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Cyclic and ruled Lagrangian surfaces

in Euclidean four space

Henri Anciaux and Pascal Romon

Abstract. We study those Lagrangian surfaces in complex Euclidean space which are

foliated by circles or by straight lines. The former, which we call cyclic, come in three

types, each one being described by means of, respectively, a planar curve, a Legendrian

curve in the 3-sphere or a Legendrian curve in the anti-de Sitter 3-space. We describe

ruled Lagrangian surfaces and characterize the cyclic and ruled Lagrangian surfaces

which are solutions to the self-similar equation of the Mean Curvature Flow. Finally,

we give a partial result in the case of Hamiltonian stationary cyclic surfaces.

Keywords: Lagrangian surfaces, circle foliation, Mean Curvature Flow, Hamiltonian

stationary.
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Introduction

In this paper, we classify the Lagrangian surfaces of C2 which are foliated

either by round circles (henceforth called cyclic surfaces) or by straight lines

(ruled surfaces). The goal is to understand and give construction methods for

Riemannian problems such as finding critical points of the area functional or

self-similar solutions. The assumption that such a foliation exists allows classi-

cally to reduce the PDE to an ODE.

This completes a former paper of the authors together with Ildefonso Castro

[ACR] in which all Lagrangian submanifolds of R2n � Cn , with n ≥ 3, which

are foliated by round (n − 1)-spheres were characterized. The reason for the

lower bound on the dimension was the following: since the submanifold is

Lagrangian, any spherical leaf must be isotropic; when the dimension of this

leaf is at least two, it spans a linear space which is itself Lagrangian. This
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observation simplifies the structure of the problem, roughly speaking by reducing

the underlying group structure from SO(2n) to U (n). However this reduction

no longer holds in dimension two, see for instance the Lagrangian cylinder S1×L
where L is a real line of C: this (Lagrangian) surface is foliated by circles which

are contained in non-Lagrangian (actually complex) planes. Other examples are

the Hopf tori studied by Pinkall in [P]. As expected the situation is richer in

dimension two, and actually cyclic Lagrangian surfaces come in three families,

each one being described by means of, respectively, a planar curve, a Legendrian

curve in the 3-sphere or aLegendrian curve in the anti deSitter 3-space (Theorems

1 and 2). In the following, they will be denoted as type I, II and III surfaces.

In Section 1 we classify the cyclic Lagrangian surfaces when all the centers

of the circles coincide. We call those surfaces centered cyclic. In Section 2 we

treat the general case which amounts to adding a convenient translation term. In

Section 3 we apply this characterization to finding self-similar cyclic surfaces,

that is those surfaces which are solutions of the following elliptic PDE:

H + λX⊥ = 0,

where H denotes the mean curvature vector of the surface and X⊥ the normal

component of its position vector. The case of positive (resp. negative) λ corre-

sponds to the case of a self-shrinking (resp. self-expanding) soliton of the Mean

Curvature Flow (see [A]). We show that a self-similar Lagrangian cyclic surface

is either a centered surface of type I as described in [A] or the Cartesian product

S
1(r) × � of a circle S1(r) with a planar self-shrinking curve �. Such curves

have been studied in detail in [AL].

Section 4 is devoted to the Hamiltonian stationary equation. A Lagrangian

surface is said to be Hamiltonian stationary if its area is critical for compactly

supported Hamiltonian variations. Such a surface is characterized by the fact

that its Lagrangian angle β is harmonic with respect to the induced metric (cf.

Section 4 for more details). We prove that both in types I and II cases, Hamilto-

nian stationary surfaces must be centered, and we describe them. The study of

the type III appears to be extremely difficult to handle by manual computation,

however we conjecture that Hamiltonian stationary type III surfaces are again

centered. Examples of such surfaces are described explicitly in [CC].

Finally we give in the last Section a description of ruled Lagrangian surfaces

(notably self-similar ones) using an analogous method, recovering more simply

a known result from Blair [B].
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1 Centered cyclic Lagrangian surfaces

Let � a surface of R4 foliated by circles with common center located at the

origin of R4. Locally, � may be parametrized by the following immersion:

X : I × R/2πZ → R
4

(s, t) �→ r(s)(e1(s) cos t + e2(s) sin t),

where r(s) is a positive function and (e1(s), e2(s)) is an orthonormal basis of

the plane containing our circle.

From now on we shall assume that � is Lagrangian with respect with some

complex structure J . We will often identify R4 with C2 in such a way that J
is the complex multiplication by i . Denote by K := 〈e1, Je2〉 = −〈e1, Je2〉
the Kähler angle of the plane e1 ∧ e2. Note that the vanishing of K means that

e1 ∧ e2 is also Lagrangian. In this case the analysis done in [ACR] holds and

X takes the following form: X (s, t) = r(s)eiφ(s)(cos t, sin t) making use of the

above identification.

Denoting by subscripts the partial derivatives (the prime corresponding also

to the derivative in s for functions of just one variable), the Lagrangian assump-

tion is equivalent to 〈Xs, J Xt〉 = 0. Since

Xs = r ′(e1 cos t + e2 sin t)+ r(e′1 cos t + e′2 sin t)

Xt = r(e2 cos t − e1 sin t),

we see that

〈Xs, J Xt 〉 = rr ′(K cos2 t + K sin2 t)+ r2
(
cos2 t〈e′1, Je2〉 − sin2 t〈e′2, Je1〉

)
+r2 cos t sin t (〈e′2, Je2〉 − 〈e′1, Je1〉)

= rr ′K + r2

2

(〈
e′1, Je2

〉− 〈e′2, Je1〉)

+r2 cos 2t
2

(〈e′1, Je2〉 + 〈e′2, Je1〉)

+r2 sin 2t
2

(〈e′2, Je2〉 − 〈e′1, Je1〉)

= 2rr ′K + r2K ′

2
+ r2 cos 2t

2

(〈e′1, Je2〉 + 〈e′2, Je1〉)

+r2 sin 2t
2

(〈e′2, Je2〉 − 〈e′1, Je1〉)
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which holds for all t . The vanishing of the constant term implies that r2K = C
for some real constant C . If this constant vanishes, we recover the case K = 0

mentioned above and treated in [ACR] (cf. also [A]), so we may assume that

C �= 0. Thus r is completely determined by K , and both are non zero.

The two remaining conditions are

〈e′1, Je2〉 = −〈e′2, Je1〉 , 〈e′1, Je1〉 = 〈e′2, Je2〉. (1)

In order to make sense of these, we will identify R4 with H, in such a way that

the complex structure is given by the left multiplication by the quaternion i .
Then any element in SO(4) can be written as x �→ pxq−1 where p, q are two

unit quaternions. Notice that right multiplication by q−1 corresponds exactly to

the elements of SU (2). Since SO(4) acts transitively on pairs of orthonormal

vectors, we may write e1 and e2 as the respective images of 1 and i , so that

e1 = pq−1 and e2 = piq−1. Note that (p, q) is not uniquely determined; rather

we have a gauge freedom by right multiplication by eiθ on (p, q). Finally, we

may assume if needed that q(0) takes any prescribed value, since we consider

surfaces up to U (2) congruence.

Then the conditions in (1) read as{ 〈
p′q−1 − pq−1q ′q−1, i piq−1

〉+ 〈
p′iq−1 − piq−1q ′q−1, i pq−1

〉 = 0〈
p′q−1 − pq−1q ′q−1, i pqpq−1

〉− 〈
p′iq−1 − piq−1q ′q−1, i piq−1

〉 = 0

so, multiplying on the left by p−1 and the right by q, and further by i on the left

in the second bracket,{ 〈
p−1 p′ − q−1q ′, p−1i pi

〉− 〈
p−1 p′ + iq−1q ′i, p−1i pi

〉 = 0〈
p−1 p′ − q−1q ′, p−1i p

〉− 〈
p−1 p′ + iq−1q ′i, p−1i p

〉 = 0

that is { 〈
q−1q ′ + iq−1q ′i, p−1i pi

〉 = 0〈
q−1q ′ + iq−1q ′i, p−1i p

〉 = 0.

Splitting and multiplying left and right by i in the second bracket yields{ 〈
q−1q ′, p−1i pi

〉− 〈
q−1q ′, i p−1i p

〉 = 0〈
q−1q ′, p−1i p

〉+ 〈
q−1q ′, i p−1i pi

〉 = 0

{ 〈
q−1q ′, p−1i pi − i p−1i p

〉 = 0〈
q−1q ′, p−1i p + i p−1i pi

〉 = 0
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Writing p = p0 + i p1 + j p2 + kp3 we have

u := p−1i pi − i p−1i p = 4
(
p0 p2 + p1 p3

)
j − 4

(
p1 p2 − p0 p3

)
k

and

v := p−1i p + i p−1i pi = −ui = 4
(
p1 p2 − p0 p3

)
j + 4

(
p0 p2 + p1 p3

)
k.

The two right-hand vectors u, v lie in Span( j, k) and are either linearly indepen-

dent (over R) or both zero. So we have two cases:

• u = v = 0, i.e.

0 = (
p0 p2 + p1 p3

)2 + (
p1 p2 − p0 p3

)2 = (
p2
0 + p2

1

)(
p2
2 + p2

3

)
hence p lies in Span(1, i) or Span( j, k) and conditions in (1) hold. Gaug-

ing p we may assume that p = 1 or p = j , and the Kähler angle is then

K = −1 or K = +1 respectively, so that the radius r remains constant

(and we may as well assume r = 1). This case corresponds to Hopf sur-

faces [P], i.e. inverse images of a curve by the Hopf fibration S3 → S
2.

After a possible change of variable in t (replacing t by t + ϕ(s) for some

function ϕ), we may assume that the curve s �→ e1(s) is Legendrian.

• u, v are independent vectors and span j, k, thus forcing q−1q ′ to lie in

Span(1, i)∩ ImH; using gauge action, we may assume that q is constant,

and up to congruence write q = 1. Reverting to complex coordinates,

e1 = p = γ1 + γ2 j � (γ1, γ2) ∈ S3 ⊂ C
2 and e2 = pi � (iγ1,−iγ2),

while K = |γ2|2 − |γ1|2 �= 0. We may normalize, assuming that K > 0

(if K < 0 pick the opposite orientation on the surface) and set (α1, α2) :=
1√
K
(γ1, γ2), so that

X =
√
C√
K
(
γ1(s)eit , γ2(s)e−i t

) = √C
(
α1eit , α2e−i t

)
with |α1|2 − |α2|2 = −1, i.e. (α1, α2) lies in H3

1, the unit anti-De Sitter

space. Again, up to a change in variable, we have a Legendrian curve for

the indefinite metric in C1,1, i.e.
〈
α′1, iα1

〉 − 〈
α′2, iα2

〉 = 0 (see [CLU] or

[CC]).

Summing up, we have proved the following
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Theorem 1. A centered cyclic Lagrangian surface may be locally para-
metrized, up to U (2) congruence, by one the following immersions:

Type I (complex extensors):

X : I × R/2πZ → C
2

(s, t) �→ r(s)eiφ(s)(cos t, sin t)

Type II (Hopf type):

X : I × R/2πZ → C
2

(s, t) �→ ceit(γ1(s), γ2(s))

where γ = (γ1, γ2) is any Legendrian curve of S3 and c is a real constant,

Type III (De Sitter type)

X : I × R/2πZ → C
2

(s, t) �→ c
(
α1(s)eit , α2(s)e−i t

)
where α = (α1, α2) is any Legendrian curve in the unit anti-De Sitter
space H3

1 and c is a real constant.

Remark 1. This analysis applies as well if we do not assume that X is an

immersion but only has an isotropic image fibered by circles (we did not use the

immersion hypothesis). So the same conclusion holds and will be used in the

next Section.

Remark 2. Type I surfaces are a particular case of a class of Lagrangian

immersions which has been first described in [C1] where they were called

complex extensors.

Remark 3. In the type III case, it may happen that K is identically ±1. Then

we fall back on type II with a Legendrian curve that actually reduces to a single

point. The image of X is therefore a circle (lying in a complex plane).

2 The general case

We now consider a surface � of R4 which is foliated by circles. Locally, �

may be parametrized by the following immersion (identifying as usual R4

with C2):

Y : I × R/2πZ → C
2

(s, t) �→ X (s, t)+ V (s),
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where V (s) is aC2-valued function, and X (s, t) = r(s)(e1(s) cos t+e2(s) sin t)
is a centered surface as in the previous section. Note that we do not assume a
priori that X is Lagrangian nor that it is always an immersion.

As we have Yt = Xt and Ys = Xs + V ′, the assumption that Y is Lagrangian

leads to:

0 = 〈Ys, JYt〉 = 〈Xs, J Xt〉 + 〈V ′, J Xt〉
= 〈Xs, J Xt〉 + r cos t〈V ′, Je2〉 − r sin t〈V ′,1 〉

Recall from the previous section that 〈Xs, J Xt〉 contains only terms in cos 2t
and sin 2t and a term independent from t . Thus the immersion Y is Lagrangian

if and only if: (i) X is cyclic isotropic (cf. Remark 1), and (ii) V ′ belongs to the

symplectic orthogonal of Span(e1, e2). Using Theorem 1 we infer:

• for type I surfaces, Span(e1, e2) = Span(eiφ(1, 0), eiφ(0, 1)) is Lagran-

gian, so its symplectic orthogonal is itself; hence V ′(s) = eiφ(s)(W1(s),
W2(s)) for some real-valued functions W1,W2;

• for type II surfaces, Span(e1, e2) is a complex line, so its symplectic

orthogonal is the same as its Riemannian orthogonal, which is

Span
(
(γ̄2,−γ̄1), (i γ̄2,−i γ̄1)

);
V ′ is determined analogously;

• for type III surfaces, one can check than a basis of the symplectic orthog-

onal is ( f1, f2), where f1 = (|α2|2, α1α2), f2 = (i |α2|2,−iα1α2).

So we conclude this section by the

Theorem 2. A cyclic Lagrangian surface may be locally parametrized, up to
U (2) congruence, by one the following immersions:

Type I

Y : I × R/2πZ → C
2

(s, t) �→ r(s)eiφ(s)(cos t, sin t)+ ∫ s
s0 e

iφ(u)(W1(u),W2(u))du

where W1,W2 are real valued; in particular when φ is constant, Y stays
within the Lagrangian plane Span(eiφ(1, 0), eiφ(0, 1));
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Type II

Y : I × R/2πZ → C
2

(s, t) �→ c
(
γ1(s)eit , γ2(s)eit

)+ ∫ s
s0 W (u)(γ̄2(u),−γ̄1(u))du

where γ = (γ1, γ2) is any Legendrian curve of S3, c is a real constant
and W a complex valued function; in particular if γ is constant, then up
to congruence, we may assume γ = (1, 0) and the immersion becomes
Y (s, t) = (ceit , V2(s)). Thus the immersed surface is a Cartesian product
of a circle with a planar curve;

Type III

Y : I × R/2πZ → C
2

(s, t) �→ c
(
α1(s)eit , α2(s)e−i t

)+ ∫ s
s0(W |α2|2, W̄α1α2)du

where α = (α1, α2) is any Legendrian curve in the unit anti-De Sitter
space H3

1, c is a real constant and W a complex valued function.

Remark 4. In the type II case, if the curve (γ1, γ2) is in addition regular, we

may assume that it is parametrized by arc length and another basis of the orthog-

onal space to Span(e1, e2) is
(
(γ ′1, γ

′
2), (iγ ′1, iγ ′2)

)
, so that the immersion may

take the alternative form:

Y (s, t) = (
γ1(s)eit , γ2(s)eit

)+ ∫ s

s0
W (u)

(
γ ′1(u), γ

′
2(u)

)
du.

This is a particular case of Lagrangian immersions which have been recently

described in [C2]. This alternative formula will also be useful in the next

sections.

3 Application to the self-similar equation

In this section we study the self-similar equation in the case of cyclic Lagrangian

surfaces and prove the following:

Theorem 3. A Lagrangian cyclic surface of C2 which is a soliton of the mean
curvature flow, i.e. a solution to the self-similar equation

H + λX⊥ = 0,
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for some non-vanishing number λ is locally congruent to an equivariant example
described in [A] (in the terminology of the present article, a centered surface of
type I) or to the Cartesian product S1(r)×� of some circle S1(1) with a planar
self-shrinking curve �. Such curves have been studied in detail in [AL].
Proof. The proof deals with the three cyclic cases separately: we first prove

that a self-similar surface of type I must be centered, thus one of the examples

of [A]; then we show that there no self-similar surfaces of type II except the

Clifford torus S1×S1 (which is also a type I surface) and the products of curves.

Finally we see that there are no self-similar surfaces of type III at all.

Case 1: type I surfaces. A type I surface is parametrized by an immersion

of the form:

X : I × R/2πZ → C
2

(s, t) �→ r(s)eiφ(s)(cos t, sin t)+ ∫ s
s0 e

iφ(u)(W1(u),W2(u))du,

where r(s) > 0. Following [ACR], we shall use the following notations: γ (s) =
r(s)eiφ(s), and, assuming that γ is parametrized by arc length, we shall also

denote γ ′(s) = eiθ(s).
We start computing the first derivatives of the immersion:

Xs = γ ′(cos t, sin t)+ eiφ(W1,W2), Xt = γ (− sin t, cos t),

from which we deduce the expression of the induced metric:

E = |Xs |2 = 1+ |W |2 + 2 cos(θ − φ)(W1 cos t +W2 sin t),

F = 〈Xs, Xt〉 = r cos(θ − φ)(W2 cos t −W1 sin t), G = |Xt |2 = r2,

and a basis of the normal space to the surface:

Nt = iγ (− sin t, cos t), Ns = iγ ′(cos t, sin t)+ ieiφ(W1,W2).

We now compute the second derivatives of the immersion, in order to calcu-

late the mean curvature vector:

Xss = γ ′′(cos t, sin t)+ iφ′eiφ(W1,W2),

Xst = γ ′(− sin t, cos t), Xtt = γ (− cos t,− sin t).
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This implies in particular that:

〈Xss, Nt〉 = (W2 cos t −W1 sin t) sin(θ − φ),

〈Xtt , Nt〉 = 0, 〈Xst , Nt〉 = r sin(θ − φ).

On the other hand, we have:

〈X, Nt〉 = a cos t + b sin t,

where a := 〈iγ, ∫ s
s0 W1(u)eiφ(u)du〉 and b := 〈iγ, ∫ s

s0 W2(u)eiφ(u)du〉.
We now assume that the immersion X is self-similar, so there exists a non-

vanishing real number λ such that:

〈H, Nt〉 + λ〈X, Nt〉 = 0,

which is equivalent to

〈Xss, Nt〉G + 〈Xtt , Nt〉E − 2〈Xst , Nt〉F = −2λ(EG − F2)〈X, Nt〉.
In the latter expression, the left hand side term is linear in cos t and sin t and

the right hand side term is a polynomial of order 3. Linearizing the latter, we

easily see that the coefficient of cos 2t is aW2 + bW1 and the one of sin 2t is

aW1 − bW2. So either W1 and W2 vanish, or a and b vanish. We are going to

show that actually if a and b vanish, then so do W1 and W2.

We first write

a = 〈iγ,
∫ s

s0
W1(u)eiφ(u)〉 = r〈ieiφ,

∫ s

s0
W1(u)eiφ(u)du〉

= r
(
− sin φ

(∫ s

s0
W1(u) cosφ(u)du

)
+ cosφ

(∫ s

s0
W1(u) sin φ(u)du

))
= 0.

Thus the derivative of a/r with respect to s must vanish, which yields:

φ′
(
− cosφ

(∫ s

s0
W1(u) cosφ(u)du

)
− sin φ

(∫ s

s0
W1(u) sin φ(u)du

))

+W1(s)(− sin φ cosφ + cosφ sin φ) = 0.
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Now either φ is (locally) constant, the curve γ is a straight line passing through

the origin and the image of the immersion X is a piece of a plane (cf. Ex-

ample 2, page 5 of [ACR]), or one can find points around which φ′ does not

vanish (locally again). In the latter case we get the following linear system:⎧⎪⎨
⎪⎩
− sin φ

(∫ s
s0 W1(u) cosφ(u)du

)
+ cosφ

(∫ s
s0 W1(u) sin φ(u)du

)
= 0

− cosφ
(∫ s

s0 W1(u) cosφ(u)du
)
− sin φ

(∫ s
s0 W1(u) sin φ(u)du

)
= 0

It follows that
∫ s
s0 W1(u) cosφ(u)du and

∫ s
s0 W1(u) sin φ(u)du must vanish ex-

cept on an isolated set of points of I , which in turn implies the vanishing of W1.

Analogously it can be shown thatW2 vanishes as well, so finally the surface must

be centered. Lagrangian, self-similar, centered surfaces have been described in

detail in [A]. We only recall here that such surfaces are obtained from planar

curves γ which are solutions of the following equation:

k = 〈γ, N 〉
(

1

|γ |2 − λ

)
,

where k is the curvature of γ and N its unit normal vector. This equation admits

a countable family of closed solutions which is parametrised by two relatively

prime numbers p and q subject to the condition p/q ∈ (1/4, 1/2); p is the

winding number of the curve and q is the number of maxima of its curvature.

Except for the circles, none of these curves is embedded.

Case 2: type II surfaces. As our discussion is local, we consider the two

following cases: either the Legendrian curve γ is regular, or it reduces to a

single point, and then the surface is a product of a circle with some plane curve.

In the first case, the surface may parametrized by an immersion of the form (cf.

Remark 4):

X : I × R/2πZ → C
2

(s, t) �→ c
(
γ1(s)eit , γ2(s)eit

)+ ∫ s
s0 W (u)

(
γ ′1, γ

′
2

)
du

where (γ1(s), γ2(s)) is some unit speed Legendrian curve of S3. Without loss

of generality we fix c = 1. We start computing the first derivatives of the

immersion:

Xs = (γ ′1e
it , γ ′2e

it)+W (γ ′1, γ
′
2), Xt = (iγ1eit , iγ2eit),

Bull Braz Math Soc, Vol. 40, N. 3, 2009



352 HENRI ANCIAUX and PASCAL ROMON

from which we deduce the expression of the induced metric:

E = |Xs |2 = 1+ |W |2 + 2〈W, eit〉, F = 〈Xs, Xt〉 = 0, G = |Xt |2 = 1,

and a basis of the normal space to the surface:

Ns = (iγ ′1e
it , iγ ′2e

it)+W (iγ ′1, iγ
′
2), Nt = (−γ1eit ,−γ2eit).

We now compute the second derivatives of the immersion, in order to calcu-

late the mean curvature vector:

Xss =
(
γ ′′1 e

it , γ ′′2 e
it)+W

(
γ ′′1 , γ

′′
2 )+W ′(γ ′1, γ ′2),

Xst =
(
iγ ′1e

it , iγ ′2e
it), Xtt =

(− γ1eit ,−γ2eit
)
.

We first notice that

〈X, Nt〉 = −1+ a cos t + b sin t,

where a and b depend only on the variable s.
On the other hand,

2〈H, Nt〉 = 〈Xss, Nt〉
E

+ 〈Xtt , Nt〉
G

= 〈Xst , Ns〉
E

+ 〈Xtt , Nt〉
G

= 1+ 〈W, eit〉
1+ |W |2 + 2〈W, eit〉 + 1 = 2+ |W |2 + 3〈W, eit〉

1+ |W |2 + 2〈W, eit〉 .

Thus the equation 〈H, Nt〉 + λ〈X, Nt〉 = 0 holds for some non-vanishing con-

stant λ if and only if a and b vanish and |W | = 1 or W = 0. In particular,

〈X, Nt〉 = −1.

We leave to the reader the easy task to check that if W vanishes, the immersion

is self-similar if and only if 〈γ ′′, Jγ ′〉 vanishes, that is the curve γ has vanish-

ing curvature and thus is a great circle. The corresponding Lagrangian surface

is the Clifford torus 1√
2
S
1× 1√

2
S
1. So we assume in the remainder that |W | = 1.

In particular, we may write W = eiφ and W ′ = iφ′eiφ , where φ is some real

function of the variable s.
We want to look at the other scalar equation 〈H, Ns〉 + λ〈X, Ns〉 = 0, so

we compute

〈Xss, Ns〉 = 〈γ ′′, Jγ ′〉(1+|W |2)+〈iW,W ′〉+2〈W, e−i t〉〈γ ′′, Jγ ′〉+〈W ′, eit〉,
〈Xtt , Ns〉 = 0.
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Hence we get

2〈H, Ns〉 = 〈Xss, Ns〉
E

+ 〈Xtt , Ns〉
G

= 〈Xss, Ns〉
1+ |W |2 + 2〈W, eit 〉 + 0

= 〈γ ′′, Jγ ′〉(1+ |W |2)+ 〈iW,W ′〉 + 2〈W, e−i t 〉〈γ ′′, Jγ ′〉 + 〈W ′, eit 〉
1+ |W |2 + 2〈W, eit 〉

= 2〈γ ′′, Jγ ′〉 + φ′ + 2 cos(φ + t)〈γ ′′, Jγ ′〉 − φ′ sin(φ − t)
2+ 2 cos(φ − t)

= 2〈γ ′′, Jγ ′〉 + φ′ + (2〈γ ′′, Jγ ′〉 cosφ − φ′ sin φ) cos t
2(1+ cosφ cos t + sin φ sin t)

+ (−2〈γ ′′, Jγ ′〉 sin φ + φ′ cosφ) sin t
2(1+ cosφ cos t + sin φ sin t)

On the other hand, it is easy to see that 〈X, Ns〉 takes the form a cos t+b sin t+
c, where a b and c depend on the variable s. This forces 〈H, Ns〉 to take a simpler

form and implies that

2〈γ ′′, Jγ ′〉 + φ′

2
= 2〈γ ′′, Jγ ′〉 cosφ − φ′ sin φ

2 cosφ

= −2〈γ ′′, Jγ ′〉 sin φ + φ′ cosφ
2 sin φ

In particular we have φ′ = −φ′ tan φ, which implies that φ is constant. It

follows that W is constant as well, so 〈γ ′′, Jγ ′〉 vanishes and the curve γ has

vanishing curvature, so it is a great circle of the unit sphere. There is no loss of

generality to assume that γ (s) = 1√
2
(eis, e−is). Now the immersion takes the

following, explicit form:

X (s, t) = 1√
2

(
ei(s+t), ei(−s+t)

)+ 1√
2

(− iei(φ+s), iei(φ−s)
)
.

But in this case it is easy to check 〈X, Nt〉 = −1 does not hold, so we conclude

that there is no self-similar type II surface with a regular curve γ and non-

vanishing W .

It remains to treat the case of a Cartesian product S1(r) × � of a circle with

an arbitrary curve �. It is straightforward that such a product is self-similar if

and only if both curves are solutions of the equation

k + λ〈X, N 〉 = 0
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for the same λ. A circle of radius r is trivially self-similar for λ = r−2. The other

self-similar curves with positive λ (self-shrinking curves) have been described

in [AL]. Except for the circles, none of them is embedded.

Case 3: type III surfaces. A type III surface is parametrized by an immer-

sion of the form:

X : I × R/2πZ → R
4

(s, t) �→ c(α1(s)eit , α2(s)e−i t)+
∫ s
s0(W |α2|2, W̄α1α2)du,

where (α1, α2) is a Legendrian curve of H3
1, in particular we may assume that

|α′1|2 − |α′2|2 = 1 〈α′1, iα〉 − 〈α′2, iα2〉 = 0.

Observe that this implies the following identity (cf. [CC]): |α1| = |α′2|. Again,

without loss of generality we fix c = 1.

We start computing the first derivatives of the immersion:

Xs = (α′1e
it , α′2e

−i t)+ (W |α2|2, W̄α1α2), Xt = (iα1eit ,−iα2e−i t),

from which we deduce the expression of the induced metric:

E = 1+ 2|α1|2 + |W |2(1+ |α1|2)(1+ 2|α1|2)
+ |α2|2〈α′1ᾱ1,We−i t〉 + |α1|2〈α′2ᾱ2, W̄eit〉,

F = −2(1+ |α1|2)(Im (α1W̄ ) cos t + Re (α1W̄ ) sin t),

G = 1+ 2|α1|2,
and a basis of the normal space to the surface:

Ns = (iα′1e
it , iα′2e

−i t)+ (iW |α2|2, i W̄α1α2),

Nt = (−α1eit , α2e−i t).

We now compute the second derivatives of the immersion:

Xss = (α′′1e
it , α′′2e

−i t)+ d
ds

(W |α2|2, W̄α1α2),

Xst = (iα′1e
it ,−iα′2e−i t), Xtt = (−α1eit ,−α2e−i t);
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and some coefficients of the second fundamental form:

〈Xtt , Nt〉 = |α1|2 − |α2|2 = −1, 〈Xst , Nt〉 = 2〈iα′1, α1〉;
Moreover it is easy to see that the coefficient 〈Xss, Nt〉 is an affine function of

cos t and sin t .
On the other hand, we have

〈X, Nt〉 = 1+ a cos t + b sin t,

where a and b depend only on the variable s.
We now assume that 〈H, Nt〉 + λ〈X, Nt〉 = 0 holds for some non-vanishing

constant λ; this implies

G〈Xss, Nt〉+ E〈Xtt , Nt〉−2F〈Xst , Nt〉 = −λ(1+a cos t+b sin t)(EG− F2).

In the latter expression, the left hand side term is linear in cos t and sin t and

the right hand side is a polynomial of degree 3. Linearizing the latter and in-

troducing the notation F = ã cos t + b̃ sin t , we easily see that the coefficient

of cos 3t is (up to a multiplicative constant) aã2 − 2bãb̃ and the one of sin 3t
is 2aãb − bb̃2. Thus we get the following system:{

aã2 − 2bãb̃ = 0

2aãb − bb̃2 = 0

This implies that either ã and b̃ vanish, or a and b vanish. However, in the

latter case, the coefficient of cos 2t is (up to a multiplicative constant) ã2 + b̃2

and the one of sin 2t is 2ãb̃ thus again ã and b̃ must vanish. We conclude by

observing that

b̃ + i ã = −2(1+ |α1|2)α1W̄ ,

so either α1 or W vanishes. In the first case, as the discussion is local we may

assume that α1 vanishes identically, and the immersion takes the form

Y (s, t) = (V1(s), α2e−i t),

so the immersed surface is a product of curves; this case was already treated in

the former section (type II surfaces).

To complete the proof it remains to show that a centered type III surface

cannot be self-similar. We shall use the following result which can be found in

[CC] (Proposition 2.1, page 3 and Corollary 3.5, page 9) and that we state here

in accordance to our own notations:
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Proposition 1 ([CC]). Let γ = (γ1, γ2) be unit speed Legendrian curve in S3

and α = (α1, α2) a unit speed Legendrian curve in H3
1.

Then the following immersion

X : I1 × I2 → C
2

(s, t) �→ (α1(s)γ1(t), α2(s)γ2(t)),

is conformal and Lagrangian; moreover, its mean curvature vector is given by

H = e−2u(kα J Xs + kγ J Xt),

where e−2u is the conformal factor and kα and kγ are the curvature functions of
α and γ respectively.

By taking γ (t) = (
1√
2
eit , 1√

2
e−i t

)
in the immersion above, we recover exactly

a centered type III immersion. In particular, γ is a great circle of S3 and has

vanishing curvature. This implies that 〈H, J Xt〉 vanishes. On the other hand,

we calculate

〈X, J Xt〉 = 1

2
〈(α1eit , α2e−i t), (−α1eit , α2e−i t)〉 = 1

2
(−|α1|2 + |α2|2) = 1

2
.

So we deduce that this immersion X cannot be solution of the self-similar equa-

tion H + λX⊥ = 0.

4 Application to the Hamiltonian stationary equation

In this section, we study the Hamiltonian stationary equation. We first recall

that to a Lagrangian surface � is attached the Lagrangian angle function
which is defined by the formula

detC(e1, e2) = eiβ,

where (e1, e2) is a (local) orthonormal tangent frame � (and thus a Hermitian

frame of C2). Next the surface � is said to be Hamiltonian stationary if it is

a critical point of the area with respect to Hamiltonian variations, i.e. varia-

tions generated by vector fields V such that V �ω is exact. The Euler–Lagrange

equation of this variational problem is


β = 0.

In other words, a Lagrangian surface is Hamiltonian stationary if and only if its

Lagrangian angle is harmonic with respect to the induced metric.
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In this section, we shall characterize Hamiltonian stationary type I and type

II surfaces. The situation is somewhat similar to the self-similar case treated in

the previous section: there are examples of non-trivial Hamiltonian stationary

centered type I surfaces, which are described in Subsection 4.1; next we show

in Subsection 4.2 that there are no Hamiltonian stationary type I surfaces which

are not centered. Finally, we prove in Subsection 4.3 that the only Hamiltonian

stationary type II surfaces are Cartesian products of circles. Similar calculations

can be pursued in the type III case, however the dependency of the translation

term on the Legendrian curve α lying inH3
1 makes explicit computations rapidly

too complicated. We conjecture nonetheless that Hamiltonian stationary type

III surfaces are centered. Finally we point out that those have been described

explicitly in [CC], Section 4.3, page 13: a centered type III surface is Hamilto-

nian stationary if and only if the curvature of the generating curve α is an affine

function of its arclength parameter.

4.1 The centered type I case

We consider an immersion of a centered type I surface, as in Section 1:

X : I × R/2πZ → C2

(s, t) �→ r(s)eiφ(s)(cos t, sin t)

where the planar curve γ (s) = r(s)eiφ(s) is assumed to be parametrized by arc

length. It follows that there exists θ(s) such that γ ′(s) = eiθ(s). Introducing the

variable α = θ − φ, a straightforward computation (cf. [ACR]) yields that the

induced metric of the immersion is

g =
(

1 0

0 r2

)
and its Lagrangian angle function is β = θ + φ = α + 2φ; it follows that


β = 0 ⇔ ∂s
(
g11
√
det gβs

) = 0

⇔ r
(
α′ + 2φ′

) = C,

where C is some real constant. So we are left with the following differential

system {
r ′ = cosα

α′ = C−2 sin α
r

which admits a first integral:

E(r, α) = r2(C − 2 sin α)
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Figure 1: Closed curves for C > 2 with respective total angular variation

� = π/4, 4π/3, π .

Figure 2: Surface corresponding to the first closed curve, partially cut to show

the circles in grey, projected down to R3.
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First case: |C | > 2. Here the trajectories are bounded in the variable r since

r =
√

E
C − 2 sin α

.

therefore the curves γ are also bounded. In order to know whether such curves

are closed, we calculate the variation of the angle of the curve with respect to

the origin along a period of the variable α:

�(C) =
∫

sin α

r
ds =

∫ 2π

0

sin α

C − 2 sin α
dα.

An easy computation shows that limC→±2 = +∞ and limC→∞ = 0. It fol-

lows that for all rational numbers p/q there exists C(p/q) such that the corre-

sponding curve �(Cq) = 2pπ/q. By repeating q times this pattern, we obtain

a q-symmetric curve. It is easy to check that these curves are never embedded.

Second case: |C | < 2. Here the trajectories are unbounded. However we still

have

�(C) =
∫

sin α

r
ds =

∫ α+

α−

sin α

C − 2 sin α
dα,

and

�(C) =
∫ α−+2π

α+

sin α

C − 2 sin α
dα,

where α− < α+ are defined to be the two roots of 2 sin α± = C . In both

cases, if C does not vanish, �(C) = ∞, therefore the curve γ has two ends

which spiral. The case of vanishing C implies β to be constant, so this is

the special Lagrangian case, which have already been treated in [A], Section 4

(cf. also [CU]). It is proved that we get, up to congruences, a unique surface,

the Lagrangian catenoid.

Third case: |C | = 2. Here all the points of the vertical lines α = 0 mod π

are equilibrium points. The corresponding curves γ are round circles centered

at the origin. The corresponding surfaces are products of circles S1(r)× S1(r),
sometimes called Clifford tori. In the region α �= 0 mod π , the situation is

analogous the second case: the curves γ have two spiraling ends.

4.2 Characterization of Hamiltonian stationary Type I surfaces

Proposition 2. A non-planar Hamiltonian stationary Lagrangian cyclic sur-
face of C2 of type I must be centered, and thus is one of the surfaces described
in Section 4.1.
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Proof. The proof is done by contradiction. We consider a type I immersion

Y : I × R/2πZ → C2

(s, t) �→ r(s)eiφ(s)(cos t, sin t)+ ∫ s
s0 e

iφ(u)(W1(u),W2(u))du

with non-vanishing W = (W1,W2) and we show that the Hamiltonian station-

arity leads to a contradiction. We recall some notations already introduced in

[ACR]:

x = (cos t, sin t), A := (
1+ 〈W, x〉2 + 2 cosα〈W, x〉)−1/2

.

and

B := k +
(
k cosα + sin α cosα

r

)
〈W, x〉 − sin α

〈
W ′, x

〉+ sin α

r
〈W, x〉2 .

We also exploit the computations done in [ACR], Section 4, where it was

shown that

A−6
β = I + II + III + IV+ V+ VI + VII

where

I := 3B
(
cosα

〈
W ′, x

〉− α′ sin α 〈W, x〉 + 〈W, x〉 〈W ′, x
〉)

II := −A−2

[
B ′ − sin α

r
(
cosα

〈
W ′, x

〉− α′ sin α 〈W, x〉 + 〈W, x〉 〈W ′, x
〉)]

III := −A−4∂s

(
sin α

r

)

IV := −3B
cosα + 〈W, x〉

r
(|W |2 − 〈W, x〉2)

V := A−2

r

[(
k cosα + sin α

r
〈W, x〉

)
(|W |2 − 〈W, x〉2)

+ sin α
(〈
W ′,W

〉− 〈
W ′, x

〉 〈W, x〉) ]

VI := −A−2 sin α

r2
(cosα + 〈W, x〉)

(
|W |2 − 〈W, x〉2

)
− 2A−4 sin α

r2
〈W, x〉

VII := −A−2 B
r
(cosα + 〈W, x〉)− A−4 sin α cosα

r2

For fixed s we may view A−6
β as a polynomial in x ; then the highest de-

gree term is not anymore in 〈W, x〉5 as in [ACR] but only in the fourth power.
Forgetting all powers of x beneath the fourth, we have:

I ≡ 3 sin α

r
〈
W ′, x

〉 〈W, x〉3
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II ≡ −∂s
(
sin α

r

)
〈W, x〉4 − sin α

r
〈
W ′, x

〉 〈W, x〉3

III ≡ −∂s
(
sin α

r

)
〈W, x〉4

IV ≡ 3 sin α

r2
〈W, x〉5 +

(
3k cosα

r
+ 6 sin α cosα

r2

)
〈W, x〉4

−3 sin α

r
〈
W ′, x

〉 〈W, x〉3

V ≡ − sin α

r2
〈W, x〉5 −

(
k cosα

r
+ 2 sin α cosα

r2

)
〈W, x〉4

− sin α

r
〈
W ′, x

〉 〈W, x〉3

VI ≡ − sin α

r2
〈W, x〉5 − 5 sin α cosα

r2
〈W, x〉4

VII ≡ − sin α

r2
〈W, x〉5 −

(
5 sin α cosα

r2
+ k cosα

r

)
〈W, x〉4

+ sin α

r
〈
W ′, x

〉 〈W, x〉3

At given s, for 
β to be zero for all t , we need (replacing k by α′ + sin α/r
and using r ′ = cosα, φ′ = sin α/r ),

0 = sin α

r
〈
W ′, x

〉+ (
2∂s

(
sin α

r

)
+ 5 sin α cosα

r2
− α′ cosα

r

)
〈W, x〉

= sin α

r
〈
W ′, x

〉+ (
∂s

(
sin α

r

)
+ 4 sin α cosα

r2

)
〈W, x〉

for almost all values, hence for all. If W and W ′ are not colinear, then 〈W, x〉
and

〈
W ′, x

〉
are linearly independent as functions of t , hence

sin α

r
= ∂s

(
sin α

r

)
+ 4 sin α cosα

r2
= 0

so that θ ≡ φ mod π , φ is constant (and it is half the Lagrangian angle). The

solution is then trivial: a subset of some Lagrangian plane, spanned by circles.

If W ′ is colinear to W for an open interval in the s variable, then W (s) =
w(s)W 0 for some real valued function w(s), and the center of the circle at s
lies in the plane CW 0. Using real rotations, and up to a reparametrization in

t , we may as well assume that W 0 = (1, 0) and we arrive at the following
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equation
sin α

r
w′ +

(
∂s

(
sin α

r

)
+ 4 sin α cosα

r2

)
w = 0.

whose solution (up to scaling) is w = c(r3 sin α)−1, where c is some non van-

ishing constant (the case of vanishing c would correspond to the centered case).

Using this last result, we shall now come back to the expression of A−6
β.

First, we have

A−2 = 1+ 2w cosα cos t + w2 cos2 t

B = k +
(
k cosα + sin α cosα

r

)
w cos t + cosα

(
k + 2 sin α

r

)
w cos t

+ sin α

r
w2 cos2 t

= k +
(
2k cosα + 3 sin α cosα

r

)
w cos t + sin α

r
w2 cos2 t

B′ = k′ +
(
2k′ cosα − 2k2

sin α
− k

r
(3 cos2 α + 1)+ sin α

r2
(3− 15 cos2 α)

)
w cos t

−
(
k cosα

r
+ 6 sin α cosα

r2

)
w2 cos2 t

After a long but straightforward calculation, we get

A−6
β = −
(
k′ + 2k cosα

r
+ 3kw2 cosα

r
+ 3w2 sin α cosα

r2
− sin α cosα

r2

)

−
(
4k′ cosα + k2

sin α
+ k(14 cos2 α − 2)

r
− sin α

r2
(13 cos2 α − 4)

+kw2

r
(6 cos2 α + 3)+ w2 sin α(15 cos2 α)

r2

)
w cos t

−
(
k′(1+ 4 cos2 α)+ 5k2 cot α + k cosα

r
(20 cos2 α + 13)

+ sin α cosα

r2
(5 cos2 α − 2)+ 6k cosαw2

r
+ 6w2 sin α cosα

r2

)
w2 cos2 t

−
(
2k′ cosα + k2

sin α
(4 cos2 α)+ k

r
(22 cos2 α + 1)

+ sin α

r2
(
7 cos2 α + 4+ 3w2

))
w3 cos3 t
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Thus the vanishing of 
β implies four linear relations in the (dependent) vari-
ables k ′ cosα, k2/ sin α, k/r and sin α/r2, that we write in matrix form:⎛
⎜⎜⎜⎝

1 0 X (2+ 3w2) X (3w2 − 1)

4 1 14X − 2+ (6X + 3)w2 15Xw2 + 4− 13X
1+ 4X 5X X (20X + 13)+ 6Xw2 X (6w2 + 5X − 2)

2 4X 22X + 1 3w2 + 7X + 4

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

k′ cosα
k2/ sin α

k/r
sin α/r2

⎞
⎟⎟⎟⎠ = 0

where we have denoted X = cos2 α for brevity. We reduce it to⎛
⎜⎝

1 0 X (2+ 3w2) X (3w2 − 1)

0 1 6X − 2+ (−6X + 3)w2 3Xw2 + 4− 9X
0 0 X (−18X + 21)+ X (18X − 12)w2 X (3− 27X)w2 + X (54X − 21)

0 0 −24X2 + 26X + 1− X (24X − 6)w2 w2(3− 6X − 12X2)+ 4− 7X + 36X2

⎞
⎟⎠ (2)

leaving us with the following system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X ((−18X + 21)+ (18X − 12)w2)k
= X ((27X − 3)w2 + (21− 54X)) sin αr

(24X2 − 26X − 1+ Xw2(24X − 6))k
= −(w2(3− 6X − 12X2)+ 4− 7X + 36X2) sin αr

(3)

The trivial solution k = sin α = 0 being excluded because w is not defined

when sin α = 0, the determinant of the above system must vanish, hence the

following algebraic equation

E(X, Y ) = (−288X3 + 90X2 + 36X − 12
)
Y 2

+ (−504X4 + 756X3 − 264X2 + 8X + 4
)
Y

+ 216X5 − 774X4 + 991X3 − 489X2 + 21X + 35 (4)

in terms of the variables X = cos2 α and Y = c2r−6 = w2 sin2 α, where we have

divided by X for simplicity. We will now show a contradiction. Indeed any of

the two equations in (3) yields a dynamical system⎧⎨
⎩ α′ = k − sin α

r
= sin α

r
g(cos2 α, c2r−6)

r ′ = cosα

and if we take for instance the first one

g(X, Y ) = (5+ 19X + 12X2)(1− X)+ Y (3− 36X)
(24X2 − 26X − 1)(1− X)+ Y (24X2 − 6X)

.
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The solution (α(s), r(s)) has to satisfy the analytic equation E(cos2 α, c2r−6) =
0. Taking the derivative leads to

2 sin α cosαα′
∂E
∂X

+ 6c2r ′r−7 ∂E
∂Y

= 0,

which expands to

F(X, Y ) := (1− X)g(X, Y )
∂E
∂X

+ 3Y
∂E
∂Y

= 0 .

For a solution to exist, we need to find a common open set for the two algebraic

curves E = 0 and F = 0. However E is irreducible, so if E and F agree, they

have to do so on the complete component E = 0. We show on the contrary

that this component contains a point that does not satisfy F = 0. Let us solve

E(0, Y ) = 0.

0 = E(0, Y ) = −12Y 2 + 4Y + 35

yields Y = 1±√106
6

. Evaluating F at these two values yields 1100 ± 85
√
106

which are non zero, hence the contradiction. Finally we study the case of

X = cos2 α = 0, where the system (2) amounts to⎧⎪⎪⎨
⎪⎪⎩

k2

sin α
− 2k

r
+ 3kw2

r
+ 4 sin α

r2
= 0

k
r
+ 3w2 sin α

r2
+ 4 sin α

r2
0

and since k = α′ + sin α/r = sin α/r⎧⎪⎪⎨
⎪⎪⎩

sin α

r2
− 2 sin α

r2
+ 3 sin αw2

r2
+ 4 sin α

r2
= 0

sin α

r2
+ 3w2 sin α

r2
+ 4 sin α

r2
= 0

3+ 3w2 = 5+ 3w2 = 0

so again we get a contradiction and the proof is complete.

4.3 Hamiltonian stationary Type II surfaces

Proposition 3. A Hamiltonian stationary Lagrangian cyclic surface of C2 of
type II is locally congruent to a Cartesian product of two round circles S1(r1)×
S
1(r2).
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Proof. As we saw in Section 2, Remark 4, a type II immersion which is not

a product of curves can take the following form

X : I × R/2πZ → C
2

(s, t) �→ c(γ1(s)eit , γ2(s)eit)+
∫ s
s0 W (u)(γ ′1, γ ′2)du

where the Legendrian curve γ = (γ1, γ2) is parametrized by arc length.

We denote by βL = arg(γ1γ
′
2 − γ2γ

′
1) the Legendrian angle of the curve γ =

(γ1, γ2), i.e. the Lagrangian angle of the plane spanned by γ, γ ′. Next we com-

pute the derivatives of the immersion (we set the constant c to 1 since that does

not change the Lagrangian angle):

Ys = (W + eit)
(

γ ′1
γ ′2

)
, Yt = ieit

(
γ1
γ2

)
,

from which we deduce that

detC(Ys, Yt) = ieit(W + eit)(γ ′1γ2 − γ ′2γ1) = −i(eit +W )ei(βL+t)

Thus

β(s, t) = t + βL + arctan

(
sin t +W2

cos t +W1

)
− π

2

We now compute the induced metric:

gss = 1+ |W |2 + 2〈W, eit〉 =: A2 gtt = 1 gst = 0,

and the first derivatives of β:

βs = β ′L +
〈W ′, ieit〉 +W1W ′

2 −W ′
1W2

A2
,

βt = 2+ |W |2 + 3〈W, eit〉
A2

,

where 〈, 〉 stands for the scalar product in C � R2.

g =
(

A2 0

0 1

)
, g−1 =

(
A−2 0

0 1

)
.

Thus,


β = − 1√
det g

(
∂

∂s

(√
det ggssβs

)
+ ∂

∂t

(√
det ggttβt

))
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−A
β = ∂

∂s

(
1

A

(
β ′L +

〈W ′, ieit〉 +W1W ′
2 −W ′

1W2

A2

))

+ ∂

∂t

(
2+ |W |2 + 3〈W, eit〉

A

)

= β ′′L A − β ′L
∂A
∂s

A2
+

〈
W ′′, ieit

〉+W1W ′′
2 −W ′′

1 W2

A3

−3
〈W ′, ieit〉 +W1W ′

2 −W ′
1W2

A4

∂A
∂s

+3

〈
W, ieit

〉
A

− 2+ |W |2 + 3〈W, eit〉
A2

∂A
∂t

= β ′′L
A
− β ′L

〈
W ′,W + eit

〉
A3

+
〈
W ′′, ieit

〉+W1W ′′
2 −W ′′

1 W2

A3

−3

(〈W ′, ieit〉 +W1W ′
2 −W ′

1W2

) 〈
W ′,W + eit

〉
A5

+3

〈
W, ieit

〉
A

− 2+ |W |2 + 3〈W, eit〉
A3

〈
W, ieit

〉

−A6
β = A4β ′′L − A2β ′L
〈
W ′,W + eit

〉+ A2(
〈
W ′′, ieit

〉+W1W ′′
2 −W ′′

1 W2)

−3
(〈W ′, ieit〉 +W1W ′

2 −W ′
1W2

) 〈
W ′,W + eit

〉
+A2

〈
W, ieit

〉 (
1+ 2|W |2 + 3

〈
W, eit

〉)
.

For fixed s, the expression −A6
β is polynomial of degree 3 in the variable

eit , and the only term of order 3 comes from the last line in the expression

above: 3A2
〈
W, eit

〉 〈
W, ieit

〉
. Thus if β is harmonic W must vanish, hence we

are in the centered case (Hopf type tori).

This case is straightforward: on the one hand the metric is flat and on the

other hand β = 2t + βL − π
2
, thus we must have β ′′L = 0. Following the

terminology of [CLU], the curve γ is contact stationary and take the following

form:

γ (s) = (
ceis/

√
2c,

√
1− c2e−is/

√
2(1−c2)),

where c ∈ (0, 1). We observe that the closedness of the Legendrian curve is

not necessary in order to get a compact surface. The corresponding Hopf torus

is a product of circles S1(c)×S1(
√
1− c2). By making a convenient homothety

we get any product of circles S1(r1)× S1(r2) thus the proof is complete.
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5 Ruled Lagrangian surfaces

Let � be a smooth, ruled, Lagrangian surface. If the rulings are parallel, it is

straightforward that � is a Cartesian product L×� of some straight line L, and
some planar curve �, such that L ⊂ P1 and � ⊂ P2, where P1 and P2 are two

orthogonal, complex planes. So from now on, our discussion being local, we

shall assume that the rulings are not parallel.

Locally, � may be parametrized by the following immersion:

X : I × R → C
2

(s, t) �→ γ (s)t + V (s),

where γ (s) is a unit speed curve of S3 and V (s) ∈ C2, and we have

Xs = γ ′t + V ′, Xt = γ.

We now claim that, without loss of generality, we may assume that Xs and Xt

are orthogonal: to see this, we reparametrize the surface by X̂(s, t) = X (s, t)+
γ (s)T (s), where T (s) is some real function. We observe that the images of X
and X̂ are the same. Then we compute

X̂s = Xs + γ ′T + γ T ′, X̂t = Xt = γ.

Thus by choosing T such that T ′ = −〈Xs, Xt〉, we may reparametrize our

surface such that X̂s and X̂t are orthogonal.

The Lagrangian assumption amounts to

ω(Xs, Xt) = 〈Xs, J Xt〉 = t〈γ ′, Jγ 〉 + 〈V ′, Jγ 〉 = 0.

The vanishing of 〈γ ′, Jγ 〉 means that the curve γ is Legendrian. It follows

that (γ, Jγ, γ ′, Jγ ′) is an orthonormal basis of R4 � C2. Thus the conditions

〈V ′, Jγ 〉 = 0 and 〈Xs, Xt〉 = 〈V ′, γ 〉 = 0 imply that there exists a planar curve

α(s) = x(s)+ iy(s) such that V ′ = xγ ′ + y Jγ ′ = αγ ′. So we have shown the

first part of the following:

Theorem 4. A smooth, ruled, Lagrangian surface ofC2 is either the Cartesian
product L × � of a straight line L with a planar curve � or may be locally
parametrized by an immersion of the form

X : I × R → C
2

(s, t) �→ γ (s)t + ∫ s
s0 α(u)(γ

′
1(u), γ ′2(u))du,
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where γ = (γ1, γ2) is some Legendrian curve of S3 and α = (x, y) is some
planar curve. Moreover, the only self-similar ruled Lagrangian surfaces of C2

are Cartesian products L × �, where L is a straight line and � is a planar
self-similar curve (cf. [AL]).
Proof. We have already characterized ruled Lagrangian surfaces, so it remains

to study the self-similar equation.

We start computing the first derivatives of the immersion:

Xt(s, t) = γ (s), Xs(s, t) = (1+ α(s))(γ ′1(s), γ
′
2(s))

from which we deduce the expression of the induced metric:

E = (t + x)2 + y2, G = 1, F = 0,

and a basis of the normal bundle:

Nt = iγ (s), Ns = i(1+ α(s))(γ ′1(s), γ
′
2(s)).

We now compute some second derivatives:

Xst = γ ′(s), Xtt = 0.

We deduce that

2〈H, Nt〉 = 〈Xss, Nt〉
E

+ 〈Xtt , Nt〉
G

= 〈Xst , Ns〉
E

= 1+ x
(t + x)2 + y2

.

On another hand, we have:

〈X, Nt〉 = 〈iγ (s),
∫ s

s0
α(u)(γ ′1(u), γ

′
2(u))du〉,

which clearly does not depend on t . So the equation

〈H, Nt〉 + λ〈X, Nt〉 = 0

can never hold for such an immersion, so the only self-similar ruled Lagrangian

surfaces are products L × �. It is then straightforward to see that the curve �

must be a solution of the self-similar equation.

Remark 5. We recover the Lagrangian helicoid of [B] by taking γ (s) = (k +
il)(cos s, sin s), where k and l are two constants such that k2 + l2 = 1. In the

notation of [B], we have x(s) = G/2 and y(s) = −A.
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