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About a family of deformations
of the Costa-Hoffman-Meeks surfaces

Filippo Morabito

Abstract. We show the existence of a family of minimal surfaces obtained by de-
formations of the Costa-Hoffman-Meeks surface of genus k& > 1, M. These surfaces
are obtained varying the logarithmic growths of the ends and the directions of the axes
of revolution of the catenoidal type ends of M. Also we obtain a result about the non
degeneracy property of the surface M.
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Introduction

C. Costa in [1, 2] described a genus one minimal surface with two ends
asymptotic to the two ends of a catenoid and a middle end asymptotic to a plane.
D. Hoffman and W.H. Meeks in [5], [6] and [7] proved the global embedded-
ness for the Costa surface, and generalized it for higher genus. We will denote
the Costa-Hoffman-Meeks surface of genus k£ > 1 by M;. Foreachk > 1 is a
properly embedded minimal surface and has three ends of finite total curvature.
J. Pérez and A. Ros in [11] studied the space M of minimal surfaces of finite
total curvature, genus k and 7 ends, properly immersed in R* and with embedded
horizontal ends. Given M € M, the infinitesimal deformations of M are gener-
ated by the elements of J (M), the space of the Jacobi functions u on M, that is
functions such that Lu = 0, where L denotes the Jacobi operator of M, which
have logarithmic growth at the ends. They showed that dim J(M) > r + 3.
They denoted by M* = {M € M : dim J(M) = r + 3} the subspace of non
degenerate surfaces and proved
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Theorem 1 (th. 6.7, [11]). M* is an open subset of M and is a (r + 3)-
dimensional real analytic manifold.

The dimension of the space J(M) just introduced is known for M = M, for
k > 1. Indeed thanks to the works [9] and [10] by S. Nayatani, dim J(M;) = 6,
since » = 3, but only for 1 < k£ < 37. Recently this result has been proved also
for £ > 38 (see [8]). The elements of J(M}) are the Jacobi fields associated
with the horizontal translations, the rotation about the vertical direction and
three functions (one for each end) whose form in a neighbourhood of an end
is a In Jw/|, being a the logarithmic growth. Thus, the one parameter family of
deformations of these surfaces, described by D. Hoffman and H. Karcher in [4],
contains all the embedded surfaces nearby M) with a symmetry group generated
by k vertical planes, up to dilations preserving the vertical direction.

In this work, following [11], we show the existence of a bigger family of
immersed minimal deformations of M, for k¥ > 1 having three embedded ends.
These surfaces do not enjoy any property of symmetry. In fact we admit the
possibility to rotate, translate and dilate any of the three ends of the surface and,
in addition, to bend the two catenoidal type ends and to transform the middle end
from a planar type end into a catenoidal type end (we recall that the planar end
can be thought as a catenoidal type end with null vertical flux). We will prove
the following result.

Theorem 2. For each possible choice of the limit values of the normal vectors
of the three ends, there is, up to isometries, a 1-dimensional real analytic family
of smooth minimal deformations of My, for k > 1, letting the middle planar end
horizontal.

Our result is a consequence of the moduli space theory and of the implicit
function theorem. We do not treat the case where also the middle planar end is
not horizontal because it can be reconduced to the previous one by an isometry.

The family of surfaces described in the statement of the theorem here, contains
the 1-parameter family of deformations of M, for 1 < k < 37, obtained by
L. Hauswirth and F. Pacard in [3] bending the top and the bottom end and
letting horizontal the middle planar end. All the surfaces of this family are
not embedded and are symmetric with respect to the vertical plane {x, = 0} that
in particular contains the axis of the catenoidal type ends (it is assumed to be
the same for the two ends). The parameter is the angle between this axis and
the vertical direction. This family is used in the same work to construct some
new examples of minimal surfaces by a gluing technique.
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Degeneracy and non degeneracy of the Costa-Hoffman-Meeks surfaces

Let K, denote the C>* elements of the kernel of the Jacobi operator about the
compactification of M € M, Killing the space of the Jacobi fields induced by the
isometries of the ambient space and  the number of the ends. We set Killingy =
Killing NK. In [11] the authors give the following definition of non degeneracy.

Definition 3 ([11]). A4 minimal surface is non degenerate if Killingy = K.

J. Pérez and A. Ros show in Proposition 5.3 of [11] that the non degeneracy of
M is equivalent to the equality dim J (M) = r + 3 and obtain Theorem 1. So if
a minimal surface M is non degenerate then the set of the minimal immersions
near M with horizontal ends has a nice behaviour.

Remark 4. The works [9] and [10] by S. Nayatani and [8] by the author about
the number of bounded Jacobi functions ensure that M; is non degenerate for
1 <k < 4o0.

In section 2.2 we will prove that Mj is non degenerate with respect to the
Definition 3 but in a more general setting. We remind that the minimal surfaces
considered in [11] (where Definition 3 is introduced) have horizontal embedded
ends. On the contrary here we suppose the surfaces can have non horizontal
embedded ends.

Now we are going to explain why M is degenerate with respect to the dif-
ferent definition used by L. Hauswirth and F. Pacard in [3]. They studied the
mapping properties of the Jacobi operator of M, acting on the space of the Cg’a
functions defined on M} and that are invariant under the action of the symmetry
with respect to the vertical plane {x, = 0}. In particular if f € Cf“"(Mk), then
f = 0(e*) on the catenoidal type ends. The mapping properties of the Jacobi
operator (denoted by Ls) acting on functions of c§’°‘ (M}) depend on the choice
of §. Their definition of non degeneracy of M; is the following one.

Definition 5 ([3]). The surface M, is non degenerate if the operator Ls is
injective for all § < —1.

Thanks to the works [9] and [10] by S. Nayatani and [8] by the author, the
space K C J(M;) of the bounded Jacobi functions, is known to be generated
by the functions (N, e;), (N, e;) and (N, e3), (N, e3 X p), where N denotes the
normal vector field about My, (ej, es, e3) is the canonical basis of R and p the
position vector on M. These functions are associated with 4 isometries of the
ambient space: the three translations and the rotation about the es-axis. In [3] the
authors remark that the Jacobi function (N, e; X p) associated with the rotation
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about the e3-axis and (N, e,) associated with the translation along the e;-axis do
not respect the mirror symmetry described above, that is they are not invariant
with respect to the action of the map (xy, x, x3) — (x1, —x2, x3). So they did
not taken into account them and could conclude that A is non degenerate, in
the sense of their definition.

The surfaces of the family described in our work do not enjoy any prop-
erty of symmetry, since we admit to bend the catenoidal type ends in arbitrary
directions. Then the Jacobi functions described above must be taken into ac-
count. Since the Jacobi function (N, e3 x p) belongs to the space C82’°‘ (M) for
8 = —k — 1 < -2, the property of non degeneracy does not hold any more.
Actually the operator L; acting on Cg’“ (My}) is no more injective forall § < —1.
As consequence, we can state that for all £ > 1 the Costa-Hoffman-Meeks
surface M, is degenerate in the sense of Definition 5.

1 Preliminaries and notation

We denote by X: M, — R? the conformal minimal immersion of the Costa-
Hoffman-Meeks surface M in R3. If g and n are the Weierstrass data of M,
we can write:

X(@z) = (/ n——/gn,Re/)erR:R3. (1)

The meromorphic function g is the stereographic projection from the north pole
of the Gauss map N: M; — S?. The total curvature is finite and M is confor-
mally diffeomorphic to My \ {p:, ps, pm}, being M, a compact surface and p;
three points. The Weierstrass data extend in a meromorphic way at each puncture
pi. In particular the Gauss map of X (z) is well defined at p;. The points p; are
identified with the ends and a neighbourhood of a puncture will parametrize the
corresponding end. In the sequel we will refer to various quantities related to
the three ends of the surface using the index ¢ for the top end, the index b for
the bottom end and the index m for the planar end. The Gauss map N takes the
limit values (0, 0, 1) at the ends p, and p; and (0, 0, —1) at the end p,,.

We parametrize the ends p; in the graph coordinate x = x; +ix; on D/ (g;) =
{x € C; 0 < |x| < ¢;} by the immersions

1
X(x) = (; —a; In |x| +h[(x)> eCxR=R?

fori = t, b, where h; is a smooth real valued function on D; (¢;). The quantities
a; and /;(0) are called the logarithmic growth and the helght of the end. We can
observe that, for the null flux condition, a, = —a,.

Bull Braz Math Soc, Vol. 40, N. 3, 2009



A FAMILY OF DEFORMATIONS OF THE COSTA-HOFFMAN-MEEKS SURFACES 437

As for the planar end p,,, we will use the following parametrization

1
X (x) = (—, hm(x)) on Dy (€n).
X
So its logarithmic growth is zero.

1.1 The mean curvature operator at an end

Let us consider a not necessarily minimal immersion E: D*(¢) — R3 defined
by

E(x) = (%, —aln|x| —|—h(x)> .

We denote by ds3 the flat metric of the x-plane. We set p = |x| and [ =
—aln p + h. The induced metric ds?> = (gij) 1s given by ([11])

1
gij(x) = F ((Sij + P43if3jf) . ()

If we denote by d A (respectively d 4y) the area measure associated with the
metric ds? (respectively dsg), then (2) implies that

1
=2 a4
P

where O = 1 + |x|>(a® + |x|?|Voh|> — 2a(x, Voh)) (Vy denotes the gradient
computed with respect to the flat metric ds?).

The Gauss map of £ is given by ([11])
1 _
N(x) = 077 (—ax + X*Voh, 1), (3)

where X2Voh means the product of the complex number x? with the gradient
Voh.

The mean curvature of the immersion E is

4 Vv
H=Lgivg Y ),
2 V1+p4VofP
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2 The deformation of the surface and its Jacobi operator

In this section we describe how we deform the surface M following the ideas
of [11]. In subsection 2.1 we introduce the Jacobi operator of M and we study
its kernel and its range.

We will construct a family of deformations of M, using in particular Theo-
rem 4.1 of [11]. The first step is the construction of a new immersion of M in
R? starting from X (z) given by (1). Using a smooth cut-off function we glue
X: M \(Df(g;) U Dj(ep) U Dy (e)) — R? with the parametrizations of the
three ends with a different value of the logarithmic growths (that we denote by
as, ap, a,). Furthermore we rotate the ends p, and pj, that is we change the
directions of their axes of revolution. Secondly we consider small variations of
the immersion just constructed with respect an appropriate smooth vector field.
Thanks to Theorem 4.1 of [11], each immersed minimal surface having prop-
erly embedded ends with finite total curvature and fixed topology, that is in a
neighbourhood of M, admits an immersion constructed in this way. We remark
this theorem has been proved for minimal surfaces with horizontal ends but it
holds also in our setting.

To give the details of the construction we need to introduce some notation.
We denote by F (6, ;, 0.;) the frame defined by the following unit vectors:

e1(01.:,6,;) =cosb) el +sinb;sinb, e, + sinb; ; cosb, ;es,
ex(01,i,02,;) = cosby e, —sinb, ;es, 4)

e3(01,0,;) = —sinb; ;e; + cosb;sinb, ;e; + cos b ; cos b, ;es,

where (e}, e,, e3) denotes the canonical base of R>.
We define the immersions of the rotated catenoidal type ends on D; (¢;) as
X]

Xiﬂl,iﬁz‘i(x) = Wel(gl,isgli) -

X2
|x |2

+(=a;In|x| + h;(x))e3(01,;, 02,),

ex(01,i,02)

for i = ¢, b. As for the planar end, we consider on D} (¢,,) in the canonical
frame (e, e;, e3) the immersion

1
Xm,O,O(x) = (;7 —a, In |X| + hm(x)> .
We define y = (as, ap, am, 011, 02,1, 01,6, 02.6)-
Using a smooth cut-off function we can glue the three immersions above,

defined on D (¢g;), 1 = t, b, m, to the restriction of X (z) to M\ (Ui:,,hm Dy (s,-))
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and obtain a new immersion we denote by X,. It is not necessarily minimal and
depends smoothly on y.

Now let ZV(y) € C®(M;, R?) be a smooth vector field such that (N(y), N) =
1 on M;\(D} (¢,) U Dj (ep)) and

e3(01,i,605,)

) =
D)= N e0rr, 6200

on Df(e;) fori = ¢, b. We remark that we do not modify the normal vector
field on D (¢,,) because we keep the middle planar end horizontal. Let A be a
neighbourhood of (a,, a,, 0) (the logarithmic growths of the ends of M;), U a
neighbourhood of zero in C** (M,). Fory € A x[—e¢, ¢]*and a functionu € U,
we consider the family of immersions {X, ,} such that

X

v =X, FuNy): My — R, (5)

Such a family depends analytically on (y, #). As we have anticipated, Theo-
rem 4.1 of [11] ensures that each immersed minimal surface having properly
embedded ends with finite total curvature that is in a neighbourhood of M,
admits an immersion in R? which is in this family. In other terms each of
them is the graph of a function u with respect the vector field N (v) about the
surface whose immersion is X,,. Each immersion is determined by an element
(y,u) € A x [—e, e]* x U. Inparticular if y = (&, @, 0, 0, 0, 0, 0) the immer-
sion is the one of M}, (that is actually an embedding).

Now we are going to introduce the mean curvature operator of the immer-
sion X, , and its “compactification”.

Let A € C*(M;) be a positive function which in terms of the graph coordi-
nate x, is defined by

Ay = 1 e OnPr@Eds Dyen). Dy en),

1 on M\(D;(2e,) U D} (2ep) U Dji (2€,)).

(6)

If ds? denotes the induced metric on M, then (2), which gives the expression of
the metric for a catenoidal type end, implies that d5?> = (1/1) ds? is a Rieman-
nian metric on M. We denote the associated area mesure by d A IfH (y,u) is
the mean curvature operator of the immersion X, , = X, + uN (v), we define
the operator H (y, u) = AH (y, u). Since at the ends p, and pj, the rotation does
not change the value of the mean curvature, we can apply Lemma 6.4, proved
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in [11], at each end to conclude that there exist & and neighbourhoods A, U
such that the operator

H: A x[—¢, el xU— CO(My)

is real analytic.

2.1 The Jacobi operator
The Jacobi operator L of M is given by

L= A+ 4],

where A2 and | 4 |§S2 are respectively the Laplacian and the norm of the second
fundamental form with respect to the metric ds? (the metric on My).

The geometric meaning of L can be explained in the following way (see
Section 5 of [11]). Let {M;(#)}|<. denote a family of smooth deformations of
My, such that M} (0) = M, and let H(¢) denote the mean curvature operator of
M (t).If Y, : M, — R?istheimmersioninR? of M (¢), andw = (%u:o%’ N),
then we have the equality

d H(t) 1L (7
— =—Lw.
dt 1=0 2

If Lu = 0 is satisfied, u is called Jacobi function on M} and it corresponds to
an infinitesimal deformation of M} by minimal surfaces. The operator L can
be “compactified” to obtain the operator L = A ;2 + |A|§,S_2 = AL on M; (the
function A is defined by (6)). It is related to the differential of H(¢t) = AH (t)
by a relation similar to (7).

In the sequel we will consider the family of deformations of A constructed
in the following way. We define

7 = (@, a,0,0,0,0,0) and 3 = (G, ap, am, 011, 02, 015, 02)
and consider a smooth curve
y (@) = (a;(t), ap(1), an (1), 01,1(1), 02,,(1), 01,5(1), 62,5(2)), (8)
for |t| < &, such that y (0) = y, with acceleration y’(0) = y and a function
u(): {t e R, |t] < e} > C**(My)
such that u(0) = 0.
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We define the family of deformations { M (¢)} <, of M} as the family of im-
mersed surfaces whose immersion in R? equals Xyuw) = Xy + u(t)ﬁ(y (1))
(see (5)). We remark that in general M (¢) is not a minimal surface.

We are going to give the expression of the Jacobi functions on M defined
by (%l —oXy@.u@» N). To do that we need to introduce additional notation.
Let f1, f, f3 be the functions defined by:

X1

NG, D) = |x|2<N, e3) — (—=a; In |x[ + 2 (x))(N, e1), )
falx, i) = &%W, e3) + (=a; In|x| + 2 (x))(N, e2), (10)
f3(x,a;) = —a; In|x|(N, e3) (In

for x € Df(g;) withi = ¢,b,m, and f, = 0, n = 1,2,3, in M;\D}(2¢;).
fn are a smooth interpolation of previous values on the remaining part of M.
We recall that a,, a,, are the logarithmic growths of the top and of the bottom end
of M}, and since the middle planar end is horizontal, we have a,, = 0.

Proposition 6.  The Jacobi functions about My have, in D (¢;), the following
expression
O f1(x,0) + 62 fa(x, i) + f3(x, d;) +u;

for i =t,b,m, with 9.1,,” = éz,m =0, @y =0 and u; € C>*(D;(s;)).

Proof. A Jacobi function is defined by

<E|t:0 (Xy(t) + u(l‘)ﬁ(y(z))) , N). (12)

We observe that X, ;) in D} (g;) is given by

X1 X2
—e1(01,i(1), 02, (1) — —=ex(01,: (1), 02, (1))
x| |x] (13)
+(—ai () In|x| + h; (x))e3 (01, (1), 62, (1)),

fori = ¢, b and in D} (¢,,) by

(l, —ay (1) In |x] + hm(X)) :
x

To simplify the notation we will omit the dependence on the end wherever it is
possible, replacing 6, ; (¢) by 6;(¢) and a; () by a(t).
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To obtain % X, ) we need to compute

[t=0

d
2 (0) = — (01(2),6,(2)), j=1,2,3.
e;(0) dl\t:Oe(I() 2(0), ]

So we suppose that 6;(0) = 6,(0) = 0. We observe that from equation (4) since
e1(01(2), 62(t)) = cosb(t)e; + sin b (t) sin 6, (t)e, + sin 6y (¢) cos 6, (t)es,
we have
é1(t) = —60,(t) sin 0, (t)e,
+(9{ (¢) cos 0, (2) sin 0, (¢) + 05(¢) sin 6; (¢) cos Gz(t))ez
+(<9]’ (t) cos 0y (2) cos 0, (¢) — 05(t) sin 6y (¢) sin 6, (t))e3,

then using the initial conditions, we obtain

€1(0) = 6;(0)es. (14)
In a similar way we obtain ¢;(0), with j = 2, 3. We find
é,(0) = —6;(0)es, (15)
&3(0) = —0](0)e; + 0} (0)es. (16)
Then from equations (13), (14), (15) and (16)
d X1

x
Eu:oXV(t) - |x|291/(0)e3 - ﬁ(_%(o)%)

+(=a(0) In |x| + 2 (x))(—=0{(0)e; + 6,(0)e2) + (—a'(0) In |x|)es.
Collecting the summands in terms of the 6;(0) = 6, ;(0) and taking into account
the definitions (9), (10) and (11) of the f; functions, we get
d / . / . /
(EU—OX}/(”’ N) =0,,00)fi1(x,1) +6,,;(0) f2(x, i) + f3(x, a;(0)).

As for the last term of (12), we recall that #(0) = 0 and, on D} (¢;), from the

definition of N (y) it holds that
- e3(01:(0), 02,1 (1))
N = ’ - .
YO = N s 010, 100

Then %(u(t)ﬁ(y(t))), evaluated in ¢t = 0, is equal to

u' ()N (y(0)) + 14(0)i Ny @) = “(0) es.
dt =0 (N, e3)
If u; denotes the restriction of u'(0) to D} (¢;) fori = t, b, m, then the result is
obvious. O
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Lemma 7. Let U,V € C>*(M,;) be the functions defined in D} (g;), fori €
{t,b,m}, by

Ui(x) = 01, fi(x, i) + 00, fo(x, i) + f3(x, &) + ui(x)

and

Vitx) = @i i@, 1) + @i olx, 1) + f3(x, by) + vi(x),
with éj,i’¢j,i € R and dm = O,éj’m = ij,m = 0, ] =1,2, and Ui, v; €
C>*(D;(g;)). Then we have

| (ULV —VLU)dAd= | (ULV —VLU)dA

My My

=27 Y [(Di, Vi (0)) = (6, Vui(O)] + 27 Y [hiu; (0) — @i (0)],

ief{t,b} ie{t,b,m}
with ©; = (01;,62,), ;= (¢1.1, ¢24) and V- = (3, d5,).

Proof. The proof makes use of the Green identity, so first of all we obtain the
local expression of the Weiertrass representation of a properly embedded end
p with finite total curvature of a minimal immersion, ¥, in R?, in terms of a
conformal coordinate z = re'® centered at p.

Let’s suppose that the Weiestrass representation of ¥ is

)

It is known (see for example Section 2 of [11]) that properly embedded minimal
ends with finite total curvature must be asymptotic to the end of a catenoid or of
a plane. Indeed from the hypotheses on p it follows that the Weierstrass data of
¥ in terms of the conformal coordinate w centered at the end are given by:

q(w)

gw) =—=, n(w)=sww dw,
w

for w € D*(e), k € N*. The functions ¢(w) and s(w) are holomorphic and
satisfy ¢ (0) # 0, s(0) = —a € R*. From (17) we obtain

p = (5 (2w [ 12500 e s,
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If k = 1, v is asymptotic to the end of a vertical catenoid (under the additional
hypothesis (¢s)’(0) = 0, which ensures v is well defined). Indeed we can write

I(w
Y(w) = <%,—aln|w|+v(w)>. (18)
So a is the logarithmic growth of the end and v is a smooth function on D(g).
Now we consider the change of coordinate z = —ﬁe_%. In the new con-

formal coordinate we can write:

| dz
giz)=——+1t(), ni@)=-a—.
z z

Replacing g(z) and n(z) in (17) we get the expression of ¢ in terms of z:
a(_ 1
Y(z) = (5 (z + —> +t(z), —aln|z| + const) . (19)
z
We denoted by x the graph coordinate around the catenoidal end p; of M and

by a; its logarithmic growth. Then, for the catenoidal type ends of M}, we get
from (19) the following equality

1 &i 2 Sl'(Z)
—=—{+|z|"+zt,(z)) =
X 2z z

(20)
with 5;(0) = %, i € {t, b}.

In the case of the planar end p,,, that is for £ > 2, the third coordinate
function in (18) is bounded and v is asymptotic to the end of a horizontal plane.

Similar arguments lead us to
I s,(2)

X z

where s,,(0) # 0.

The next step is to find the expressions of U and V' near the ends in terms of
(r, @) coordinates. From (3) we obtain that, for an end with logarithmic growth
a, it holds that:

(N, e3) = Q7% = (1+ [xP(a® + x| Voh|® — 2a(x, Voh)) 2,

(N, e1) = (N, e3) Re(—ax + ¥>Voh),
(N, ex) = (N, e3) Im(—ax + x>Voh).
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Then in a neighbourhood of each end we can write:

(N.es) = (1+ O(x) ? = 1+ 0(x ),

(N,e1) = (14 0(x)) (—ax; + OGE?) = —ax; + O(x ),

(N,e) = (1 4+ 0(x)) (ax2 + OG?)) = ax, + O(Ix]*).

In (r, &) coordinates, U; and V; have the following expressions:
Ui(r) = 013 f1(ry i) + 62, fo(r, ) + f3(r @) + i (),

Vitr) = ui fi(r i) + o fo(r, i) + f3(r, By) + vi(r)

where
fin iy =282 oG,
frlr i) = i Zma + O(rinr),
r

f3(r,a) = —alnr + O@r).

445

21

(22)
(23)

If D;(0,r) are conformal disks and M(r) = M\(U;e(r.5.myDi(0,7)), then the

conformal invariance of the integral implies:

v oU

1) = / (ULV — VLU)dA =/ (U— _ V—) ds
M) AM(r) an an

av; aU;
= - > Uit = Vi— | ldzl,
aD; (0,r) ar or

ie{t,b,m}

24)

where d A4 is the area measure associated with ds?, 5 is the exterior conormal
field to the immersion along o M (r) and |dz| = rda. To get the lemma it will

be sufficient to let 7 go to zero.
Of course we have fori € {t, b, m} :
aUu; . afi(r . Afa(r afs(r, a; ou; (r
f1()Jr \ fz()Jr /3( )Jr (r)

—— =0, )
ar Toor ar ar ar

v
ar

and a similar expression for

v, . i /) Afsn b)) dvi(r
Wi _ g BRE) o B | Bfstr b | u()
or ar or ar ar
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Given a C>* function / we will write it by its Taylor expansion in the coordinate
z =1z, +izy =re®, ie.,

[ =1(0) +rcosa(d;1)(0) +rsinw(d;,/)(0) + o). (25)

Now we proceed with the evaluation of the limit as » — 0 of each summand
that appears in (24). For i € {t, b, m} we have (to simplify the notation, we will
omit the dependence on » and )

av; 3U
lim (u— _ ) \dz|
=0 Jap,0,r) or " or

. 0 av;
= lim o [<¢1zu (Z)i 91,ivi(2)8—j;1> + ( i 01, fi — (01 zf1)
|z|=r

r—0

) af> dv; . ou;
+ <§02,i“i(z)ai 9217)1(2)2) < o 921ﬁ - _(Pszz)
/3 (b; af3(a; v ov;
ui(z) f3( ) vi(Z)M (o =0 ) | ).
or or or
We define (the expression of / is given by (25)):
. /1
G() = lim 1(r)—|dz|
r—0 {Iz|=r} or

— _ lim (1(0) + r(cos a(d-,1)(0) + sin & (3.,1)(0)) + 0(r2))
(lz1=r)

X (a, cose + O(lnr)) rda
2r2

= — lim (1(0) +r(cosa(d:,1)(0) + sina(BZZI)(O))> G 1a + 0 Inr)
=0 J{|z|=r} 2r
100 ;
= — lim <Q + Sina(BZZI)(O)) ajcosa
r=0Mzl=ry N T
i (8, 1) (0
— lim KACTDIO) cos’> ada + O(r Inr).
r=0z=ry 2

Then, since

a; cos

da

lim (Q + 51na(8221)(0)>
{lzI=r}

r—0 v

. a;1(0)
= lim

cosasinada =0
r—0 27” 0

cosada +

a;(3:,1(0)) [
!
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and
a; (3..1)(0 a; (3..1)(0) [*7 .
lim/ @ (0,)(0) cos’ ada = M/ cos® adar = za,-(azll)(O),
=0 Jiz=y 2 2 0 2
we obtain

.
G = _Eai(aml(o))-
In a similar way:

7() = lim I(r )£|d |

=0 J{jz1=r)

= —lim (1(0) + r(cos (3, 1)(0) + sina(3,1)(0)) + O¢?))

70 jzl=r)
x (a"zs“;“ + O(lnr)) rda

. a; sin® o
= — lim
70 J{jz|=r}

A 0 (O0)da = ~Z3;(3.,1)(0).

Then we can conclude that for i € {¢, b, m} :

: : : I/
lim (¢l,iui(2) - 91,ivi(2))—|d2|
=0 Jyiz=r) or
= ¢1.:G ;) — 01,;G(v;) = = (91 §(02,0;)(0) — @1,4(3-,1;)(0)).
In the same way we get
lim [ (o)~ br101) L)

r=0 Nzi=ry
. : T .
=@ T () —0,;T(v;) = S (92,1'(3221&')(0) - (p2,i(azzui)(0))-
We define another couple of functions:

al
R(l) = lim = fldz|

r=0 Jjz1=r) OF

= lim (cosa(d,1)(0) + sina(d.,)(0) + O(r))

=0 Jjzj=r)
X (a,- cose + O(r lnr)> rda
2r

a; cos® o

= lim
70 J{jz1=r)

(9:,1)(0)da = fli(azll)(o)
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and
ol
F() = lim — fldz|
720 Jjz|=r} O
= lin(l) (cosa(0;,/)(0) 4 sin(d,/)(0) + O(r))
=0 Nizl=r}
X (ai S + O(r 1nr)> rdo
2r
. a; sin® T
= lim (02,1)(0)do = —a;(0.,1)(0).
r=0J{jz1=r) 2
Then we find:
. A
lim (_01 lfl (pl zfl) |dZ|
r=0 Jyjz=ry \ 97
=01 R(v) — g1, R(u;) = = (91 1(0-,0)(0) — @1, (0-,u;)(0)).
Analogously:

. av; - ou;
lim ( 621> — fﬂz :fz) |dz|
r—0 {1z]=r} or
X . T . i
=02, F(vi) — @2 F(u;) = S (62,1 (32,v:)(0) — 2,4 (32,u;)(0)).

As for the fifth summand, we have

lim (u,-(z)M —vi(z )8f3(a, ) |dz|
=0 Jyjz1=r) or

= —lim

1 ((u,-(O) + 7 cos a(dz,u;)(0) + 7 sin(3,u;)(0) + O¢?)) %
"=V I z|=r}

— (v:(0) 4+ r cos (3, v;)(0) + r sina(3.,v;)(0) + OG?)) r ) rda

= 27 (bu; (0) — &;v;(0)).
To finish we show that

v A
lim <u,-—” - v,-—”> \dz| = 0.
r~>0 {|Z\:V} al” 87‘
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In fact:
a .
lim u; 1 dz) = lim ((u;(0) + O())(cos (8-, v,)(0)
r=0 Jzj=y - OF =0 Jijz1=r)

+ sina(3.,v;)(0) + O(r))) rda = 0.
If we collect the previous results, we find that fori = ¢, b, m :

av; aU;
lim (U— — V—> |dz|
r—0 3D,‘ (0’,.) ar 37’

= —7d; [(§1,1(3:,u;)(0) — 01, (3, v)(0)) + (§2,:(3-,1;:)(0) — 62, (3,v:)(0))]
—27 (bu; (0) — d;v;(0)) = 0,
with 6 ,, = ¢j,» =0 for j = 1, 2.

In conclusion we have:

lin% (ULV —VLU)dA =ma; Z [1,0(0-,u;)(0) — 91,5(3zlvi)(0)]
"R M) ic(t.b)

tmd; Y [§2.0(0,u)(0) — 62, (D, 0) (O] + 27 Y [hiui(0) — é;v;(0)].
ieft,b} ie{t,b,m}

We must do a change of variables to return in the graph coordinate. It is sufficient
to observe that from (20) it follows

1 a

—=-+00

x 2z

at each catenoidal type end. Then we get
2 2
0-,u;(0) = gaxlui(o), 0-,u;(0) = gaxzui(())

and the same equations involving the functions v;. After a change of sign we can
conclude

(ULV —VLU)dA
My

=27 ) [$1(0u)(0) = 61,:(3-,v)(0)]

ie{t,b}

21 Y [62.0(05,u) (0) — 625 (D, v) (O] + 27 D> [Bui(0) — é&vi (0)].

ie{t,b} ie{t,b,m}

Reordering the terms, we get the statement of lemma. O
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2.2 The properties of the kernel and of the range of the Jacobi operator

Let B = B(M;) C C>%(M;) be the space of functions v such that their expres-
sion in a neighbourhood of p;, withi = ¢, b, m, is

01 f1(x, i) + 0o, fo(x,0) + f5(x, &) + v (x), (26)

in the graph coordinate x (here and in the sequel we use the same notation of
Lemma 7) with v; € C>%(D(g)).

We are interested to study the kernel and the image of the “compactified”
Jacobi operator L. We define the following subspaces of the Banach space B :

J=J(M,) =ker(L), K =K(M)=JNC*™(M,),
Ko = Ko(My) = L(B)".

The elements of the space K are the Jacobi functions on M; bounded at the
ends. From previous definitions it follows that

L:B=J&J"— L(B) ®K,.

Lemma 8. [n the situation described above, it holds that:

1. Ko = {v € K;0,v;(0) =0, for i = 1,2, j =1t,b, and v;(0) =
0, for j :t,b,m} =0,

2. dim J =7.

Proof.

1. Given v € K, we have v € K if and only iffmv]:Ud/] =0VU € B.

Then we suppose that U on a neighbourhood of the end p;, i = ¢, b, m,
has the following expression:

G116, 0) + @ fo(x, i) + f3(x, b)) + ui(x).

Then, if &; = (@1.i, ¢2.;) and 0, = (9'1,,», 9'2,,), then by Lemma 7 we get

/Ul:vdfi :f ULvdAd =21 Y [(®;, Vu;(0)) — (Or, Vv; (0))]
M M ie(i,b)

2 Y [aui(0) — v (0)] =0

ie{t,b,m)
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for each u;. This is equivalent to

2 D (O, Vui(0) + 27 Y bv;(0) = 0.

ie{t,b} ie{t,b,m}

This gives K;. Now we have to determine the Jacobi fields that are the
generators of the space K. It is well known that vector fields in R?
whose flow consists in isometries (Killing fields) or dilations induce Jacobi
functions. Thanks to the works [9] and [10] by S. Nayatani and result
shown in [8], for all £ > 1, the bounded Jacobi functions on M; are
associated with the following isometries of the ambient space: the three
translations along the coordinate axes and the rotation about the vertical
axis e3. The space K is generated only by the Jacobi functions which
satisfy the conditions just proved. Making use of (21), (22) and (23) with
the appropriate values of the logarithmic growths, we want to determine
which of the following functions belongs to Ky : (N, e3), (N, e1), (N, e3).
We find:

(N, e3)(p) = (N, es)(pp) = =(N, e3)(pm) = 1,
O, (N, e3)(pi) =0, 0 (N,e)(pi) =—aié;, 9 (N, e)(pi) =aid;,

with j = 1, 2. So we can conclude that these functions are not in Kj.

Now we consider the Jacobi function associated with the rotation about
the vertical axis, that is (N,e; x p) = det(es, p, N), where p =
(s1, 52, 53) denotes the position vector. We observe that its expression
in D (¢;) is given by

s1(N, e2) — 52(N, eq)
X1
|x|?

X2
x|

(@x2 + O(x]») — (— ) (=aix; + O(Ix[) = O(x).

If we evaluate the derivatives of this function in x = 0, it is clear that K|

cannot be generated by this Jacobi function. So K is empty.

2. We consider the space V' C B of the functions defined on the disks
D; (&) by ' _
Ori fi(x, i) + 62 fo(x, 1) + f3(x, @).

It is a 7-dimensional space: in fact a function in V' is determined by
the values of the following parameters: d,, dp, dpm, 614, 6016, 021, 62p.
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The spaces B and V' can be decomposed in the following way:
B=V®&C*™My), V=0eor,

where V1 = {f € V': i_f € Z(C_z"")} and V3 is a supplementary space.
Then we have L(B) = L(V2) @ L(C*®). Since Ko = L(B)" and K =
L(C*>%) we deduce

dim Ky = codim L(B) = codim L(C*%) — dim L (V)
= dim K — dim V, =dim K — dim V + dim V.
that is
dim Ky =dim K +dim V; — 7. (27)
Now we consider the restriction to J = ker(L) of the projection 7 : B —

V. 1tis clear that ker(rr ;) = K = J N C*“, then given a function f € J
such that f = v +u withv € ¥ and u € C>%, we have

0=Lf=Lv+Lu

and 7 (f) =vE V\. Furthermore, for any v € V) there exists v € C>“
such that Lv = Lv, thatisv — v € J. Then 7 (J) = V; and

dim J = dim ker(m;) + dim Im(7);) = dim K 4 dim V. (28)
From the equations (27), (28) and dim K, = 0, we get
dim J =7+dim Kg=7. O

Remark 9. We remind that a minimal surface is non degenerate (see Defini-
tion 3) if the space Killingy = Killing N K, equals K. Thanks to Lemma 8 we
can conclude that the Costa-Hoffman-Meeks surface M is non degenerate for
all £ > 1 with respect to this definition.

3 The proof of the main result

We consider again the immersion X, + uN (y) (see (5)) and its mean curva-
ture operator H (v, u), where y = (a;, ap, am, 011, 01,6, 62,4, 62.). We denote by
e3(y) the unit vector defined in D} (¢;), for i = ¢, b, m, by e3(0;;,6,,) for
i = t,b and by e3(0,0) for i = m. We recall that A and ‘U denote, respec-
tively a neighbourhood of (&, a,, 0) and a neighbourhood of zero in C** (M),
and that § = (G, @, 0,0,0,0,0), = (&, ap, dm. 011, 021, 015, 02.). We set
c=(3,0).Letv e C>* (M) and let v; denote its restrictions at the ends. We
consider the function w; , € B defined in D} (;) by 0y ; f1(x, i) + 62, fo(x, i) +
S3(x, a;) + v;(x).
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Theorem 10.  For each possible choice of the limit values of the normal vectors
of the three ends, there is, up to isometries, a 1-dimensional real analytic family of
smooth minimal deformations of My, for k > 1, letting the planar end horizontal.

Proof. We consider the map

F:Ax[—gel*xU — C"(M)
(yv u) — H(y, u).

The map F is real analytic. Since the values (y, u) = (¥,0) = ¢ parametrize
the Costa-Hoffman-Meeks surface M}, the differential of F at c,

DF.: B(M}) —> C™(M,)

is given by
1-
DFc(wj/,v) = EL(wyv)

Since L(B)t = K, = 0, the differential for (y,u) = c is surjective and its
kernel has dimension equal to 7, being Ker DF = J. Using the implicit func-
tion theorem we find a neighborhood W of ¢ in A x [—¢, €]* x ‘U such that
V = F~'(0) N 'W is a real analytic 7-dimensional manifold which contains
only minimal immersions.

To complete the proof, it remains to observe that up to now we have con-
sidered arbitrary the choice of the logarithmic growths a,, ap, a,, and of the
angles 0 ;, 62, 01 1, 62, which determine the direction of the axis of revolution
(or equivalently of the limit normal vector) of the top and bottom ends of the
deformation of M. Actually it’s necessary that the null flux condition is sat-
isfied. In our case the flux is given by the sum of the flux of three catenoidal
ends. So the sum of the three vectors must equal the null vector. The direction
and the length of each vector are respectively given by the direction of axis of
revolution and by the logarithmic growth of the respective catenoidal end. It’s
easy to understand that these three vectors must belong to a same vertical plane,
that is we must have always 6, , = 6, ;. The common value of these angles
determines the orientation of this plane (see (4)). Furthermore the flux triangle
described by the three vectors is uniquely determined by three of the remaining
parameters (the logarithmic growths a,, ap, a, and the angles 6, ,, 6, ). It is
clear that the choice of the limit values of the normal vectors (in other words of
the angles 6, 6 5) of the two catenoidal type ends determines in unique way,
up to a dilation, the flux triangle. So we can conclude that for each possible
choice of the flux triangle, there exists a smooth 1-parameter family of minimal
surfaces that are deformations of the surface M,. ]
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