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Abstract. There are examples of complete spacelike surfaces in the Lorentzian prod-
uct H2 × R1 with constant Gaussian curvature K ≤ −1. In this paper, we show that
there exists no complete spacelike surface in H2 × R1 with constant Gaussian curva-
ture K > −1.
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1 Introduction

In 1900 Liebmann [10] characterized the spheres as the unique complete sur-
faces with constant positive Gaussian curvature in R3. One year later, in 1901
Hilbert [8] showed that it does not exist any complete surface with constant
negative Gaussian curvature in R3. Finally, every complete surface with zero
Gaussian curvature in R3 must be a straight cylinder over a complete, planar
and simple curve, as was proved independently by Hartman and Nirenberg in
1958 [7], Stoker in 1961 [13] and Massey in 1962 [11]. The Liebmann and
Hilbert theorems are easily extended to complete surfaces in S3 and H3, since
their proofs depend basically on the Codazzi equation, which is the same in any
space form. In 2007 Aledo, Espinar and Gálvez [4] extended the Liebmann
and Hilbert theorems to the case of complete surfaces with constant Gaussian
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curvature in the Riemannian homogeneous product spaces S2 ×R and H2 ×R.
Specifically, they showed that the only complete surfaces with constant Gaussian
curvature K > 0 in H2 × R (resp. K > 1 in S2 × R) are rotational surfaces.
In addition, they proved the non existence of complete surfaces with constant
Gaussian curvature K < −1 in H2 × R and S2 × R.

Recently, in [2] the authors jointly with Aledo complemented the results in
[4] by showing that the slices are the only compact two-sided surfaces in S2 ×R
whose angle function does not change sign and have constant Gaussian curva-
ture. Moreover, a similar result is valid for spacelike complete surfaces in the
Lorentzian product space S2 × R1: the only complete spacelike surfaces in the
Lorentzian product S2 × R1 with constant Gaussian curvature are the slices [2,
Corollary 9]. However, in the proof of these results we use as a main tool the
compactness of S2, so it can not be extended to surfaces in the Lorentzian prod-
uctH2 ×R1. Actually, slicesH2 ×{t0}, t0 ∈ R, are trivial examples of complete
spacelike surfaces in H2 × R1 with constant Gaussian curvature K = −1. On
the other hand, in [2, Example 12] we have recently given an example of a
non trivial complete entire spacelike graph in H2 × R1 with constant Gaussian
curvature K for every value of K such that K < −1. Therefore, it seems a
natural question to study the existence or non existence of complete spacelike
surfaces in H2 ×R1 with constant Gaussian curvature K > −1. In this context,
the following non existence result is proved:

Theorem 1. There exists no complete spacelike surface in H2 × R1 with
constant Gaussian curvature K > −1.

The proof of Theorem 1 for K > 0 is a consequence of the Bonnet-Myers
theorem taking into account that there is no compact surface in H2 × R1 (see
Section 3). On the other hand, in the case −1 < K ≤ 0 the proof follows the
ideas introduced in [4, Theorem 3] and it is based on two geometric tools: the
abstract theory of Codazzi pairs and the construction of a new complete metric
on the surface obtained when we deform the induced metric in the direction of
the height function. However, in difference with the proof of [4, Theorem 3],
our proof of Theorem 1 only requires tensorial computations.

In Section 2 we introduce the necessary notions about spacelike surfaces in
H2 × R1 as well as the notion of a Codazzi pair and the theorem of Wissler,
which is fundamental in the proof of Theorem 1. The complete proof of Theo-
rem 1 is given in Section 3. Finally, in the Appendix we compare the geometry
of a spacelike surface inH2 ×R1 with the geometry of the same surface endowed
with the Riemannian metric obtained by deformation of the induced metric by a
fixed function.
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Note added in proof. After submission of this paper, we were informed by
Gálvez, Jiménez and Mira that our Theorem 1 can be seen also as an appli-
cation of their general correspondence results between isometric immersions
in [6] and the non existence result of complete surfaces with constant Gaussian
curvature K < −1 in the Riemannian product H2 × R.

2 Preliminaries

2.1 Spacelike surfaces in H2 × R1

Let (H2, gH2) be the hyperbolic plane, and let us consider the product manifold
H2 × R endowed with the Lorentzian metric

g = π∗
H(gH2) − π∗

R(dt2),

where πH and πR denote the projections from H2 × R onto each factor. For
simplicity, we will write

g = gH2 − dt2,

and we will denote by H2 × R1 the 3-dimensional product manifold H2 × R
endowed with that Lorentzian metric.

A smooth immersion f : 6→H2 × R1 of a connected surface 62 is said to be
a spacelike surface if f induces a Riemannian metric on 6, which as usual is
also denoted by g. It is interesting to remark that in that case, since

∂t = (∂/∂t)(x,t), x ∈ H2, t ∈ R,

is a unitary timelike vector field globally defined on the ambient spacetime
H2 × R1, there exists a unique unitary timelike normal field N globally defined
on 6 which is in the same time-orientation as ∂t . That is,

g(N , ∂t) ≤ −1 < 0 on 6.

We will refer to N as the future-pointing Gauss map of 6, and we will denote
by 2 : 6→ (−∞, −1] the smooth function on 6 given by 2 = g(N , ∂t). The
function 2 measures the hyperbolic angle θ between the future-pointing vector
fields N and ∂t along 6. Indeed, they are related by cosh θ = −2.

In order to fix notation, let ∇̄ and ∇ denote the Levi-Civita connections in
H2 × R1 and 6, respectively. Then the Gauss and Weingarten formulae for the
spacelike surface f : 6→H2 × R1 are given by

∇̄X Y = ∇X Y − g(AX, Y )N (1)

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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and
AX = −∇̄X N , (2)

for any tangent vector fields X, Y ∈ T 6. Here A : T 6→T 6 stands for the
shape operator (or second fundamental form) of 6 with respect to its future-
pointing Gauss map N . As is well known, the Gaussian curvature K of the
surface 6 is described in terms of A and the curvature of the ambient spacetime
by the Gauss equation, which is given by

K = K̄ − det A, (3)

where K̄ denotes the sectional curvature in H2 × R1 of the plane tangent to 6.
It is not difficult to see that the Gauss equation (3) can be written as

K = −22 − det A. (4)

On the other hand, let R̄ denote the curvature tensor of H2 × R1. The Co-
dazzi equation of the spacelike surface 6 describes the tangent component of
R̄(X, Y )N , for any tangent vector fields X, Y ∈ T 6, in terms of the derivative
of the shape operator and it is given by

(R̄(X, Y )N )> = (∇X A)Y − (∇Y A)X, (5)

where ∇X A denotes the covariant derivative of A, that is,

(∇X A)Y = ∇X (AY ) − A(∇X Y ).

From now on, if Z is a vector field along the immersion f : 6→H2 × R1,
then Z> ∈ T 6 stands for the tangential component of Z along 6, that is,
Z = Z> − g(N , Z)N . It can be seen that, as the hyperbolic plane is a com-
plete surface of constant Gaussian curvature −1, R̄ can be simplified and the
Codazzi equation (5) becomes

(∇X A)Y = (∇Y A)X − 2
(
g(X, ∂>

t )Y − g(Y, ∂>
t )X

)
, (6)

(for the details on the above computations see, for instance, [1, 3]).

Given a spacelike surface f : 6→H2 × R1, the height function of 6, de-
noted by h, is defined as the projection of 6 onto R, that is, h ∈ C∞(6) is
the smooth function given by h = πR ◦ f . Observe that the gradient of πR on
H2 × R1 is

∇̄πR = −g(∇̄πR, ∂t)∂t .

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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Therefore, the gradient of h on 6 is

∇h = (∇̄πR)> = −∂>
t .

Since ∂>
t = ∂t + 2N , we easily get

‖∇h‖2 = 22 − 1, (7)

where ‖ ∙ ‖ denotes the norm of a vector field on 6. Since ∂t is parallel on
H2 × R1 we have that

∇̄X∂t = 0 (8)

for any tangent vector field X ∈ T 6. Writing ∂t = −∇h − 2N along the
surface 6 and using Gauss (1) and Weingarten (2) formulae, we easily get
from (8) that

∇X∇h = 2AX (9)

for every X ∈ T 6.

2.2 Codazzi pairs

An important geometrical tool for the proof of our result is the abstract theory
of Codazzi pairs following [12]. Let (A, B) be a pair of real quadratic forms
on a 2-dimensional surface 6 such that A is a Riemannian metric. Associated
to this pair it is possible to define its extrinsic curvature in an abstract way as
the quotient

K (A, B) =
det B

det A
. (10)

On the other hand, since A is a Riemannian metric, it has associated a Levi-
Civita connection ∇ A, a Riemann curvature tensor RA defined, as usual, by

RA(X, Y )Z = ∇ A
[X,Y ] Z −

[
∇ A

X , ∇ A
Y

]
Z

for any X, Y, Z ∈ T 6 and the corresponding Gaussian curvature

K A =
A(RA(X, Y )X, Y )

Q A(X, Y )
, (11)

being Q A(X, Y ) = A(X, X)A(Y, Y ) − A(X, Y )2 for any X, Y ∈ T 6.

The pair (A, B) is said to be a Codazzi pair if it satisfies the Codazzi equa-
tion of a space form, that is,

(
∇ A

X S
)
(Y ) −

(
∇ A

Y S
)
(X) = 0 (12)
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for every X, Y ∈ T 6, S : T 6→T 6 being the endomorphism in T 6 A-met-
rically equivalent to B, that is

B(X, Y ) = A(SX, Y ),

and
(
∇ A

X S
)

the covariant derivative of S,

(
∇ A

X S
)
(Y ) = ∇ A

X (SY ) − S
(
∇ A

X Y
)
.

The following result, due to Wissler, will be fundamental in the proof of our
result:

Theorem 2 ([14], [15]). Let (A, B) be a Codazzi pair with constant nega-
tive extrinsic curvature K (A, B). Then, if A is complete inf6 |K A| = 0.

3 Proof of Theorem 1

Let us recall first that any complete spacelike surface f : 6 → H2 × R1 is
necessarily diffeomorphic to H2. Actually, it is not difficult to see that 5 =
πM ◦ f : 6 → H2 satisfies 5∗(gH2) ≥ g. Therefore, 5 is a local diffeomor-
phism which increases the distance between the Riemannian surfaces (6, g) and
(H2, gH2). The completeness of 6 implies that 5 is a covering map [9, Chapter
VIII, Lemma 8.1]. Moreover, since H2 is simply connected, 5 is a global dif-
feomorphism. As a direct consequence of it, there exists no compact spacelike
surface in H2 × R1. On the other hand, from the Bonnet-Myers theorem any
Riemannian surface with positive constant Gaussian curvature is necessarily
compact. Consequently, there exists no complete spacelike surface in H2 × R1

with positive constant Gaussian curvature.
Let us assume now that f : 6→H2 ×R1 is a complete spacelike surface with

constant Gaussian curvature −1 < K ≤ 0, and let us consider the Riemannian
metric on 6 defined by

g̃ = g + c dh2 ≥ g, (13)

where c is the positive constant

c =
1

K + 1
> 0.

Since g is a complete metric by assumption and g̃ ≥ g, g̃ is also a complete
metric on 6.

Let α : T 6 × T 6→R denote the second fundamental form of the surface
f : 6→H2 × R1, that is, α(X, Y ) = g(AX, Y ).

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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Claim. We assert that (g̃, α) is a Codazzi pair with constant negative extrin-
sic curvature

K (g̃, α) = −(K + 1) < 0.

To prove this claim, observe first that the endomorphism Ã : T 6→T 6 which
is g̃-metrically equivalent to α can be written in terms of A. In fact for any
X, Y ∈ T 6 it holds

g(AX, Y ) = α(X, Y ) = g̃( ÃX, Y ),

and from (13)
g(AX, Y ) = g̃(AX, Y ) − cAX (h)Y (h).

Therefore we get
ÃX = AX − cg(AX, ∇h)∇̃h, (14)

for any X ∈ T 6. On the other hand, by the definition of the gradient of a
function, and by the expression (13) for the metric g̃, it yields

X (h) = g̃(∇̃h, X) = g(∇h, X) = g̃(∇h, X) − c‖∇h‖2g̃(∇̃h, X),

for any X ∈ T 6. Then,

∇̃h =
1

1 + c‖∇h‖2
∇h,

so (14) becomes

ÃX = AX −
c

1 + c‖∇h‖2
g(AX, ∇h)∇h. (15)

It is also possible to express the Levi-Civita connection of the metric g̃, ∇̃, in
terms of the differential operators related to the metric g, obtaining the relation

∇̃X Y = ∇X Y +
c

1 + c‖∇h‖2
∇2h(X, Y )∇h (16)

for any X, Y ∈ T 6, ∇2 being the Hessian operator of the surface f : 6→H2 ×
R1, (see the Appendix for the details).

From (16) and (15) we get with a straightforward computation that

(∇̃Y Ã)X = ∇̃Y ( ÃX) − Ã(∇̃X Y )

= (∇Y A)X −
c

1 + c‖∇h‖2
g((∇Y A)X, ∇h)∇h

−
c

1 + c‖∇h‖2
g(AX, ∇h)∇Y ∇h + T (X, Y ),

(17)
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where T is the symmetric (0, 2) tensor on 6 given by

T (X, Y ) =
c2

(1 + c‖∇h‖2)2
2

(
g(AY, ∇h)g(AX, ∇h)

+ g(AX, Y )g(A(∇h), ∇h)
)
∇h

−
c

1 + c‖∇h‖2
∇2h(X, Y )A(∇h).

Using the Codazzi equation (6), we observe that

g((∇Y A)X − (∇X A)Y, ∇h) = 0.

Therefore, using again the Codazzi equation (6) and the expression (9), we
obtain from (17) that

(∇̃Y Ã)X − (∇̃X Ã)Y = 2
(
g(Y, ∇h)X − g(X, ∇h)Y

)

− 2
c

1 + c‖∇h‖2

(
g(AX, ∇h)AY

− g(AY, ∇h)AX
)
.

(18)

To check that the left hand side of (18) vanishes, it is enough to proof that
it vanishes when we consider as vector fields {E1, E2} a local g-orthonormal
frame of T 6 which diagonalizes the shape operator. It is worth pointing out that
such a frame does not always exist; problems can occur when the multiplicity
of the principal curvatures changes and also at the points where the principal
curvatures are not differentiable. However, we can consider the open dense
subset of 6, 6′, consisting of points at which the number of distinct principal
curvatures is locally constant. Then, for every p ∈ 6′ there exists a local g-
orthonormal frame defined on a neighbourhood of p that diagonalizes A, that
is, {E1, E2} such that AE1 = λ1 E1 and AE2 = λ2 E2 with each λi smooth, see,
for instance, [5, Paragraph 16.10]. We will work on 6′, and the conclusion will
be valid in all the surface 6 by a continuity argument. Considering these vector
fields, (18) becomes

(∇̃E2 Ã)E1 − (∇̃E1 Ã)E2

= 2

(
1 + λ1λ2

c

1 + c‖∇h‖2

)
(
g(E2, ∇h)E1 − g(E1, ∇h)E2

)
,

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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which vanishes, since using the Gauss equation (4) and the relation (7) we get

λ1λ2
c

1 + c‖∇h‖2
= −(K + 22)

1
K+1

1 + 1
K+1‖∇h‖2

= −
K + 22

K + 1 + ‖∇h‖2
= −1.

It remains to compute the extrinsic curvature of the Codazzi pair (g̃, α). Let
{E1, E2} be a local g-orthonormal frame of T 6, then

g̃(Ei , Ei ) = 1 + cg(Ei , ∇h)2 and g̃(E1, E2) = cg(E1, ∇h)g(E2, ∇h).

Therefore, we have

det g̃ = (1 + cg(E1, ∇h)2)(1 + cg(E2, ∇h)2) − c2g(E1, ∇h)2g(E2, ∇h)2

= 1 + c‖∇h‖2,

so using the equations (4) and (7), the extrinsic curvature of (g̃, α) is given by

K (g̃, α) =
det α

det g̃
=

det A

1 + c‖∇h‖2
=

−(K + 1)(K + 22)

K + 1 + ‖∇h‖2
= −(K + 1) < 0.

This finishes the proof of our Claim.

Consider now 6′′ ⊂ 6 the subset in 6 where the height function h is non
constant. 6′′ is an open dense subset of 6, since in other case it would exist
an open subset � ⊂ 6 where h|� is constant. Then, from expressions (7) and
(9) 2|� = −1 and A|� = 0. Therefore, from the Gauss equation (4) it would
be K = −1, which contradicts our assumption. By Lemma 3 in the Appendix,
the Gaussian curvature of the surface (6, g̃), K̃ , can be written in terms of the
Gaussian curvature of the surface (6, g) as

K̃ =
K (1 + c‖∇h‖2) + c det ∇2h

(1 + c‖∇h‖2)2
(19)

in 6′′. And by continuity (19) holds in 6. Observe that from the expressions
(9) and (8) and from the Gauss equation (4) we get

det ∇2h = 22 det A = −22(K +22) = −(1+‖∇h‖2)(K +1+‖∇h‖2). (20)

Therefore, (19) becomes

K̃ =
(1 − c)K − c(1 + ‖∇h‖2)2

(1 + c‖∇h‖2)2
. (21)
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If we consider in (21) K̃ as a function of ‖∇h‖2, then K̃ is a monotonous
decreasing function. Therefore, evaluating it at 0 and using that c = 1/(K + 1)

we have
inf K̃ ≤ sup K̃ = (1 − c)K − c = K − 1 < 0. (22)

Summing up, we have proven that (g̃, α) is a Codazzi pair with negative
constant extrinsic curvature, g̃ being a complete Riemannian metric with Gaus-
sian curvature K̃ verifying (22), which contradicts the theorem of Wissler,
Theorem 2. Therefore, it can not exist any complete spacelike surface f :
6→H2 × R1 with constant Gaussian curvature −1 < K ≤ 0, as we were
assuming, which completes the proof of Theorem 1.

Appendix: Relating the geometry of (6, g) and (6, g̃).

Given a Riemannian surface (6, g), a non constant smooth function u ∈ C∞(6)

and a positive constant c > 0, it makes sense to consider the new Riemannian
surface (6, g̃), where

g̃ = g + cdu2 ≥ g. (23)

Therefore (6, g̃) is obtained by deformation of the metric g in the direction of
the function u. Observe that in the particular case where 6 is a spacelike surface
in H2 × R1 and u is the height function of 6, the situation is the one presented
in Section 3. Our aim in this appendix is to obtain some relations between the
geometry of (6, g) and (6, g̃), giving general versions of the expressions (16)
and (21).

We begin by studying the relation between the Levi-Civita connections of
(6, g̃), ∇̃, and (6, g), ∇. Using the Koszul formula and the expression (23) for
g̃ we have

2g̃(∇̃X Y, Z) = X (g̃(Y, Z)) + Y (g̃(Z , X)) − Z(g̃(X, Y ))

− g̃(X, [Y, Z ]) + g̃(Y, [Z , X ]) + g̃(Z , [X, Y ])

= 2g(∇X Y, Z) + c [X (Y (u)Z(u)) + Y (Z(u)X (u))

− Z(X (u)Y (u)) − X (u)(Y Z − ZY )(u)

+ Y (u)(Z X − X Z)(u) + Z(u)(XY − Y X)(u)]

= 2g(∇X Y, Z) + 2cX (Y (u))Z(u),

for any X, Y, Z ∈ T 6. On the other hand, from (23) we get

g̃(∇̃X Y, Z) = g(∇̃X Y, Z) + c∇̃X Y (u)Z(u),

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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so we obtain

∇̃X Y = ∇X Y − c
(
∇̃X Y (u) − X (Y (u))

)
∇u (24)

for any X, Y ∈ T 6. It follows from here that

∇̃X Y (u) = ∇X Y (u) − c∇̃X Y (u)‖∇u‖2 + cX (Y (u))‖∇u‖2.

Therefore, we have

∇̃X Y (u) =
1

1 + c‖∇u‖2

(
∇X Y (u) + cX (Y (u))‖∇u‖2

)
. (25)

Finally, substituting (25) into (24) we get

∇̃X Y = ∇X Y −
c

1 + c‖∇u‖2
(∇X Y (u) − X (Y (u))) ∇u

for any X, Y ∈ T 6. Or equivalently,

∇̃X Y = ∇X Y +
c

1 + c‖∇u‖2
∇2u(X, Y )∇u, (26)

∇2 being the Hessian operator of the surface (6, g).
In the following lemma, we obtain the relation between the Gaussian curva-

ture K̃ of (6, g̃) and the Gaussian curvature K of (6, g).

Lemma 3. Let (6, g) be a Riemannian surface, u ∈ C∞(6) a non constant
smooth function and c > 0 a positive constant. Then, the Gaussian curvature K̃
of the Riemannian surface (6, g̃ = g + cdu2) is given by

K̃ =
K (1 + c‖∇u‖2) + c det ∇2u

(1 + c‖∇u‖2)2
,

where K , ∇ and ∇2 denote the Gaussian curvature, the gradient and the Hessian
operator of (6, g), respectively.

Proof. Let {E1, E2} be a local g-orthonormal frame on T 6 such that E2 ⊥ ∇u.
Then,

K = g(R(E1, E2)E1, E2), (27)

and

K̃ =
g̃(R̃(E1, E2)E1, E2)

Q̃(E1, E2)
, (28)
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where Q̃(E1, E2) = g̃(E1, E1)g̃(E2, E2) − g̃(E1, E2)
2 = 1 + c‖∇u‖2, and R

and R̃ stand for the Riemann curvature tensors of (6, g) and (6, g̃), respec-
tively. Therefore we need the relation between R̃ and R. Since

R̃(E1, E2)E1 = ∇̃[E1,E2]E1 −
[
∇̃E1, ∇̃E2

]
E1,

we will study each term separately. From the expression (26), we have

∇̃∇̃E1 E2
E1 = ∇̃∇E1 E2 E1 +

c

1 + c‖∇u‖2
∇2u(E1, E2)∇̃∇u E1

= ∇∇E1 E2 E1 +
c

1 + c‖∇u‖2
∇2u(E1, E2)∇∇u E1 + f1∇u,

(29)

and

∇̃∇̃E2 E1
E1 = ∇̃∇E2 E1 E1 +

c

1 + c‖∇u‖2
∇2u(E1, E2)∇̃∇u E1

= ∇∇E2 E1 E1 +
c

1 + c‖∇u‖2
∇2u(E1, E2)∇∇u E1 + f2∇u,

(30)

where f1, f2 ∈ C∞(6). Observe that, in order to obtain K̃ , we will have to
compute the product of the expressions above times E2, which is by assumption
orthogonal to ∇u. Therefore, all the terms that are proportional to ∇u will
vanish, and so we do not mind the explicit expressions for f1 and f2. From (29)
and (30) we get

∇̃[E1,E2]E1 = ∇[E1,E2]E1 + f3∇u, (31)

being f3 = f1 − f2 ∈ C∞(6). On the other hand,

∇̃E1∇̃E2 E1 = ∇̃E1∇E2 E1 +
c

1 + c‖∇u‖2
∇2u(E1, E2)∇̃E1∇u + f4∇u

= ∇E1∇E2 E1 +
c

1 + c‖∇u‖2
∇2u(E1, E2)∇E1∇u + f5∇u,

and

∇̃E2∇̃E1 E1 = ∇̃E2∇E1 E1 +
c

1 + c‖∇u‖2
∇2u(E1, E1)∇̃E2∇u + f6∇u

= ∇E2∇E1 E1 +
c

1 + c‖∇u‖2
∇2u(E1, E1)∇E2∇u + f7∇u,

where again f4, f5, f6, f7 ∈ C∞(6). Therefore,

[∇̃E1, ∇̃E2]E1 = [∇E1, ∇E2]E1 +
c

1 + c‖∇u‖2

×
(
∇2u(E1, E2)∇E1∇u − ∇2u(E1, E1)∇E2∇u

)
+ f8∇u

(32)
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being f8 = f5 − f7 ∈ C∞(6), which jointly with (31) yields

R̃(E1, E2)E1 = R(E1, E2)E1 +
c

1 + c‖∇u‖2

×
(
∇2u(E1, E1)∇E2∇u − ∇2u(E1, E2)∇E1∇u

)
+ f ∇u

being f = f3 − f8 ∈ C∞(6). Therefore,

g̃(R̃(E1, E2)E1, E2) = g(R̃(E1, E2)E1, E2)

= g(R(E1, E2)E1, E2) +
c

1 + c‖∇u‖2
det ∇2u.

(33)

Or equivalently, from (27) and (28)

K̃ =
K (1 + c‖∇u‖2) + c det ∇2u

(1 + c‖∇u‖2)2
,

which proves the result. �
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