ 0 and the two segments bordering
the top of a connected component belong to this connected component iff s ≤ 0
(see Fig. 8,b).

The action of A, B, A−1 and B−1 on the domain H 0 is shown in Figure 9,
where φ varies from −π/2 to 3π/2 and H 0 is in the center.
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Figure 9: Images under A, B, A−1, and B−1 of H 0. The letter I indicates the
four connected components of the domain of the first generation H I .
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In the figures and in the subscript indices, the inverse operators A−1 and B−1

are denoted by A and B for short.
We have subdivided H 0 into subdomains, denoted by N, S, E, and W.

The operators A and B and their inverses map H 0 partly to itself and partly
outside H 0 (see Fig. 9).

Remark. Since H 0
R = RH 0, the corresponding actions on H 0

R are obtained
from the following relations coming from (5):

A = RB−1 R; B = R A−1 R; A−1 = RB R; B−1 = R AR. (18)

Lemma 4.1. The parts of the images of H 0 (resp. of H 0
R) under A, B, A−1

and B−1 that are not in H 0 (resp. in H 0
R) are disjoint and they form the first-

generation domain H I .

Proof. The boundary of each domain is formed by segments of straight lines
and/or by half-straight lines in R3, by construction. Therefore it suffices to
calculate the action of the generators on the vertices of H 0 and on the intersections
of its boundary lines with the boundaries of the rhombi of the first generation
in CH . The actions of A and B on the points on the circles c1 and c2 are
obtained using equations (14). We need only observe that any point qi on the
circle c2 symmetric to the point pi on c1, regarded as the opposite vertex of
the same rhomboidal domain, is opposite (qi = −p′i ) to the point p′i on the
circle c1 at the distance π from pi . For instance, according to (14), the image
under A of the extreme north p1 of H 0 is p3, while the image under A of the
extreme south, q1, is q1, because q1 = −p2 and Ap2 = p2 (see Fig. 9). To
conclude the proof, we observe that the interiors of the segments separating H 0

from the connected components of H I do not belong to H 0, which is open.
But they belong to the images of H 0 under A and B and their inverses, and
therefore coincide with the interiors of the segments at the boundary of the first
generation domain. The extremes of these segments that have coordinate s = 0
do no belong to H 0 but belong to its image under A and B and their inverses,
and therefore they coincide with the vertices of the connected components of
H I belonging to H I . The extremes of these segments that have coordinate
s �= 0 belong neither to H 0 nor to its images under A and B and their inverses,
and indeed they do not belong to H I . �

Let the four connected components of H I , where |S| < |K | and |S| ≥ |D|,
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be denoted, together with their images under Q, by (see Fig. 10, left):

HA = {[K , D, S] ∈H I : S ≥ 0, K > 0
};

HĀ = {[K , D, S] ∈H I : S ≥ 0, K < 0
};

HB = {[K , D, S] ∈H I : S ≤ 0, K < 0
};

HB̄ = {[K , D, S] ∈H I : S ≤ 0, K > 0
}
.

(19)

Remark. The subscript of a connected component of the first-generation do-
main H I indicates the operator that sends one part of H 0 onto this connected
component. Moreover,

HĀ = RHA; HB̄ = RHB .

Figure 10, left, shows the actions of the operators A and B on H 0, H 0
R and the

four connected components of H I .

HH
R
0

H
R
00

HA
H

A

HB HB

3π/2−π/2

1

s

φ
-1

H
R
0

H
R
0

3π/2−π/2

1

s

φ
-1

H0

GA GA

GB GB

Figure 10: Left: The domains H 0, H 0
R and the domains of first generation. Black

arrows indicate the operator A, white arrows the operator B. Right: the four
parts of G0.

Let G0 denote the domain H \ (H 0 ∪ H 0
R), and its projection to CH ; it consists

of four parts (see Fig. 10, right), denoted by

G A = {[K , D, S] : S ≥ |D|, K > 0
};

G Ā = {[K , D, S] : S ≥ |D|, K < 0
};

G B = {[K , D, S] : S ≤ −|D|, K < 0
};

G B̄ = {[K , D, S] : S ≤ −|D|, K > 0
}
.

Observe that G Ā = RG A and G B̄ = RG B .
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Theorem 4.2. Every one of the 2n connected components of the domain of the
(n+1)th generation,H n+1 (n > 1), that lies in G A (in G B) is obtained as T HA
(respectively, as T HB), where T ∈ T + is a word of length n in the generators
A and B.

Every one of the 2n connected components of the domain of the (n+ 1)th gen-
eration,H n+1 (n > 1), that lies in G Ā (in G B̄) is obtained as T HĀ (respectively,
as T HB̄), where T ∈ T − is a word of length n in the operators A−1 and B−1.

The proof of Theorem 4.2 consists of a computation.
In the sequel, the simple world domain indicates a connected component of

the domain of a given generation; i.e., a domain is a tile of our model.
The correspondence between the operators of T + and the domains up to to

fifth generation in G A is shown in Figure 11.
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Figure 11: The domains of second, third, fourth, fifth generations lying in G A
are the image of HA under the operators of T +, written as words of length one,
two, three, and four in A and B.

Remark. The domains HA and HB behave as the respective principal “funda-
mental domains” for the action of the semigroupT + in G A and G B (their images
do not overlap). Similarly for the domains HĀ and HB̄ and the action of T − in
G Ā and G B̄ .

4.2 Coordinate changes

Here, we see how the Poincaré tiling of the de Sitter world changes under
a change of coordinates in the space of the forms (m, n, k) obtained from a
SL(2,Z) coordinate change in the plane.
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Figure 12: The domains of first generation after a coordinate change.

In the Poincaré model of the Lobachevsky plane, changing coordinates by
an operator L ∈ SL(2,Z) in the plane corresponds to replacing the principal
fundamental domain with its image under L , which is another domain of the
tiling.

In the Poincaré tiling of the de Sitter world, there is no fundamental domain,
because the images of a domain under T overlap each other. The key idea
to construct the tiling is to take the nonoverlapping parts of the images of the
principal domains under the action of the semigroups T + or T −.

We explain how the tiling of the de Sitter world is affected by a coordinate
change. We consider the element T ∈ T corresponding to our change of co-
ordinates. The images of H 0 and H 0

R under T are the principal domains of the
new tiling. In Figure 12, T = A−1.

In part (a), the domains marked by T and T R are the images of H 0 and
H 0

R = RH 0 under T . They represent the new rhombi of the zeroth generation.
The dotted lines show the boundaries of H 0 and H 0

R .
Part (b) of the figure shows the images under T A−1 and under T B−1 of the

principal domain H 0 (respectively marked by T Ā and T B̄), and part (c) of
the figure shows the images of the principal domain H 0 under T A and T B
(respectively marked by T A and T B). The union of these images form the
rhombi of the first generation.
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To obtain the domain of the first generation (d), we must exclude the parts
of these rhombi that overlap with the rhombi of the zeroth generation, which
become the principal domains H 0 and H 0

R . We thus obtain four disjoint com-
ponents (denoted by I), which are the images under T of the domains HA, HĀ,
HB , and HB̄ in the tiling introduced in the preceding section. The procedure for
building the tiling continues analogously to that already explained.

4.3 Hyperbolic orbits

Figure 13 shows the action of T on a two-sheeted hyperboloid and on a one-
sheeted hyperboloid, as we now explain.
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Figure 13: (a) Necklaces on a two-sheeted hyperboloid; (b) their projection on
the Lobachevsky disc; (c) Necklaces on a one-sheeted hyperboloid; (d) their
projection on the cylinder CH .
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Definition. Given a good point f , the sequences of points {A j f} and {B j f},
where j ∈ Z, are called necklaces and are respectively denoted by ωf(A) and
ωf(B).

The ordering of Z orders the necklaces. This order, from lower values to
higher values of j ∈ Z, is indicated by an arrow in Figure 13.

Proposition 4.3. Every necklace ωf(A) (every necklace ωf(B)) lies on the
intersection of the hyperboloid containing it with a plane of the family S =
−D + α (respectively S = D + α), α ∈ Z.

Proof. For every f = [K , D, S], Af := [K ′, D′, S′] satisfies D′ + S′ = D+ S,
and Bf := [K ′′, D′′, S′′] satisfies D′′ − S′′ = D − S. �

Remark. The notion of necklace is independent of the type of orbits (elliptic
or hyperbolic). Figure 13 shows some lines where the necklaces lie on both
two-sheeted and one-sheeted hyperboloids. We use black color for necklaces of
type ωf(A) and white color for necklaces of type ωf(B).

In the elliptic case, the projections of the necklaces lie on horocycles tangent
to C at the points K̃ = 0 (p1 and p2 in Fig. 13b).

For each f in E , we consider the set of points reached by the action of the
respective semigroupsT + andT − excluding the identity. This set never contains
f . This can be seen starting by any point in E and trying to reach it by a path
composed of pieces of necklaces always in the same direction of the arrow
(i.e., by an operator of either T + or T −). The situation is different in H : a
sequence of good points obtained one from the preceding one by consecutively
applying either the operator A or the operator B (i.e., forming a path composed
of pieces of necklaces in the positive direction) can lie on a cycle (for instance,
see the dotted line in Fig. 13d).

Remark. Any orbit in CH is invariant under a shift by π , because for every
points f the images of f and Rf in CH are obtained one from the other by a
shift by π .

We separately consider the case where � is a square number.

4.4 The case of � different from a square number

Theorem 4.4. For every integer � > 0 that is not a square number and sat-
isfies � ≡ 0 or � ≡ 1 mod 4, the hyperboloid H� contains at least a good
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point f in such that T f = f for some operator T of T + (T −) different from the
identity. Such a point belongs to H 0 or to H 0

R.

Proof. The discriminant of an integer quadratic form f := (m, n, k) is � =
k2 − 4mn and is therefore congruent to 0 or 1 modulo 4. Theorem 4.4 is proved
by the following Lemmas 4.5–4.9.

Lemma 4.5. The domain H 0 (H 0
R) contains a finite number of good points.

Proof. Since

mn =
(
S2 − D2

)
4

,

the domain H 0 contains all forms where m > 0 and n < 0, while H 0
R contains

all forms where m < 0 and n > 0. From the definition of �, we obtain

4mn = k2 −�.
This equality is satisfied by a finite number of values of k, because the product
mn is negative in H 0. For each of these values, the set of pairs (m, n) such that
|4mn| = �− k2 is finite. �

The condition
√
� /∈ Z implies that m and n cannot vanish; we hence have

|D| �= |S|. Therefore, G0 (G0 := H \ (H 0 ∪ H 0
R)) contains all hyperbolic

forms where m and n have the same sign.

Lemma 4.6. Every good point f in H 0 satisfies Af ∈ H 0 iff Bf ∈ HB and
Bf ∈ H 0 iff Af ∈ HA. Moreover, A−1f ∈ H 0 iff B−1f ∈ HB̄ and B−1f ∈ H 0 iff
A−1f ∈ HĀ. Analogous statements hold with H 0 replaced with H 0

R.

Proof. For the point f = (m, n, k), Af = (m,m + n + k, 2m + k) and Bf =
(m + n + k, n, 2n + k). We have m > 0 and n < 0 because f belongs to H 0.
Now, if Af belongs to H 0, then m + n + k < 0 and therefore Bf ∈ G0. If Af

belongs to G0, then m + n+ k > 0 and therefore Bf ∈ H 0. Similar inequalities
hold for the inverse generators. By Lemma 4.1, if the image under A, B, A−1,
and B−1 of a point in H 0 is in G0, then it respectively belongs to HA, HB , HĀ,
and HB̄ . Analogous arguments hold for H 0

R because of relations (18). �

Definition. A cycle of length t (t > 1) is a cyclic sequence of distinct points
[f1, f2, . . . , ft ] such that fi = Ti−1fi−1 (i = 2, . . . , t) and f1 = Tt ft , where each
of the operators T1, T2, . . . , Tt is A or B.

A cycle of length t is denoted by γf(T1, . . . , Tt), where f = f1. An equivalent
notation for the cycle γf(T1, . . . , Tt) is obviously γg(Tj , . . . , Tt , T1, . . . Tj−1),
where g = f j .
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Lemma 4.7. For every good point f of H 0 (H 0
R), there exists an integer t > 1

such that f belongs to a unique cycle γf(T1, . . . , Tt). This cycle is contained in
H 0 (resp. in H 0

R).

Proof. Let f1 = f . By Lemma 4.6, either Af1 or Bf1 belongs to H 0. Let
f2 = T1f1 be in H 0, where T1 = A or T1 = B. Now let f3 be the point that
belongs to H 0, and so on. We thus find a sequence of points f1, f2, f3, . . . in
H 0. Since H 0 contains only a finite number of good points by Lemma 4.5, the
sequence of points f1, f2, . . . , starting from some index j , must be periodic, i.e.,
we finally find a cycle γfj

(Tj , . . . , Tj−1+t) for some j ≥ 1. We now prove that
j = 1, i.e., f itself belongs to the cycle. Let us suppose that f j �= f . In this case,
f j−1 does not belong to the cycle. We have Af j−1 = f j or Bf j−1 = f j . But we
also have Af j−1+t = fk or Bf j−1+t = fk . This contradicts Lemma 4.6, by which
the images of f j under A−1 and B−1 cannot both lie in H 0. Therefore, f j = f .

The proof for H 0
R is analogous. �

Lemma 4.8. Different cycles are disjoint.

Proof. By Lemma 4.6, any point of a cycle determines the others. Hence, if
two cycles have a common point, then they coincide. �

Lemma 4.9. If
√
� /∈ Z, then H 0 and H 0

R both contain at least one good point.

Proof. Either the discriminant � is divisible by 4, or � = 4d + 1. If� = 4d,
then the point (d,−1, 0) belongs to H 0 and the point (−1, d, 0) belongs to
H 0

R . If � = 4d + 1, then the point (d,−1, 1) belongs to H 0 and the point
(−1, d, 0) belongs to H 0

R . �

Proof of Theorem 4.4. 3 Let f be a good point of H 0 (Lemma 4.9). By Lem-
ma 4.7, it belongs to a cycle γf(T1, . . . , Tt). Hence, T = Tt Tt−1 · · · T2T1 ∈ T +
satisfies T f = f . Observe now that if f satisfies T f = f , for some T ∈ T +,
then f satisfies also f = T−1f , with T−1 ∈ T −. Suppose that f belongs to a
domain of n-th generation (n > 0). If f ∈ G A or f ∈ G B , then, as a consequence
of Theorem 4.2, every T ∈ T +, different from the identity, sends f into a
domain of the (n + j)-th generation, where j is the length of the word T .

3An alternative proof of this theorem is to show that the set of eigenvectors corresponding to the
eigenvalue λ = 1 of the operators of T + contains an integer good vector (v1, v2, v3) such that
|v3| < |v2|, v2

1 + v2
2 − v2

3 = 4d + e, for every d ∈ N and e ∈ {0, 1} whenever 4d + e is not a
square number.
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Similarly, if f ∈ G Ā or f ∈ G B̄ , then f is sent into a domain of (n + j)-th
generation by any word T ∈ T − in A−1 and B−1 of length j . Therefore if
f = T f for some operator T ∈ T + (or T −) different from the identity, then
either f ∈ H 0 or f ∈ H 0

R . �

Theorem 4.10. If � is not a square number, then the T -orbit of every good
point of H� contains exactly one cycle in H0.

Proof. We must prove that: (a) every orbit contains a cycle in H 0, and (b) this
cycle is unique. We consider a point f ∈ G0 and suppose that f ∈ G A (the proof
is analogous in the other cases).

(a) By Theorem 4.2, there exists a unique operator T inT + such that g := T−1f

belongs to HA. Hence, h := A−1g = A−1T−1f is inside H 0 and thus belongs to
a cycle γh by Lemma 4.7. Consequently, the orbit of f contains a cycle.

(b) We must prove that a point of H 0 that does not belong to the cycle γh cannot
be obtained from f by an operator in T . By Lemma 1.1, every operator of T
can be written as U SV , where S belongs to T + or T − and V and U are equal
to the identity or to the operator R. Hence, we try to reach H 0 from f by such
operators. We must start by R, reaching a point p of G Ā. As before, there is only
one operator of T − such that p is the image under it of a point in HĀ. Indeed,
since p = Rf and f = T g,

p = R T g = T̂ Rg ,

where T̂ is the operator obtained from T by replacing each A with B−1 and each
B with A−1. The operator T̂ belongs to T −, and the point j := Rg is in HĀ
because g ∈ HA. We can now reach a point either in H 0 (by A) or in H 0

R (by B).
Since g = Ah, we obtain

Bj = R R Bj = R A−1 R Rg = R A−1 Ah = Rh.

Therefore, the point in H 0
R reached from p in G Ā in this case is exactly Rh.

On the other hand, Aj ∈ H 0 is equal to

Aj = R R Aj = R B−1 R Rg = R B−1 Ah = AR Ah = Bh.

Since Ah ∈ HA, Bh ∈ H 0 (by Lemma 4.6) and hence Bh belongs to the same
cycle of h. The proof is complete. �

Figure 15 shows examples of orbits projected to the cylinder CH .
For every T ∈ T +, let us denote by tA(T ) and tB(T ) respectively the

number of times that A and B appear in T .
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Theorem 4.11. Let T be an operator in T + satisfying T f = f for some good
point f ∈ H 0, being not the power of an operator W ∈ T + which satisfies
W f = f . The number of points of C(f) in HA and HB is respectively equal to
tB(T ) and tA(T ).

Proof. By Theorem 4.4, the set of points of every cycle in H 0 is subdivided
into two disjoint subsets: the set of points whose image under A belongs to HA
and the set of points whose image under B belongs to HB . By Lemma 4.6, the
image under A of a point is inside HA if and only if its image under B is inside
H 0. The number of such points is evidently equal to tB(T ). (see Figs. 14 and
10). Similarly, the image under B of a point is inside HB if and only if the image
under A is inside H 0. The number such points is equal to tA(T ). �

As a consequence of Theorem 4.2 we obtain the following

Corollary 4.12. The orbit of a form f has the same number of points in HA, in
HĀ, and in every domain in G A and G Ā; similarly, it it has the same number of
points in HB, in HB̄, and in every domain in G B and G B̄.

Proof. The fact that the number of points in HA and in HĀ coincide, is due to
the fact that the forms in HA and HĀ belonging to to the same orbit constitute
pairs of complementary forms, being HA = RHĀ. Similarly for the forms in
HB and in HB̄ . Alternatively, we may proceed with the same reasoning proving
Theorem 4.4, applied to the operator T−1, which is a word containing tA(T )
times A−1 and tB(T ) times B−1, to obtain the number of points of C(f) in the
interior of HĀ and of HB̄ (see Fig. 14). The conclusion of the proof follows
from Theorem 4.2. �

4.5 The case where � is a square number

Definition. A form represents zero if it vanishes at least at an integer point
of the plane different from the origin. More generally, a form represents z if it
takes the value z at an integer point of the plane..

If� is a square number, then H� contains forms where the coefficient m or n
vanishes.

A form with vanishing m or n represents zero, as well as any form in its class.
For the forms where m or n vanish, either S = D or S = −D and the

corresponding good points therefore lie on the boundaries of H 0 and H 0
R .
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3π/2−π/2

1

s

φ
-1

H0

H
0

R

HA H
A

HB
HB

Figure 14: The cycle of the orbit of [18, 20,−10] in H 0, and the points of the orbit
in HA, HB , HĀ and HB̄ . Black and white arrows show the action respectively of
A and of B. The orbit is asymmetric.

6.283

–1

0

1

Figure 15: The parts of the three distinct orbits with � = 32 contained in
the domains of the first five generations. The representative points of these
orbits are in coordinates [K , D, S]: [-6,0,2], circles, k-symmetric orbit; [6,0,2],
diamonds, k-symmetric orbit; [-4,4,0], crosses, supersymmetric orbit.
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Theorem 4.13. For each square number � = ρ2, ρ ∈ N, the hyperboloid H�
contains exactly ρ orbits. They are the orbits of the points [K , D, S] = [ρ, r, r ],
r = 0, . . . , ρ − 1.

The proof follows from Lemmas 4.14 and 4.15.
In H�, the segments that belong to the respective common boundaries of H 0

with HA, HĀ, HB , and HB̄ , and belong respectively to HA, HĀ, HB , and HB̄ , are
denoted by

FA = {[ ρ, r, r ], 0 ≤ r < ρ
} ;

FĀ = {[−ρ, r, r ], 0 ≤ r < ρ
} ;

FB̄ = {[ ρ, r,−r ], 0 ≤ r < ρ
} ;

FB = {[−ρ, r,−r ], 0 ≤ r < ρ
}
.

We will use the same notations as well as for their images in CH .
Observe that FA is the lower-right side of the boundary of HA, FĀ is the lower-

left side of the boundary of HĀ, FB is the upper-left side of the boundary of HB ,
and FB̄ is the upper-right side of the boundary of HB̄ (see Fig. 16).

3π/2−π/2 φ
-1

F

F

F
AA

B

H
0

R

1

s

f

g
BF

H
0

H
0

R

h

HA H
A

HB HB

Figure 16: The chain of length 5 in H 0 of the orbit of [9, 2, 2]. Black and white
arrows show the action respectively of A and of B. The orbit is asymmetric.

The action of T + on FA and on FB is deduced from that of T + on HA and
HB , and also the action of T − on FĀ and on FB̄ is deduced from that of T − on
HA and HB (see Theorem 4.2). The following lemma is indeed a corollary of
Theorem 4.2.

Lemma 4.14. Every good point f in H 0 ⊂ H�, where � is a square number,
satisfies Af ∈ H 0 iff Bf ∈ HB, Bf ∈ H 0 iff Af ∈ HA, A−1f ∈ H 0 iff B−1f ∈ HB̄,

Bull Braz Math Soc, Vol. 40, N. 3, 2009



334 FRANCESCA AICARDI

and B−1f ∈ H0 iff A−1f ∈ HĀ.
Moreover, Af ∈ FA iff Bf ∈ FB and A−1f ∈ FĀ iff B−1f ∈ FB̄.

Proof. This lemma is the version of Lemma 4.6 where � is equal to a square
number. Indeed, if f = (m, n, k) and g = Af ∈ FA, then (m+ n+ k = 0). This
implies that g′ = Bf = (m + n + k, n, k + 2n) belongs to FB . The cases of the
inverse generators are similar. �

Lemma 4.15. For every � = ρ2, the orbit of the point [K , D, S] = [ρ, 0, 0]
consists of all the lower vertices of all domains in G A and G Ā and all upper
vertices of all domains in G B and in G B̄.

Proof. The lemma follows from Theorem 4.2 because the points [±ρ, 0, 0] are
the lower points of the domains HA and HĀ and the upper points of the domains
HB and HB̄ . �

Remark. The orbit of the points [±ρ, 0, 0] is supersymmetric.

Proof of Theorem 4.13. By Lemma 4.1, all good points in the interior of the
domain HZ (where Z = A, B, A−1, or B−1) are the images under Z of good
points at the interior of H 0. We are now interested in the images under Z−1 of
the points of FZ that are inside H 0. For instance, we consider a point h ∈ FĀ
(see Fig. 16) which is sent to f ∈ H 0 by A. We then sequentially apply either
A or B to remain inside H 0 until we reach the point g such that both Ag and
Bg belong to the boundary of H 0 (namely, to FA and FB) by Lemma 4.14.
Lemma 4.14 also states that B−1f belongs to FB̄ because A−1f belongs to FĀ.
By a similar procedure, with each point h of any one of the sets FZ , we associate
an ordered sequence of points in H 0 and three other points of the orbit of f ,
one in each of the other sets FY , Y �= Z (see Fig. 16). With any point in
H 0, we thus associate a unique ordered sequence of points inside H 0, whose
initial point is respectively mapped by A−1 and B−1 to two points of FĀ and FB̄
and whose final point is respectively mapped by A and B to two points of FA
and FB (see Fig. 16). Since different sequences cannot have common elements
also in this case, we have ρ − 1 distinct orbits corresponding to all integer
points in FĀ ([ρ, r, r ] for r = 1 . . . ρ − 1) plus the orbit of the point [ρ, 0, 0],
given by Lemma 4.15. �

Definition. We call chain of length t The ordered sequence of points p1, . . . ,

pt in H 0 satisfying pi+1 = Ti pi , i = 1, . . . , t − 1, where Ti is A or B and
Apt ∈ FA, Bpt ∈ FB , A−1p1 ∈ FĀ, and B−1p1 ∈ FB̄ .

The proof of the above theorem implies the following corollary.
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Corollary 4.16. The good points in H 0 ∈ H�, where � is a square number,
are partitioned into disjoint chains. Every orbit different from that of [√�, 0, 0]
contains exactly one chain in such an H�.

Figure 17 shows the case where � = 25.

6.283

–1

0

1

Figure 17: The points of 5 distinct orbits for � = 25 belonging to domains of
the first five generations. The representant points of the orbits are, in coordi-
nates [K , D, S]: [5, 0, 0], crosses, supersymmetric orbit; [5, 1, 1], black circles,
k-symmetric orbit; [5, 2, 2], black diamonds, (m+n)-symmetric orbit; [5, 3, 3],
gray boxes, (m + n)-symmetric orbit; [5, 4, 4], gray circles, k-symmetric orbit.

Theorem 4.17. Let t be the length of a chain inside H 0 with initial point f and
final point g. Let T be the operator in T + satisfying T f = g. Then T is a word
of length t − 1 in A and B, and the orbit of f contains exactly tB(T ) points in
the interior of HA and exactly tA(T ) points in the interior of HB.

Proof. The points f = f1, f2, . . . , ft = g of the chain satisfy fi+1 = Ti fi ,
i = 1, . . . , t−1, where Ti is A or B. Hence, g = T f , where T = Tt−1Tt−2 · · · T1.
By Lemma 4.14, if the image under A (under B) of a point of the chain belongs
to the chain, then the image under B (resp., under A) belongs to HB (resp., to
HA). Therefore, the orbit of f has tB(T ) points in the interior of HA and tA(T )
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points in the interior of HB . That there are no other points inside these domains
follows from Corollary 4.16 and from the fact that no domains other than H 0 are
mapped by A to HA or by B to HB . �

We obtain the following corollary from Theorem 4.2.

Corollary 4.18. The orbit of a form f representing zero has the same number of
points in the interior of HA, of HĀ, and of every domain in G A and G Ā; similarly,
it it has the same number of points in the interior of HB, of HB̄, and of every
domain in G B and G B̄.

Proof. The proof is analogous to that of Corollary 4.12. �

Example. In Figure 17, the orbit of [5, 1, 1] (black circles) has a chain in H0

composed of four points. The three operators between them are all of type A,
i.e. T = A3. Hence tA(T ) = 3 and tB(T ) = 0: indeed, there are no black
circles in HA and HĀ. Conversely, for the orbit of [5, 4, 4] (gray circles), we
have T = B3, tA(T ) = 0 and tB(T ) = 3. The orbits of [5, 2, 2] and [5, 3, 3]
(respectively diamonds and boxes) in H 0 contain a chain of three points, with
tA(T ) = tB(T ) = 1 for both orbits: indeed, there is a diamond and a box inside
each domain in the regions G A, G Ā, G B , and G B̄ .

5 Supplementary remarks

5.1 Remark on the behavior of the nonrational points under T
Note that on the hyperboloid K 2+ D2− S2 = �, the orbit of any point with the
fractional coordinates [K , D, S] with a common denominator μ is obtained (by
a scale reduction) from the orbit of the good point with the integer coordinates
[2μK , 2μD, 2μS] on the hyperboloid with the discriminant 4μ2� and hence
has a finite number of points in H 0, in H 0

R , and also in each domain of any
generation.

In the hyperbolic case, the situation is completely different from the elliptic
case, where the orbit under T of an irrational point is described exactly as that
of an integer point (close points in the Lobachevsky disc have close orbits under
PSL(2,Z), that is, the images of two close points under any element of the group
are close). Indeed, Theorems 4.2 and 4.4 imply that two close points in H have
close orbits under the semigroup T + or T − only if these points belong to the
complement of H 0 and H 0

R . But the orbits under T (and even under T + or T −)
of two close points in H 0 or in H 0

R are not close. This follows from the fact that
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a statement analogous to Lemma 4.6 holds for all points in H 0 and in H 0
R and

not only for the good points.
Moreover, from Theorems 4.2 and 4.4, we obtain the following corollary for

the irrational points on the one-sheeted hyperboloid.

Corollary 5.1. The orbit of any point having at least one irrational coordinate
contains an infinite number of points in H 0 and in H 0

R (and hence in each
connected component of the domains of all generations of the hyperboloid).

5.2 The solar eclipse model of the de Sitter world

In this section, we see the Poincaré tiling of the de Sitter world under an alter-
native projection.

We consider the domains of different generations directly on the hyperboloid
H�. The lines bounding such domains belong to the straight-line generatrices
of the hyperboloid.

The segment joining the point pi and its opposite point on the circle c1, up-
per vertices of a pair of opposite rhombi of some generation in CH , defines a
direction, i , in the plane S = 1. In the plane S = 0, consider the circle of
radius ρ = √�, intersection of H� with this plane, and the two straight lines
li and l ′i tangent to this circle, in the direction i . The four generatrices of the
hyperboloid that bound the domains projected by Q to the two rhombi, lie on
two planes parallel to the S axis and passing through li and l ′i respectively.

The hierarchy of the points pi is inherited by the pairs of parallel lines (li , l ′i )
on the plane S = 0 and also by the regions bounded by such pairs of lines and by
the circle K 2 + D2 = ρ2. The regions of the nth generation lie behind those of
all preceding generations. The view of the domains on the hyperboloid projected
to the plane S = 0 is shown in Figure 18. Observe that we map only one half
of H� by this projection.

To introduce the “solar eclipse model,” we consider a further projection
of the hyperboloid H�.

Let P′ be the projection of H� to the plane S = ρ = √−� along the direc-
tion of the S axis, and let r = P′f . Let P′′ be the projection of the plane S = ρ
to the sphere of radius ρ from the coordinate origin, and let s = P′′r. Let P′′′
be the stereographic projection of the upper half-sphere to the disc of radius ρ
in the plane S = 0 from the point O ′ (K = D = 0, S = −ρ), and let g = P′′′s
(see Fig. 19, right).

Remark. If the point p belongs to the upper sheet E of the two-sheeted
hyperboloid (K 2 + D2 = S2 + �, � < 0; see Fig. 19, left), then a short
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Figure 18: Projection to the plane S = 0, with coordinates (K , D), of the tiling
of H�.
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Figure 19: The point p on the hyperboloid is sent to q on the disc by a projec-
tion that results from the composition of three projections.

calculation shows that the point q = P′′′P′′P′p coincides with the image of p

by the projection P.
We project the upper half-hyperboloid H� by P′′′P′′P′ to the disc of radius ρ

in the plane S = 0. The image is contained in the ring αρ ≤ √K 2 + D2 < ρ,
where α = √2−1. The pairs of straight lines tangent to the circle K 2+D2 = ρ2

in the plane S = ρ are projected by P′′ to half-meridian circles of the sphere of
radius ρ and hence by the stereographic projection P′′′ to arcs of circles tangent
to the circle

√
K 2 + D2 = αρ. The final disc of unit radius is obtained by

rescaling. On the boundary C of this disc, the same points pi considered at the
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boundary of the Lobachevsky disc are the extreme points of the domains of all
generations (forming the solar corona). The empty (black) disc of radius α is
the moon in the solar eclipse model (see Fig. 20).

I I

II

III

II
II

II

III
III

III

III

III

III

III

Figure 20: Solar eclipse model of the de Sitter world.

Remark. The complementary forms in the solar eclipse model are symmetric
with respect to the center of the disc. Hence, the picture of any orbit has this
symmetry. The k-symmetric orbits are symmetric with respect to the vertical
axis of the disc.

A complete representation of an orbit requires two copies of this model, one
for the upper and the other for the lower half-hyperboloid, merged along the
circle bounding the sun.

Identifying these two copies by identifying the images of points of the hyper-
boloid H� symmetric with respect to the origin of the coordinates, we obtain
a Möbius band, tiled in the same way. We observe that opposite points of the
circle bounding the sun are identified. Here the number N of points of an orbit
in each domain is the same in all the non principal domains, as well as in both
half parts (upper and lower in Fig. 20) of the unique principal domain, which
contains therefore 2N points of that orbit. The number N is obtained from the
numbers t↑ and t↓ of points of that orbit in each domain of the respective upper
and lower regions in the Poincaré tiling as follows:

– supersymmetric and (m + n)-symmetric orbits: N = t↑ = t↓ (the two
points of the orbit with opposite coordinates have the same image).

– asymmetric, k-symmetric and antisymmetric orbits: N = t↑+t↓ (there are
no pairs of points with opposite coordinates in such orbits). In particular,
for antisymmetric orbits N = 2t↑ = 2t↓.
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