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Morse 2-jet space and h-principle
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Abstract. A section in the 2-jet space of Morse functions is not always homotopic to
a holonomic section. We give a necessary condition for being the case and we discuss
the sufficiency.
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1 Introduction

Given a submanifold 6 in an r -jet space (of smooth sections of a bundle over
a manifold M), it is natural to look at the associated differential relation R(6)

formed by the (r + 1)-jets transverse to 6. For j r f being transverse to 6

at x ∈ M is detected by j r+1
x f . This is an open differential relation in the

corresponding (r + 1)-jet space. One can ask whether the Gromov h-principle
holds: is any section with value in R(6) homotopic to a holonomic section of
R(6)? (We recall that a holonomic section of a (r + 1)-jet space is a section
of the form j r+1 f .)

According to M. Gromov, the answer is yes when M is an open manifold and
6 is natural, that is, invariant by a lift of Di f f (M) to the considered jet space
(see [3] p. 79, [1] ch. 7).

The answer is also yes when the codimension of 6 is higher than the dimen-
sion n of M ; this case follows easily from Thom’s transversality theorem in
jet spaces (see [6]). In the case of jet space of functions and when 6 is nat-
ural and codim 6 ≥ n + 1, it also can be seen as a baby case of a theorem
of Vassiliev [9].

In this note we are interested in a codimension n case when M is a compact
n-dimensional manifold. Let J r (M) denote the space of r -jets of real functions;
when the boundary of M is not empty, it is meant that we speak of jets of
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functions which are locally constant on the boundary. We take 6 ⊂ J 1(M) the
set of critical 1-jets. Then R(6) ⊂ J 2(M) is the open set of 2-jets of Morse
functions. We shall analyze the obstructions preventing the h-principle to hold
with this differential relation.

2 Index cocycles

It is more convenient to work with the reduced jet spaces J̃ r (M), quotient of
J r (M) by R which acts by translating the value of the jet. It is a vector bundle
whose linear structure is induced by that of C∞(M). For instance, J̃ 1(M) is
isomorphic to the cotangent space T ∗M . Let M denote the reduced 2-jets of
Morse functions, that is the 2-jets which are transverse to the zero section 0M

of T ∗M (in the sequel, jet will mean reduced jet). Let π : J̃ 2(M) → J̃ 1(M)

be the projection and π0 : J̃ 2
0 (M) → 0M be its restriction over the zero section

of the cotangent space. Since it is formed of critical 2-jets, it is a vector bundle
whose fiber is the space of quadratic forms, S2(T ∗

x M), x ∈ M . Let M0 :=
M ∩ J̃ 2

0 (M); it is a bundle over 0M whose fiber consists of non-degenerate
quadratic forms. Its complement in J̃ 2

0 (M) is denotedD (like discriminant); it is
formed of 2-jets which are not transverse to 0M . When M is connected, M0 has
a connected component Mi

0 for each index i ∈ {1, . . . , n} of quadratic forms.

2.1 Tranverse orientation

Each Mi
0 is a proper submanifold of codimension n in M. Moreover the differ-

ential dπ gives rise to an isomorphism of normal fiber bundles

ν(Mi
0,M) ∼= π∗(ν(0M , T ∗M))|Mi

0 .

Of course, ν(0M , T ∗M) is canonically isomorphic to the cotangent bundle
τ ∗M , whose total space is T ∗M . When M is oriented, so is the bundle τ ∗M .
When M is not orientable, one has a local system of orientations of τ ∗M .
Pulling it back by π yields a local system of orientations of ν(Mi

0,M) (that
is, co-orientations of Mi

0). Let us denote Meven
0 (resp. Modd

0 ) the union of the
Mi

0’s for i even (resp. odd). We endow Meven
0 with the above local system of

co-orientations. For reasons which clearly appear below, it is more natural to
equip Modd

0 with the opposite system of co-orientations.

Lemma 2.2. Let s = j2 f be a holonomic section of M meeting M0 transver-
sally. Then each intersection point of s(M) with M0 is positive. The same
statement holds when s is a local holonomic section only.
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Proof. Let a be such an intersection point in s(M) ∩Mi
0; so i is the index of

the corresponding critical 2-jet. We can calculate in local coordinates (x, y′, y′′),
where x = (x1, . . . , xn) are local coordinates of M ,

y′ =
(
y′

1, . . . , y′
n

) (
resp. y′′ =

(
y′′

jk

)
1≤ j≤k≤n

)

are the associated coordinates of T ∗
x M (resp. S2T ∗

x M). Since f is holonomic,
we have

y′′
jk(a) =

∂y′
j

∂xk
(a).

Finally, the sign of det y′′(a) (positive if i is even and negative if not) gives
the sign of the Jacobian determinant at a of the map x 7→ y′(x), that is the sign
of the intersection point when Mi

0 is co-oriented by the canonical orientation
of the y′-space. As we have reversed this co-orientation when i is odd, the
intersection point is positive whatever the index is. �

Proposition 2.3.

1) Each Mi
0 defines a degree n cocycle of M with coefficients in the lo-

cal system Zor of integers twisted by the orientation of M. Let μi be
its cohomology class in H n(M,Zor ); in particular, if s : M → M is a
section, < μi , [s] > is an integer.

2) When s is homotopic to a holonomic section j2 f , then < μi , [s] > is
positive and equals the number ci ( f ) of critical points of the Morse func-
tion f . In particular the total number |Z | of zeroes of the section π ◦ s
(which, by construction, is transverse to the 0-section) satisfies:

|Z | ≥
n∑

i=0

ci ( f ) .

Proof.

1) Let σ be a singular n-cycle with twisted coefficients of M. It can be
C0-approximated by σ ′, an n-cycle which is transverse to Mi

0. As Mi
0

is a proper submanifold, there are finitely many intersections points in
σ ′ ∩Mi

0, each one having a sign with respect to the local system of coef-
ficients. The algebraic sum of these signs defines an integer c(σ ′). One
easily checks that c(σ ′) = 0 if σ ′ is a boundary. As a consequence, if σ ′

0
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and σ ′
1 are two approximations of σ , as σ ′

1 − σ ′
0 is a boundary, we have

c(σ ′
1) − c(σ ′

0) = 0 which allows us to uniquely define c(σ ) as the value
of an n-cocycle on σ . Typically, the image of a section carries an n-cycle
with twisted coefficients and this algebraic counting applies.

2) Since c defined in 1) is a cocycle, it takes the same value on s and on
j2 f . According to lemma 2.2, it counts +1 for each intersection point in
j2 f ∩Mi

0, that is, for each index i critical point of f . �

Corollary 2.4. If s is a section of M which is homotopic to a holonomic sec-
tion, the integers mi :=< μi , [s] > fulfill the Morse inequalities

m0 ≥ β0(F)

m1 − m0 ≥ β1(F) − β0(F)

∙ ∙ ∙ ∙ ∙ ∙
m0 − m1 + ∙ ∙ ∙ + (−1)nmn = β0(F) − β1(F) ∙ ∙ ∙ + (−1)nβn(F) =: χ(M)

where F is a field of coefficients, βi (F) = dimF Hi (M, For ) is the i-th Betti
number with coeffcients in For (F twisted by the orientation) and χ(M) is the
Euler characteristic (independent of the field F).

Corollary 2.5. The h-principle does not hold true for the sections of M.

Proof. It is sufficient to construct a section s of M which violates the Morse
inequalities, for example a section which does not intersect M0

0. Leaving the
case of the circle as an exercise, we may assume n > 1. One starts with a
section s1 of T ∗M tranverse to OM . Each zero of s1 has a sign (if the local
orientation of M is changed, so are both local orientations of s1 and 0M the sign
of the zero in unchanged). For each zero a, one can construct a homotopy fixing
a, with arbitrary small support, which makes s1 linear in a small neighborhood
of a. As GL(n,R) has exactly two connected components, one can even sup-
pose that after the homotopy, s1 is near a the derivative of a non degenerate
quadratic fonction whose index can be chosen arbitrarily provided it is even
(resp. odd) if a is a positive (resp. a negative) zero. Finally, one can achieve
by homotopy that near each zero a, one has s1 = d f with a a non-degenerate
critical point of f of index 2 (resp. 1) if a is a positive (resp. negative) zero.

Near the zeroes s1 has a canonical lift to M by s2 = j2 f . Away from the
zeroes, the lift s2 extends as a lift of s1 since the fibers of π are contractible over
T ∗M \ 0M . By construction, we have < μ0, [s2] >= 0, violating the first Morse
inequality. �
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Remark 2.6. Denote μeven = μ0 + μ2 + . . . and μodd = μ1 + . . . . The
following statement holds true: μeven = μodd if and only if the Euler character-
istic vanishes.

Proof. Assume first μeven = μodd. Proposition 2.3 yields for any holonomic
section in M : meven = modd, that is χ(M) = 0. Conversely, if χ(M) = 0,
there exists a non-vanishing 1-form on M and hence, by lifting it to J̃ 2(M), a
section v0 in M avoiding M0. We form

W =
{
z ∈ J̃ 2(M) | z = z0 + tv0, z0 ∈ M0, t ≥ 0 or z0 ∈ D, t > 0

}
.

It is a proper submanifold in M whose boundary (with orientation twisted co-
efficients) is Meven

0 − Modd
0 . Therefore, every cycle c satisfies < μeven, c >=

< μodd, c >, which implies the wanted equality. �

3 Are Morse inequalities sufficient?

This question is closely related to the problem of minimizing the number of
critical points of a Morse function. This problem was solved by S. Smale in
dimension higher than 5 for simply connected manifolds, as a consequence of
the methods he developped for proving his famous h-cobordism theorem (see [8]
or chapter 2 in [2]). Under the same topological assumptions we can answer our
question positively. But there are other cases, discussed later, where the answer
is negative.

Proposition 3.1. Two sections s, t ofM ⊂ J̃ 2(M) are homotopic as sections of
M if and only if their algebraic intersection numbers mi withMi

0 are the same.

Proof. According to proposition 2.3 1), the condition is necessary. Let us
prove that it is sufficient. Leaving the 1-dimensional case to the reader, we
assume dim M ≥ 2. Denote s1 = π ◦ s. Each zero of s1 is given an index due
to its lifting by s to a point of some Mi

0. For each index i choose |mi | zeroes
of s1, a1

i , . . . , a|mi |
i , among its zeroes of index i ; when mi > 0 (resp. mi < 0),

we choose the a j
i so that the corresponding intersection points of s(M) with

Mi
0 are positive (resp. negative). When mi = 0, no points are selected. In the

same way, |mi | zeros b1
i , . . . , b|mi |

i of t1 are chosen.

The intersection signs being the same, one can find a homotopy of t in M,
which brings the b j

i to coincide with the a j
i and makes the two sections s and t

coincide in the neighborhood of these points.
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The other zeroes of s1 of index i can be matched into pairs of points
{a j+

i , a j−
i } of opposite sign. A Whitney type lemma allows us to cancel all

these pairs by a suitable homotopy of s in M, reducing to the case when s1 has
no other zeroes than the a j

i ’s, j = 1, . . . , |mi |. A similar reduction may be
assumed for t . Let us finish the proof in this case before stating and proving
this lemma.

Both sections s1 and t1 of T ∗M are homotopic (among sections) by a ho-
motopy which is stationary on a neighborhood N (a j

i ). Making this homotopy
h : M × [0, 1] → T ∗M transverse to the zero section, the preimage of 0M con-
sists of arcs {a j

i } × [0, 1] and finitely many closed curves γk . Each of these
closed curves can be arbitrarily decorated with an index i . This choice allows us
to lift h to J̃ 2(M) as a homotopy h̃ from s to t ; this h̃ is the desired homotopy.
More precisely, we proceed as follows for getting h̃. First h|γk is lifted to Mi

0
by using that the fiber of π : Mi

0 → 0M is connected. The transversality of h to
0M allows us to extend this lifting to a neighborhood of γk , making h̃ transverse
to Mi

0. Now it is easy to extend h̃ to M × [0, 1], since the fiber of π over any
point outside 0M is contractible.

A Whitney type lemma. Let (b+, b−) be a pair of transverse intersection
points of s with Mi

0 having opposite sign when they are thought of as zeroes of
s1 in M. Let α be a simple path in M joining them avoiding the other zeroes
of s1 and let N be a neighborhood of α. Then there exists a homotopy

S = (su)u∈[0,1]

of s0 = s into M, supported in N and cancelling the pair (b+, b−), that is,
π ◦ s1 has no zeroes in N.

Proof. We choose an embedded 2-disk (with corners) 1 in N × [0, 1[ meet-
ing N × {0} transversally along α. We first construct the homotopy S1 := π ◦ S
of s1 among the sections of T ∗M , following the cancellation process of Whit-
ney which we are going to recall. We require S1 to be transverse to 0M with
(S1)−1(0M) = β, where α ∪ β = ∂1. Using a trivialization of T ∗M |N ,
S1|N × [0, 1] reads S1(x, u) = (x, g(x, u)). The requirement is that g van-
ishes transversally along the arc β; it is possible exactly because dim M ≥ 2
and the end points have opposite signs. Let T be a small tubular neighborhood
of β; its boundary traces an arc β ′ on 1, “parallel” to β. Let α′ be the subarc
of α whose end points are those of β ′. The restriction g|T is required to be a
trivialization of T , but this latter may be chosen freely. We choose it so that
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the loop (g|β ′) ∪ (s1|α′) be homotopic to 0 in (Rn)∗ \ {0}; of course, when
n > 2 this condition is automatically fulfilled. Now g can be extended to the
rest of 1 as a non-vanishing map. As N × [0, 1] collapses onto N × {0} ∪
1 ∪ T , the extension of g can be completed without adding zeroes outside β,
yielding the desired homotopy S1.

It remains to lift S1 to M. The lifting is first performed along β with value
in Mi

0. Then it is globally extended in the same way as in the above lifting
process. �

Corollary 3.2. Let s be a section of M ⊂ J̃ 2(M) and mi be its algebraic
intersection number with Mi

0. Let f : M → R be a Morse function whose
number ci ( f ) of critical points of index i satisfies

ci ( f ) = mi

for all i ∈ {0, . . . , n}. Then s and j2( f ) are homotopic as sections of M.

Corollary 3.3. We assume dim M ≥ 6 and π1(M) = 0. Let s be a section
of M ⊂ J̃ 2(M) whose algebraic intersection numbers mi fulfills the Morse
inequalities for every field of coefficients. In particular, they are non-negative.
Then s is homotopic through sections in M to a holonomic section.

Proof. Under these topological assumptions the following result holds true:
For any set of non-negative integers {c0, c1, . . . , cn} satisfying the Morse in-
equalities for any field of coefficients, there exists a Morse function on M with
ci critical points of index i (see theorem 2.3 in [2]). So we have a Morse func-
tion f : M → R with mi critical points of index i . According to corollary 3.2,
s is homotopic in M to j2 f . �

3.4. We end this section by recalling that the Morse inequalities are not sharp
for estimating the number of critical points of a Morse function on a non-
simply connected closed manifold. Typically when π1(M) equals its subgroup
of commutators (perfect group), some critical points of index 1 are required
for generating the fundamental group, but the Morse inequalities allow c1 = 0
(see [7] for more details). On the other hand, the only constraint for a section of
M with intersection numbers mi is the Euler-Poincaré identity:

m0 − m1 + ∙ ∙ ∙ = χ(M).
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So it is possible to find a section s whose intersection number mi is the minimal
rank in degree i of a free complex whose homology is H∗(M,Z), that is,

mi = βi + τi + τi−1,

where βi stands for the rank of the free quotient of Hi (M,Z) and τi denotes the
minimal number of generators of its torsion subgroup ([2] p. 15). Such a set
of integers satisfies the Morse inequalities but is far from being realizable by a
Morse function. Finally this section s is not homotopic in M to a holonomic
section.

4 Failure of the 1-parametric version of the h-principle

We thank Yasha Eliashberg who pointed out to us the failure of the h-principle
in the 1-parametric version of the problem under consideration.

Here M is assumed to be a product M = N × [0, 1]. Let f0 : M → [0, 1]
be the projection. When M is not 1-connected and dim M ≥ 6, according
to Allen Hatcher the so-called pseudo-isotopy problem has always a negative
answer: there exists f without critical points which is not joinable to f0 among
the Morse functions (see [4]). But j2 f can be joined to j2 f0 by a path γ in M.
Indeed, take a generic homotopy γ 1 joining d f to d f0; then arguing as in the
proof of proposition 3.1 it is possible to lift it to M. When M is the n-torus Tn ,
A. Douady showed very simply the stronger fact that the path γ 1 can be taken
among the non-singular 1-forms (see appendix to [5]). This γ is not homotopic
in M with end points fixed to a path of holonomic sections.
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