

Morse 2-jet space and *h*-principle

Alain Chenciner and François Laudenbach

Abstract. A section in the 2-jet space of Morse functions is not always homotopic to a holonomic section. We give a necessary condition for being the case and we discuss the sufficiency.

Keywords: Morse singularity, 2-jet, h-principle.

Mathematical subject classification: 58A20, 58E05, 57R45.

1 Introduction

Given a submanifold Σ in an *r*-jet space (of smooth sections of a bundle over a manifold *M*), it is natural to look at the associated *differential relation* $\mathcal{R}(\Sigma)$ formed by the (r + 1)-jets *transverse* to Σ . For $j^r f$ being transverse to Σ at $x \in M$ is detected by $j_x^{r+1} f$. This is an open differential relation in the corresponding (r + 1)-jet space. One can ask whether the Gromov *h*-principle holds: is any section with value in $\mathcal{R}(\Sigma)$ homotopic to a *holonomic* section of $\mathcal{R}(\Sigma)$? (We recall that a holonomic section of a (r + 1)-jet space is a section of the form $j^{r+1} f$.)

According to M. Gromov, the answer is yes when M is an open manifold and Σ is *natural*, that is, invariant by a lift of Diff(M) to the considered jet space (see [3] p. 79, [1] ch. 7).

The answer is also yes when the codimension of Σ is higher than the dimension n of M; this case follows easily from Thom's transversality theorem in jet spaces (see [6]). In the case of jet space of functions and when Σ is natural and codim $\Sigma \ge n + 1$, it also can be seen as a baby case of a theorem of Vassiliev [9].

In this note we are interested in a codimension n case when M is a compact n-dimensional manifold. Let $J^{r}(M)$ denote the space of r-jets of real functions; when the boundary of M is not empty, it is meant that we speak of jets of

Received 9 July 2009.

functions which are locally constant on the boundary. We take $\Sigma \subset J^1(M)$ the set of critical 1-jets. Then $\mathcal{R}(\Sigma) \subset J^2(M)$ is the open set of 2-jets of Morse functions. We shall analyze the obstructions preventing the *h*-principle to hold with this differential relation.

2 Index cocycles

It is more convenient to work with the *reduced* jet spaces $\tilde{J}^r(M)$, quotient of $J^r(M)$ by \mathbb{R} which acts by translating the value of the jet. It is a vector bundle whose linear structure is induced by that of $C^{\infty}(M)$. For instance, $\tilde{J}^1(M)$ is isomorphic to the cotangent space T^*M . Let \mathcal{M} denote the reduced 2-jets of Morse functions, that is the 2-jets which are transverse to the zero section 0_M of T^*M (in the sequel, *jet* will mean *reduced jet*). Let $\pi : \tilde{J}^2(M) \to \tilde{J}^1(M)$ be the projection and $\pi_0: \tilde{J}_0^2(M) \to 0_M$ be its restriction over the zero section of the cotangent space. Since it is formed of critical 2-jets, it is a vector bundle whose fiber is the space of quadratic forms, $S^2(T_x^*M)$, $x \in M$. Let $\mathcal{M}_0 := \mathcal{M} \cap \tilde{J}_0^2(M)$; it is a bundle over 0_M whose fiber consists of non-degenerate quadratic forms. Its complement in $\tilde{J}_0^2(M)$ is denoted \mathcal{D} (like discriminant); it is formed of 2-jets which are not transverse to 0_M . When M is connected, \mathcal{M}_0 has a connected component \mathcal{M}_0^i for each index $i \in \{1, \ldots, n\}$ of quadratic forms.

2.1 Tranverse orientation

Each \mathcal{M}_0^i is a proper submanifold of codimension *n* in \mathcal{M} . Moreover the differential $d\pi$ gives rise to an isomorphism of normal fiber bundles

$$\nu(\mathcal{M}_0^i, \mathcal{M}) \cong \pi^*(\nu(0_M, T^*M)) | \mathcal{M}_0^i.$$

Of course, $v(0_M, T^*M)$ is canonically isomorphic to the cotangent bundle τ^*M , whose total space is T^*M . When M is oriented, so is the bundle τ^*M . When M is not orientable, one has a local system of orientations of τ^*M . Pulling it back by π yields a local system of orientations of $v(\mathcal{M}_0^i, \mathcal{M})$ (that is, co-orientations of \mathcal{M}_0^i). Let us denote $\mathcal{M}_0^{\text{even}}$ (resp. $\mathcal{M}_0^{\text{odd}}$) the union of the \mathcal{M}_0^i 's for *i* even (resp. odd). We endow $\mathcal{M}_0^{\text{even}}$ with the above local system of co-orientations. For reasons which clearly appear below, it is more natural to equip $\mathcal{M}_0^{\text{odd}}$ with the opposite system of co-orientations.

Lemma 2.2. Let $s = j^2 f$ be a holonomic section of \mathcal{M} meeting \mathcal{M}_0 transversally. Then each intersection point of $s(\mathcal{M})$ with \mathcal{M}_0 is positive. The same statement holds when s is a local holonomic section only.

Proof. Let *a* be such an intersection point in $s(M) \cap \mathcal{M}_0^i$; so *i* is the index of the corresponding critical 2-jet. We can calculate in local coordinates (x, y', y''), where $x = (x_1, \ldots, x_n)$ are local coordinates of *M*,

$$y' = (y'_1, \dots, y'_n)$$
 (resp. $y'' = (y''_{jk})_{1 \le j \le k \le n}$)

are the associated coordinates of T_x^*M (resp. $S^2T_x^*M$). Since f is holonomic, we have

$$y_{jk}''(a) = \frac{\partial y_j'}{\partial x_k}(a).$$

Finally, the sign of det y''(a) (positive if *i* is even and negative if not) gives the sign of the Jacobian determinant at *a* of the map $x \mapsto y'(x)$, that is the sign of the intersection point when \mathcal{M}_0^i is co-oriented by the canonical orientation of the y'-space. As we have reversed this co-orientation when *i* is odd, the intersection point is positive whatever the index is.

Proposition 2.3.

- 1) Each \mathcal{M}_0^i defines a degree *n* cocycle of \mathcal{M} with coefficients in the local system \mathbb{Z}^{or} of integers twisted by the orientation of M. Let μ_i be its cohomology class in $H^n(\mathcal{M}, \mathbb{Z}^{or})$; in particular, if $s \colon M \to \mathcal{M}$ is a section, $< \mu_i, [s] > is$ an integer.
- When s is homotopic to a holonomic section j² f, then < μ_i, [s] > is positive and equals the number c_i(f) of critical points of the Morse function f. In particular the total number |Z| of zeroes of the section π o s (which, by construction, is transverse to the 0-section) satisfies:

$$|Z| \ge \sum_{i=0}^n c_i(f) \, .$$

Proof.

Let σ be a singular *n*-cycle with twisted coefficients of *M*. It can be C⁰-approximated by σ', an *n*-cycle which is transverse to Mⁱ₀. As Mⁱ₀ is a proper submanifold, there are finitely many intersections points in σ' ∩ Mⁱ₀, each one having a sign with respect to the local system of coefficients. The algebraic sum of these signs defines an integer c(σ'). One easily checks that c(σ') = 0 if σ' is a boundary. As a consequence, if σ'₀

and σ'_1 are two approximations of σ , as $\sigma'_1 - \sigma'_0$ is a boundary, we have $c(\sigma'_1) - c(\sigma'_0) = 0$ which allows us to uniquely define $c(\sigma)$ as the value of an *n*-cocycle on σ . Typically, the image of a section carries an *n*-cycle with twisted coefficients and this algebraic counting applies.

2) Since *c* defined in 1) is a cocycle, it takes the same value on *s* and on $j^2 f$. According to lemma 2.2, it counts +1 for each intersection point in $j^2 f \cap \mathcal{M}_0^i$, that is, for each index *i* critical point of *f*.

Corollary 2.4. If *s* is a section of \mathcal{M} which is homotopic to a holonomic section, the integers $m_i := \langle \mu_i, [s] \rangle$ fulfill the Morse inequalities

$$m_{0} \geq \beta_{0}(F)$$

$$m_{1} - m_{0} \geq \beta_{1}(F) - \beta_{0}(F)$$
...
$$m_{0} - m_{1} + \dots + (-1)^{n} m_{n} = \beta_{0}(F) - \beta_{1}(F) \dots + (-1)^{n} \beta_{n}(F) =: \chi(M)$$

where *F* is a field of coefficients, $\beta_i(F) = \dim_F H_i(M, F^{or})$ is the *i*-th Betti number with coefficients in F^{or} (*F* twisted by the orientation) and $\chi(M)$ is the Euler characteristic (independent of the field *F*).

Corollary 2.5. The h-principle does not hold true for the sections of \mathcal{M} .

Proof. It is sufficient to construct a section s of \mathcal{M} which violates the Morse inequalities, for example a section which does not intersect \mathcal{M}_0^0 . Leaving the case of the circle as an exercise, we may assume n > 1. One starts with a section s_1 of $T^*\mathcal{M}$ tranverse to O_M . Each zero of s_1 has a sign (if the local orientation of \mathcal{M} is changed, so are both local orientations of s_1 and 0_M the sign of the zero in unchanged). For each zero a, one can construct a homotopy fixing a, with arbitrary small support, which makes s_1 linear in a small neighborhood of a. As $GL(n, \mathbb{R})$ has exactly two connected components, one can even suppose that after the homotopy, s_1 is near a the derivative of a non degenerate quadratic fonction whose index can be chosen arbitrarily provided it is even (resp. odd) if a is a positive (resp. a negative) zero. Finally, one can achieve by homotopy that near each zero a, one has $s_1 = df$ with a a non-degenerate critical point of f of index 2 (resp. 1) if a is a positive (resp. negative) zero.

Near the zeroes s_1 has a canonical lift to \mathcal{M} by $s_2 = j^2 f$. Away from the zeroes, the lift s_2 extends as a lift of s_1 since the fibers of π are contractible over $T^*M \setminus 0_M$. By construction, we have $< \mu_0$, $[s_2] >= 0$, violating the first Morse inequality.

Remark 2.6. Denote $\mu_{even} = \mu_0 + \mu_2 + \dots$ and $\mu_{odd} = \mu_1 + \dots$ The following statement holds true: $\mu_{even} = \mu_{odd}$ if and only if the Euler characteristic vanishes.

Proof. Assume first $\mu_{\text{even}} = \mu_{\text{odd}}$. Proposition 2.3 yields for any holonomic section in \mathcal{M} : $m_{\text{even}} = m_{\text{odd}}$, that is $\chi(M) = 0$. Conversely, if $\chi(M) = 0$, there exists a non-vanishing 1-form on M and hence, by lifting it to $\tilde{J}^2(M)$, a section v_0 in \mathcal{M} avoiding \mathcal{M}_0 . We form

$$W = \left\{ z \in \widetilde{J}^2(M) \mid z = z_0 + tv_0, z_0 \in \mathcal{M}_0, t \ge 0 \text{ or } z_0 \in \mathcal{D}, t > 0 \right\}.$$

It is a proper submanifold in \mathcal{M} whose boundary (with orientation twisted coefficients) is $\mathcal{M}_0^{\text{even}} - \mathcal{M}_0^{\text{odd}}$. Therefore, every cycle *c* satisfies $\langle \mu_{\text{even}}, c \rangle = \langle \mu_{\text{odd}}, c \rangle$, which implies the wanted equality.

3 Are Morse inequalities sufficient?

This question is closely related to the problem of minimizing the number of critical points of a Morse function. This problem was solved by S. Smale in dimension higher than 5 for simply connected manifolds, as a consequence of the methods he developped for proving his famous h-cobordism theorem (see [8] or chapter 2 in [2]). Under the same topological assumptions we can answer our question positively. But there are other cases, discussed later, where the answer is negative.

Proposition 3.1. Two sections s, t of $\mathcal{M} \subset \tilde{J}^2(M)$ are homotopic as sections of \mathcal{M} if and only if their algebraic intersection numbers m_i with \mathcal{M}_0^i are the same.

Proof. According to proposition 2.3 1), the condition is necessary. Let us prove that it is sufficient. Leaving the 1-dimensional case to the reader, we assume dim $M \ge 2$. Denote $s^1 = \pi \circ s$. Each zero of s^1 is given an index due to its lifting by *s* to a point of some \mathcal{M}_0^i . For each index *i* choose $|m_i|$ zeroes of s^1 , $a_i^1, \ldots, a_i^{|m_i|}$, among its zeroes of index *i*; when $m_i > 0$ (resp. $m_i < 0$), we choose the a_i^j so that the corresponding intersection points of s(M) with \mathcal{M}_0^i are positive (resp. negative). When $m_i = 0$, no points are selected. In the same way, $|m_i|$ zeros $b_i^1, \ldots, b_i^{|m_i|}$ of t^1 are chosen.

The intersection signs being the same, one can find a homotopy of t in \mathcal{M} , which brings the b_i^j to coincide with the a_i^j and makes the two sections s and t coincide in the neighborhood of these points.

The other zeroes of s^1 of index *i* can be matched into pairs of points $\{a_i^{j+}, a_i^{j-}\}$ of opposite sign. A Whitney type lemma allows us to cancel all these pairs by a suitable homotopy of *s* in \mathcal{M} , reducing to the case when s^1 has no other zeroes than the a_i^j 's, $j = 1, \ldots, |m_i|$. A similar reduction may be assumed for *t*. Let us finish the proof in this case before stating and proving this lemma.

Both sections s^1 and t^1 of T^*M are homotopic (among sections) by a homotopy which is stationary on a neighborhood $N(a_i^j)$. Making this homotopy $h: M \times [0, 1] \to T^*M$ transverse to the zero section, the preimage of 0_M consists of arcs $\{a_i^j\} \times [0, 1]$ and finitely many closed curves γ_k . Each of these closed curves can be arbitrarily decorated with an index *i*. This choice allows us to lift *h* to $\tilde{J}^2(M)$ as a homotopy \tilde{h} from *s* to *t*; this \tilde{h} is the desired homotopy. More precisely, we proceed as follows for getting \tilde{h} . First $h|\gamma_k$ is lifted to \mathcal{M}_0^i by using that the fiber of $\pi : \mathcal{M}_0^i \to 0_M$ is connected. The transversality of *h* to 0_M allows us to extend this lifting to a neighborhood of γ_k , making \tilde{h} transverse to \mathcal{M}_0^i . Now it is easy to extend \tilde{h} to $M \times [0, 1]$, since the fiber of π over any point outside 0_M is contractible.

A Whitney type lemma. Let (b^+, b^-) be a pair of transverse intersection points of *s* with \mathcal{M}_0^i having opposite sign when they are thought of as zeroes of s_1 in *M*. Let α be a simple path in *M* joining them avoiding the other zeroes of s^1 and let *N* be a neighborhood of α . Then there exists a homotopy

$$S = (s_u)_{u \in [0,1]}$$

of $s_0 = s$ into \mathcal{M} , supported in N and cancelling the pair (b^+, b^-) , that is, $\pi \circ s_1$ has no zeroes in N.

Proof. We choose an embedded 2-disk (with corners) Δ in $N \times [0, 1[$ meeting $N \times \{0\}$ transversally along α . We first construct the homotopy $S^1 := \pi \circ S$ of s^1 among the sections of T^*M , following the cancellation process of Whitney which we are going to recall. We require S^1 to be transverse to 0_M with $(S^1)^{-1}(0_M) = \beta$, where $\alpha \cup \beta = \partial \Delta$. Using a trivialization of $T^*M|N$, $S^1|N \times [0, 1]$ reads $S^1(x, u) = (x, g(x, u))$. The requirement is that g vanishes transversally along the arc β ; it is possible exactly because dim $M \ge 2$ and the end points have opposite signs. Let T be a small tubular neighborhood of β ; its boundary traces an arc β' on Δ , "parallel" to β . Let α' be the subarc of α whose end points are those of β' . The restriction g|T is required to be a trivialization of T, but this latter may be chosen freely. We choose it so that

the loop $(g|\beta') \cup (s^1|\alpha')$ be homotopic to 0 in $(\mathbb{R}^n)^* \setminus \{0\}$; of course, when n > 2 this condition is automatically fulfilled. Now g can be extended to the rest of Δ as a non-vanishing map. As $N \times [0, 1]$ collapses onto $N \times \{0\} \cup \Delta \cup T$, the extension of g can be completed without adding zeroes outside β , yielding the desired homotopy S^1 .

It remains to lift S^1 to \mathcal{M} . The lifting is first performed along β with value in \mathcal{M}_0^i . Then it is globally extended in the same way as in the above lifting process.

Corollary 3.2. Let *s* be a section of $\mathcal{M} \subset \widetilde{J}^2(M)$ and m_i be its algebraic intersection number with \mathcal{M}_0^i . Let $f: M \to \mathbb{R}$ be a Morse function whose number $c_i(f)$ of critical points of index *i* satisfies

$$c_i(f) = m_i$$

for all $i \in \{0, ..., n\}$. Then s and $j^2(f)$ are homotopic as sections of \mathcal{M} .

Corollary 3.3. We assume dim $M \ge 6$ and $\pi_1(M) = 0$. Let *s* be a section of $\mathcal{M} \subset \tilde{J}^2(M)$ whose algebraic intersection numbers m_i fulfills the Morse inequalities for every field of coefficients. In particular, they are non-negative. Then *s* is homotopic through sections in \mathcal{M} to a holonomic section.

Proof. Under these topological assumptions the following result holds true: For any set of non-negative integers $\{c_0, c_1, \ldots, c_n\}$ satisfying the Morse inequalities for any field of coefficients, there exists a Morse function on M with c_i critical points of index i (see theorem 2.3 in [2]). So we have a Morse function $f: M \to \mathbb{R}$ with m_i critical points of index i. According to corollary 3.2, s is homotopic in \mathcal{M} to $j^2 f$.

3.4. We end this section by recalling that the Morse inequalities are not sharp for estimating the number of critical points of a Morse function on a non-simply connected closed manifold. Typically when $\pi_1(M)$ equals its subgroup of commutators (perfect group), some critical points of index 1 are required for generating the fundamental group, but the Morse inequalities allow $c_1 = 0$ (see [7] for more details). On the other hand, the only constraint for a section of \mathcal{M} with intersection numbers m_i is the Euler-Poincaré identity:

$$m_0 - m_1 + \cdots = \chi(M).$$

So it is possible to find a section *s* whose intersection number m_i is the minimal rank in degree *i* of a free complex whose homology is $H_*(M, \mathbb{Z})$, that is,

$$m_i = \beta_i + \tau_i + \tau_{i-1},$$

where β_i stands for the rank of the free quotient of $H_i(\mathcal{M}, \mathbb{Z})$ and τ_i denotes the minimal number of generators of its torsion subgroup ([2] p. 15). Such a set of integers satisfies the Morse inequalities but is far from being realizable by a Morse function. Finally this section *s* is not homotopic in \mathcal{M} to a holonomic section.

4 Failure of the 1-parametric version of the *h*-principle

We thank Yasha Eliashberg who pointed out to us the failure of the h-principle in the 1-parametric version of the problem under consideration.

Here *M* is assumed to be a product $M = N \times [0, 1]$. Let $f_0: M \to [0, 1]$ be the projection. When *M* is not 1-connected and dim $M \ge 6$, according to Allen Hatcher the so-called *pseudo-isotopy problem* has always a negative answer: there exists *f* without critical points which is not joinable to f_0 among the Morse functions (see [4]). But $j^2 f$ can be joined to $j^2 f_0$ by a path γ in \mathcal{M} . Indeed, take a generic homotopy γ^1 joining df to df_0 ; then arguing as in the proof of proposition 3.1 it is possible to lift it to \mathcal{M} . When *M* is the *n*-torus \mathbb{T}^n , A. Douady showed very simply the stronger fact that the path γ^1 can be taken among the non-singular 1-forms (see appendix to [5]). This γ is not homotopic in \mathcal{M} with end points fixed to a path of holonomic sections.

References

- Y. Eliashberg and N. Mishachev. *Introduction to the h-principle*. GSM 48, Amer. Math. Soc. (2002).
- [2] J. Franks. *Homology and Dynamical Systems*. CBMS Regional Conf. vol. 49, Amer. Math. Soc. (1982).
- [3] M. Gromov. *Partial Differential Relations*. Springer Verlag (1986).
- [4] A. Hatcher. *Higher simple homotopy theory*. Annals of Math. (2), **102** (1975), 101–137.
- [5] F. Laudenbach. Formes différentielles de degré 1 fermées non singulières: classes d'homotopie de leurs noyaux. Commentarii Math. Helvetici, 51(3) (1976), 447–464.
- [6] F. Laudenbach. *De la transversalité de Thom au h-principe de Gromov*. Leçons de Mathématiques d'Aujourd'hui, vol. 4, Éd. Cassini, Paris (to appear).

- [7] M. Maller. *Fitted diffeomorphisms of non-simply connected manifolds*. Topology, 19 (1980), 395–410.
- [8] S. Smale. Notes on differentiable dynamical systems. In: Proc. Symposia Pure Math. Amer. Math. Soc., 14 (1970), 277–287.
- [9] V.A. Vassiliev. Topology of spaces of functions without compound singularities, 23(4) (1989), 277–286.

Alain Chenciner

Université Paris 7 et IMCCE (UMR 8025 du CNRS) FRANCE

E-mail: chenciner@imcce.fr

François Laudenbach

Université de Nantes UMR 6629 du CNRS, 44322 Nantes FRANCE

E-mail: francois.laudenbach@univ-nantes.fr