

The influence of \mathcal{M} -supplemented subgroups on the structure of finite groups*

Long Miao

Abstract. A subgroup *H* of a group *G* is said to be \mathcal{M} -supplemented in *G* if there exists a subgroup *B* of *G* such that G = HB and TB < G for every maximal subgroup *T* of *H*. Moreover, a subgroup *H* is called *c*-supplemented in *G* if there exists a subgroup *K* such that G = HK and $H \cap K \leq H_G$ where H_G is the largest normal subgroup of *G* contained in *H*. In this paper we give some conditions of supersolvability of finite group under assumption that some primary subgroups have some kinds of supplements, which are generalizations of some recent results.

Keywords: primary subgroups, \mathcal{M} -supplemented subgroup, *c*-supplemented subgroup, supersolvable group.

Mathematical subject classification: 20D10, 20D20.

1 Introduction

A subgroup H of a group G is called to be *supplemented* in G if there exists a subgroup K of G such that HK = G and K is called a *supplement* of H in G. Obviously every subgroup of G is supplemented in G as G can be one of its supplements. Hence we should give some other restricted conditions. The relationship between the properties of subgroups of the Sylow subgroups of G and the structure of G has been investigated extensively by a number of authors. For instance, Hall [6] proved that a group G is solvable if and only if every Sylow subgroup of G is complemented in G. Arad and Ward [1] proved that a group G is solvable if and only if every Sylow 3-subgroup of G are complemented in G. A. Ballester-Bolinches and

Received 7 October 2007.

^{*}This research is supported by the grant of NSFC (Grant #10901133) and Tian Yuan Fund of Mathematics of China (Grant #10626047) and sponsored by Qing Lan Project and Natural science fund for colleges and universities in Jiangsu Province.

Guo Xiuyun [2] proved that the class of all finite supersolvable groups with elementary abelian Sylow subgroups is just the class of all finite groups for which every minimal subgroup is complemented. Srinivassan [10] proved that a finite group is supersolvable if every maximal subgroup of every Sylow subgroup is normal. Recently, by considering some special supplements (c-supplement) of some primary subgroups, Wang [12] obtained some new conditions for the solvability and supersolvability of a group. More recently, Miao and Guo [8] proved that *G* is supersolvable if and only if every maximal subgroups of the Sylow subgroup of *G* is supersolvable *s*-supplemented in *G*. In this paper we want to continue these works and obtain some sufficient conditions for a saturated formation containing all supersolvable groups.

Now we will analyze the structure of finite groups with the following concept.

Definition 1.1. A subgroup H is called M-supplemented in a finite group G, if there exists a subgroup B of G such that G = HB and TB is a proper subgroup of G for every maximal subgroup T of H.

Throughout this paper, all groups are finite groups. Our terminology and notation are standard, see [4] and [9]. In particular, let G denote a finite group, M < G indicates that M is a maximal subgroup of G. |G| denotes the order of G. G_p is the Sylow p-subgroup of G. U denotes the class of all supersolvable groups. $\pi(G)$ denotes the set of all prime divisor of G.

Let π be a set of primes. We say that $G \in E_{\pi}$ if G has a Hall π -subgroup. We say that $G \in C_{\pi}$ if $G \in E_{\pi}$ and any two Hall π -subgroups of G are conjugate in G. We say that $G \in D_{\pi}$ if $G \in C_{\pi}$ and every π -subgroup of Gis contained in a Hall π -subgroup of G. We denote by [H]K the semidirect of H and K; |G| denotes the order of a group G; H char G denotes that H is a characteristic subgroup of G.

Let \mathcal{F} be a class of groups. \mathcal{F} is said to be a formation provided that (1) if $G \in \mathcal{F}$ and $H \trianglelefteq G$, then $G/H \in \mathcal{F}$, and (2) if G/M and G/N are in \mathcal{F} , then $G/M \cap N$ is in \mathcal{F} . It is clear that for a formation, every group G has a smallest normal subgroup (denoted by $G^{\mathcal{F}}$) whose quotient $G/G^{\mathcal{F}}$ is in \mathcal{F} . The normal subgroup $G^{\mathcal{F}}$ is called the \mathcal{F} -residual of G. A formation \mathcal{F} is said to be saturated if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$. It is well known that the class of all supersolvable groups and the class of all p-nilpotent groups are saturated formations (cf. [5]).

2 Preliminaries

For the sake of convenience, we first list here some known results which will be useful in the sequel.

Lemma 2.1. Let G be a group. Then

- (1) If H is \mathcal{M} -supplemented in G, $H \leq M \leq G$, then H is \mathcal{M} -supplemented in M.
- (2) Let $N \leq G$ and $N \leq H$. If H is \mathcal{M} -supplemented in G, then H/N is \mathcal{M} -supplemented in G/N.
- (3) Let π be a set of primes. Let K be a normal π'-subgroup and H be a π-subgroup of G. Then H is M-supplemented in G if and only if HK/K is M-supplemented in G/K.

Proof.

- (1) If *H* is \mathcal{M} -supplemented in *G*, then there exists a subgroup *B* of *G* such that G = HB and $H_1B < G$ for any maximal subgroup H_1 of *H*. So we may set $L = B \cap M$. Clearly, $B \cap M \leq M$ and $M = M \cap HB = H(M \cap B)$. Since $H_1B < G$ for every maximal subgroup H_1 of *H*, we have $M \cap H_1B = H_1(M \cap B)$ is a proper subgroup of *M*.
- (2) If *H* is \mathcal{M} -supplemented in *G*, then there exists a subgroup *B* such that G = HB and $H_1B < G$ for any maximal subgroup H_1 of *H*. So we have BN < G. Otherwise we choose *T* be a maximal subgroup of *H* which contain *N*, then $T = T \cap BN = N(T \cap B)$ and hence $TB = N(T \cap B)B = NB = G$, a contradiction. It is easy to have (H/N)(BN/N) = G/N. For any maximal subgroup H_1 of *H* which contain *N*, we have $(H_1/N)(BN/N) = H_1B/N < G/N$. Therefore H/N is \mathcal{M} -supplemented in G/N.
- (3) If H is M-supplemented in G, then there exists a subgroup B of G such that G = HB and H₁B < G for any maximal subgroup H₁ of H. Clearly, (HK/K)(BK/K) = G/K. For any maximal subgroup T/K of HK/K, since K is a normal π'-subgroup and H is a π-subgroup of G, we have T = H₁K where H₁ is a maximal subgroup of H. Therefore (H₁K/K)(BK/K) = H₁BK/K < G/K. Otherwise, if H₁BK = G, then |G: H₁B| = |K: K ∩ H₁B| is a π-number, on the other hand, |G: H₁B| = |HB: H₁B| is a π-number, a contradiction.

Conversely, if HK/K is \mathcal{M} -supplemented in G/K, we may similarly get H is \mathcal{M} -supplemented in G.

Lemma 2.2 [12]. Let G be a group. Then

- (1) If H is c-supplemented in G, $H \le K \le G$, then H is c-supplemented in K;
- (2) Let $K \triangleleft G$ and $K \leq H \leq G$. Then H is c-supplemented in G iff H/K is *c*-supplemented in G/K;
- (3) Let π be a set of primes, H a π-subgroup of G and N a normal π'-subgroup of G. If H is c-supplemented in G, then HN/N is c-supplemented in G/N;
- (4) A subgroup H of G is c-supplemented in G if and only if there exists a subgroup L of G such that G = HL and $H \cap L = H_G = Core_G(H)$;
- (5) Let *R* be a solvable minimal normal subgroup of a group *G*. If there exists a maximal subgroup R_1 of *R* such that R_1 is *c*-supplemented in *G*, then *R* is a cyclic group of prime order.

Lemma 2.3. Let P be a p-subgroup of G where p is a prime divisor of |G|. If P is \mathcal{M} -supplemented in G, then there exists a subgroup B of G such that $|G: P_1B| = p$ where P_1 is a maximal subgroup of P.

Proof. Since *P* is \mathcal{M} -supplemented in *G*, then there exists a subgroup *B* of *G* such that G = PB and $P_1B < G$ for every maximal subgroup P_1 of *P*. Then $P_1 \leq P \cap P_1B = P_1(P \cap B) < P$. Since P_1 is a maximal subgroup of *P*, we have $P \cap B \leq P_1$ and hence $P \cap B = P_1 \cap B$. Therefore $|G: P_1B| = |PB: P_1B| = p$.

Lemma 2.4. Let R be a solvable minimal normal subgroup of G, R_1 be a maximal subgroup of R. If R_1 is \mathcal{M} -supplemented in G, then R is a cyclic group of prime order.

Proof. Since R_1 is \mathcal{M} -supplement in G, there exists a subgroup B of G such that $G = R_1 B$ and TB < G for any maximal subgroup T of R_1 . By Lemma 2.3, |G: TB| = p and hence TB is the maximal subgroup of G. Since R is the minimal normal subgroup of G, we have $R \cap TB = R$ of $R \cap TB = 1$. If $R \cap TB = R$, then TB = RTB = G, a contradiction. Therefore we have $R \cap TB = 1$ and hence |R| = p.

Lemma 2.5 [5, Theorem 1.8.17]. Let N be a solvable normal subgroup of a group G ($N \neq 1$). If $N \cap \Phi(G) = 1$, then the Fitting subgroup F(N) of N is the direct product of minimal normal subgroups of G which is contained in N.

Lemma 2.6 [15]. If *H* is a subgroup of *G* with |G: H| = p, where *p* is the smallest prime divisor of |G|, then $H \leq G$.

Lemma 2.7 [3, Main Theorem]. Suppose a finite group G has a Hall π -subgroup where π is a set of primes not containing 2. Then all Hall π -subgroups of G are conjugate.

Lemma 2.8 [11]. If P is a Sylow p-subgroup of a group G and $N \leq G$ such that $P \cap N \leq \Phi(P)$, then N is p-nilpotent.

Lemma 2.9 Let G be a finite group and P a Sylow p-subgroup of G where p is the smallest prime divisor of |G|. Then G is p-nilpotent if and only if P is \mathcal{M} -supplemented in G.

Proof. If *G* is *p*-nilpotent, then *G* has a normal *p*-complement *D*. For the Sylow *p*-subgroup *P* of *G* and every maximal subgroup P_1 of *P*, we may easily get G = PD and $P_1D < G$. Therefore *P* is \mathcal{M} -supplemented in *G*.

Conversely, if *P* is \mathcal{M} -supplemented in *G*, there exists a subgroup *B* of *G* such that G = PB and $P_1B < G$ for every maximal subgroup P_1 of *P*. By Lemma 2.3, we have $|G: P_1B| = p$ and hence $P_1B \leq G$ by Lemma 2.6. Since $|G: P_1B| = |PB: P_1B| = p$, we have $P \cap B = P_1 \cap B$ for every maximal subgroup P_1 of *P*. Therefore $P \cap B = \bigcap_{P_1 < \cdot P} (P_1 \cap B) = \Phi(P) \cap B$. On the other hand,

$$\bigcap_{P_1 < \cdot P} (P_1 B) = \Big(\bigcap_{P_1 < \cdot P} P_1\Big)B = \Phi(P)B \text{ and } \Phi(P)B \leq G.$$

It follows from $P \cap \Phi(P)B = \Phi(P)(P \cap B) \leq \Phi(P)$ that we have $\Phi(P)B$ is *p*-nilpotent by Lemma 2.8. Let *H* be a normal Hall *p'*-subgroup of $\Phi(P)B$. Clearly, *H* is also the normal Hall *p'*-subgroup of *G* and hence *G* is *p*-nilpotent. The proof is over.

Lemma 2.10 Let G be a finite group and P a Sylow p-subgroup of G where p is the smallest prime divisor of |G|. If every maximal subgroup of P having no c-supplement in G, is M-supplemented in G, then $G/O_p(G)$ is solvable p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of smallest order. Clearly, G is not a nonabelian simple group. Furthermore we have,

(1) $O_p(G) \neq 1$.

If $O_p(G) = P$, then $G/O_p(G)$ is a p'-group and of course it is p-nilpotent, a contradiction. If $1 < O_p(G) < P$, then $G/O_p(G)$ satisfies the hypotheses and the minimal choice of G implies that $G/O_p(G) \cong G/O_p(G)/O_p(G/O_p(G))$ is p-nilpotent, a contradiction.

(2) $O_p(G) = 1$.

Let P_1 be a maximal subgroup of P. By hypotheses, if P_1 is c-supplemented in G, then there exists a subgroup K of G such that $G = P_1 K$ and $P_1 \cap K \leq$ $(P_1)_G$. Since $O_p(G) = 1$ and $(P_1)_G \leq O_p(G)$, we have $P_1 \cap K = 1$. Therefore $|K_p| = p$ and hence K is p-nilpotent by Burnside p-nilpotent Theorem. Since K is p-nilpotent, we have $K_{p'} \leq K$ where $K_{p'}$ is a Hall p'-subgroup of K and of course is the Hall p'-subgroup of G. Hence $G = P_1 N_G(K_{p'})$. If $P \cap N_G(K_{p'}) =$ P, then $K_{p'} \leq G$, a contradiction. If $P \cap N_G(K_{p'}) = L$ where L is the maximal subgroup of P, then $|G: N_G(K_{p'})| = |P: P \cap N_G(K_{p'})| = |P: L| =$ p and hence $N_G(K_{p'}) \leq G$ by Lemma 2.6, a contradiction. So we may assume $P \cap N_G(K_{p'}) \leq L_2 < L_1$ where L_1 is the maximal subgroup of P and L_2 is the maximal subgroup of L_1 . If L_1 is c-supplemented in G, then there exists a pnilpotent subgroup H such that $G = L_1 H$. With the similar discussion we have $G = L_1 N_G(H_{p'})$ where $H_{p'}$ is the Hall p'-subgroup of H and of course of G. By Lemma 2.8, there exists an element x of P such that $N_G(K_{p'}) = (N_G(H_{p'}))^x$. Therefore $G = L_1 N_G(H_{p'}) = (L_1 N_G(H_{p'}))^x = L_1 N_G(K_{p'})$. Furthermore, $P = P \cap L_1 N_G(K_{p'}) = L_1(P \cap N_G(K_{p'})) = L_1$, a contradiction.

So we may assume L_1 is \mathcal{M} -supplemented in G, there exists a subgroup B of G such that $G = L_1B$ and TB < G for any maximal subgroup T of L_1 . Therefore $L_2B < G$ and $|G: L_2B| = p$ by Lemma 2.3. Since p is the smallest prime divisor of |G|, Lemma 2.6 implies that $L_2B \leq G$. We have $G = L_1B = PB = PL_2B$ and $P \cap L_2B = L_2(P \cap B)$ is the Sylow p-subgroup of L_2B . Clearly, $L_2(P \cap B)$ is the maximal subgroup of P. By hypotheses if $L_2(P \cap B)$ is \mathcal{M} -supplemented in G, then $L_2(P \cap B)$ is \mathcal{M} -supplemented in L_2B by Lemma 2.1 and hence L_2B is p-nilpotent by Lemma 2.9. Therefore G is p-nilpotent, a contradiction. So we may assume that $L_2(P \cap B)$ has a c-supplement R in G. With the similar discussion we have $G = L_2(P \cap B)N_G(R_{p'})$ where $R_{p'}$ is the Hall p'-subgroup of R and of course is the Hall p'-subgroup of G. By Lemma 2.7, there exists an element x of P such that $N_G(K_{p'}) = (N_G(R_{p'}))^x$. Therefore $G = L_2(P \cap B)N_G(R_{p'}) = (L_2(P \cap B)N_G(R_{p'}))^x = L_2(P \cap B)N_G(K_{p'})$. Furthermore, $P = P \cap L_2(P \cap B)N_G(K_{p'}) = L_2(P \cap B)(P \cap N_G(K_{p'})) = L_2(P \cap B)$, a contradiction.

The final contradiction completes our proof.

Lemma 2.11 [7]. Let G be a group and N a subgroup of G. The generalized Fitting subgroup $F^*(G)$ of G is the unique maximal normal quasinilpotent subgroup of G. Then

- (1) If N is normal in G, then $F^*(N) \leq F^*(G)$;
- (2) $F^*(G) \neq 1$ if $G \neq 1$; in fact, $F^*(G)/F(G) = \text{Soc}(F(G)C_G(F(G))/F(G))$;
- (3) $F^*(F^*(G)) = F^*(G) \ge F(G)$; if $F^*(G)$ is solvable, then $F^*(G) = F(G)$;
- (4) $C_G(F^*(G)) \le F(G);$
- (5) Let $P \leq G$ and $P \leq O_p(G)$; then $F^*(G/\Phi(P)) = F^*(G)/\Phi(P)$;
- (6) If K is a subgroup of G contained in Z(G), then $F^*(G/K) = F^*(G)/K$.

Lemma 2.12 [13, Theorem 3.1]. Let \mathcal{F} be a saturated formation containing \mathcal{U} , G a group with a soluble normal subgroup H such that $G/H \in \mathcal{F}$. If for any maximal subgroup M of G, either $F(H) \leq M$ or $F(H) \cap M$ is a maximal subgroup of F(H), then $G \in \mathcal{F}$. The converse also holds, in the case where $\mathcal{F} = \mathcal{U}$.

Lemma 2.13 [14, Theorem 1.1]. Let \mathcal{F} be a saturated formation containing \mathcal{U} and suppose that G is a group with a normal subgroup H such that $G/H \in \mathcal{F}$. If all maximal subgroups of all Sylow subgroups of $F^*(H)$ are *c*-supplemented in G, then $G \in \mathcal{F}$.

3 Main results

Theorem 3.1. Let G be a group having a normal subgroup N such that G/N is supersolvable. If every maximal subgroups of noncyclic Sylow subgroup of N having no c-supplement in G, is \mathcal{M} -supplemented in G, then G is supersolvable.

Proof. Assume that the theorem is false and let G be a counterexample with minimal order. Then we have following claims:

(1) G is solvable.

By hypotheses and Lemma 2.11, $N/O_p(N)$ is solvable *r*-nilpotent where *r* is the smallest prime divisor of |N| and hence *G* is solvable. Let *L* be a minimal normal subgroup of *G* contained in *N*. Clearly, *L* is an elementary abelian *p*-group for some prime divisor of |G|.

(2) G/L is supersolvable and L is the unique minimal normal subgroup of G contained in N such that $N \cap \Phi(G) = 1$. Furthermore, $L = F(N) = C_N(L)$.

First, we check that (G/L, N/L) satisfies the hypotheses for (G, N). We know that $N/L \leq G/L$ and $(G/L)/(N/L) \cong G/N$ is supersolvable. Let Q = QL/L be a Sylow q-subgroup of N/L. We may assume that Q is a Sylow q-subgroup of N. If p = q, we may assume that L < P, where P is a Sylow *p*-subgroup of *N*. If L < P = Q and hence every maximal subgroup of P/L is of the form P_1/L with P_1 a maximal subgroup of P. If P_1/L has no c-supplement in G/L, then P_1 has no c-supplement in G, by hypotheses, P_1 is \mathcal{M} -supplemented in G and hence P_1/L is \mathcal{M} -supplemented in G/L by Lemma 2.1 and Lemma 2.2. Now we assume that $p \neq q$. Let $\overline{Q_1}$ be a maximal subgroup of a Sylow q-subgroup of \overline{N} . Without loss of generality, we may assume that $\overline{Q_1} = Q_1 L/L$ with Q_1 a maximal subgroup of a Sylow q-subgroup of N. Clearly, if Q_1L/L has no c-supplement in G/L, then Q_1L/L is \mathcal{M} supplemented in G/L by Lemma 2.1 and 2.2. So G/L satisfies the hypotheses of the theorem. The minimal choice of G implies that G/L is supersolvable. Since the class of all supersolvable groups is a saturated formation, we know that L is the unique minimal normal subgroup of G which is contained in N and $L \leq \Phi(G)$. By Lemma 2.5 we have F(N) = L. The solvability of N implies that $L \leq C_N(L) = C_N(F(N)) \leq F(N)$ and so $C_N(L) = L = F(N)$.

(3) L is a Sylow subgroup of N.

Let q be the largest prime divisor of |N| and Q a Sylow q-subgroup of N. Since G/L is supersolvable, we have N/L is supersolvable. Consequently, LQ/L char $N/L \leq G/L$ and hence $LQ \leq G$. If p = q, then $L \leq Q \leq G$. Therefore $Q \leq F(N) = L$ and L is a Sylow q-subgroup of N, a contradiction.

Now we assume that p < q. Let P be a Sylow p-subgroup of N. Clearly, P is not cyclic. Otherwise, $G/L \in U$ implies that $G \in U$. Then $L \leq P$ and PQ = PLQ is a subgroup of N. Note that every maximal subgroup of non-cyclic Sylow subgroup of PQ having no c-supplement in PQ, is \mathcal{M} -supplemented in PQ by Lemma 2.1 and Lemma 2.2. Therefore PQ satisfies the hypotheses for G. If PQ < G, the minimal choice of G implies that PQ is supersolvable; in particular, $Q \leq PQ$. Hence $LQ = L \times Q$ and $Q \leq C_N(L) \leq L$, a contradiction.

Now we may assume that G = PQ = N and L < P. Since G/L is supersolvable, $LQ \leq G$. By the Frattini argument, $G = LN_G(Q)$. Note that $L \cap N_G(Q)$ is normalized by $N_G(Q)$ and L. We have that $L \cap N_G(Q) = 1$

since L is the unique minimal normal subgroup of G and O is not normal in G in this case. Therefore $G = [L]N_G(Q)$. Let P_2 be a Sylow p-subgroup of $N_G(Q)$. Then LP_2 is a Sylow *p*-subgroup of G. Choose a maximal subgroup P_1 of LP_2 such that $P_2 \leq P_1$. Clearly, $L \leq P_1$ and hence $(P_1)_G = 1$. By our hypotheses, if P_1 is \mathcal{M} -supplemented in G, that is, there exists a subgroup Bof G such that $G = P_1 B$ and TB < G for any maximal subgroup T of P_1 . So we may assume $P_2 \leq T$ for some maximal subgroup T of P_1 . Otherwise, $P_2 = P_1$, then we have |L| = p and hence G/L is supersolvable implies that G is supersolvable, a contradiction. By Lemma 2.3, |G:TB| = p and hence $TB \leq G$ by Lemma 2.6. Therefore $L \leq TB$ or $L \cap TB = 1$. If $L \cap TB = 1$, then |G:TB| = |L| = p. In this case G/L is supersolvable implies that G is supersolvable. So we may assume $L \leq TB$. Since $P_2 \leq T$, we have $LP_2 \leq TB$, contrary to |G:TB| = p. Now we may assume that P_1 is c-supplemented in G, that is, there exists a subgroup K of G such that $G = P_1 K$ and $P_1 \cap K \leq C$ $(P_1)_G = 1$. Since $|K_p| = p$, we have K is p-nilpotent by Burnside Theorem and hence K has a normal Sylow q-subgroup Q_1 which is also a Sylow q-subgroup of G in this case. By Sylow's theorem, there exists an element $g \in L$ such that $Q_1^g = Q$. Since $P_1 \leq LP_2$, we have that $G = P_1K = (P_1K)^g = P_1K^g$. Since $K^g \cong K$ has a normal Sylow q-subgroup and $Q = Q_1^g \leq K^g$, it follows that $K^g \leq N_G(Q)$. Since $LP_2 = LP_2 \cap G = LP_2 \cap P_1K^g =$ $P_1(LP_2 \cap K^g)$, we have that $LP_2 \cap K^g \leq P_2$. Otherwise $LP_2 \leq P_1P_2 = P_1$, a contradiction. Therefore P_2 is a proper subgroup of $P_3 = \langle P_2, LP_2 \cap K^g \rangle$. On the other hand, since both P_2 and K^g are contained in $N_G(Q)$, P_3 is a psubgroup of $N_G(Q)$ which contains a Sylow subgroup P_2 of $N_G(Q)$ as a proper subgroup, a contradiction.

(4) G is supersolvable.

Let L_1 be a maximal subgroup of L. If L_1 is *c*-supplemented in G, then |L| = p by Lemma 2.2(5) and G/L is supersolvable implies that G is supersolvable. Hence L_1 is \mathcal{M} -supplemented in G, that is, there exists a subgroup B of G such that $L_1B = G$ and TB < G for every maximal subgroup T of L_1 . By Lemma 2.4, we know that |L| = p. Consequently, G/L is supersolvable implies that G is supersolvable.

The final contradiction completes our proof.

Corollary 3.2. Let G be a group. If every maximal subgroups of noncyclic Sylow subgroup of G having no c-supplement in G, is \mathcal{M} -supplemented in G, then G is supersolvable.

Corollary 3.3. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a normal subgroup N such that $G/N \in \mathcal{F}$. If every maximal subgroups of noncyclic Sylow subgroup of N having no c-supplement in G, is \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Corollary 3.4. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a normal subgroup N such that $G/N \in \mathcal{F}$. If every nonnormal maximal subgroups of noncyclic Sylow subgroup of N, is \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Theorem 3.5. Let \mathcal{F} be a saturated formation containing all supersolvable groups and G be a group with a normal subgroup N such that $G/N \in \mathcal{F}$. If every maximal subgroup of noncyclic Sylow subgroup of $F^*(N)$ having no *c*-supplement in G, is \mathcal{M} -supplemented in G. Then $G \in \mathcal{F}$.

Proof. Assume that the assertion is false and choose *G* to be a counterexample of minimal order. Next we consider the following two cases.

Case 1. $\mathcal{F} = \mathcal{U}$.

1) $N = G, F^*(G) = F(G) \neq 1.$

By Theorem 3.1, $F^*(N)$ is supersolvable. In particular, $F^*(N)$ is solvable and hence $F^*(N) = F(N) \neq 1$ by Lemma 2.11. Since N satisfies the hypotheses of the theorem, the minimal choice of G implies that N is supersolvable if N < G. Next we will prove that G is supersolvable in the case of H is solvable and divide into the following steps.

(1.1) $\Phi(G) \cap N \neq 1$.

If $\Phi(G) \cap N \neq 1$, there exists a prime p such that $p||\Phi(G) \cap N|$. Let $L \in \operatorname{Syl}_p(\Phi(G) \cap N)$. Then $L \leq G$ and $(G/L)/(N/L) \in U$. By [5, P_{240} Satz 3.5] we have that F(N/L) = F(N)/L. Let P_1/L be a maximal subgroup of the Sylow p-subgroup of F(N)/L. Then P_1 is a maximal subgroup of the Sylow p-subgroup of F(N). If P_1/L has no c-supplement in G/L, then P_1 has no c-supplement in G, by hypotheses P_1 is \mathcal{M} -supplemented in G and hence P_1/L is \mathcal{M} -supplemented in G/L by Lemma 2.1 and 2.2. Let Q/P be a maximal subgroup of the Sylow q-subgroup of F(N). With the similar discussion, if Q_1L/L has no c-supplement in G/L, then Q_1L/L is \mathcal{M} -supplemented in G/L by Lemma 2.1 and

Lemma 2.2. Hence, we have proved that G/L satisfies the hypotheses of the theorem. So G/L is supersolvable by the minimal choice of G. Since $P \leq \Phi(G)$ and \mathcal{U} is a saturated formation, we have $G \in \mathcal{U}$, a contradiction.

(1.2) $\Phi(G) \cap N = 1.$

If N = 1, nothing need to prove, so we may assume that $N \neq 1$, the solvability of N implies that $F(N) \neq 1$. By Lemma 2.5, F(N) is the direct product of minimal normal subgroups of G contained in N. For any maximal subgroup M of G, if $F(N) \leq M$, then $G \in U$ by Lemma 2.12, a contradiction. So we may assume that there at least exists a maximal subgroup M of G not containing F(N). Actually, since $F(N) \nleq M$, there at least exists a prime p of $\pi(|N|)$ with $O_p(H) \nleq M$. Then $G = O_p(H)M$ as $O_p(H) \trianglelefteq G$. If $|O_p(H)| = p$, then |G: M| = p and hence $G \in \mathcal{F}$ by Lemma 2.12. If $|O_p(H)| > p$ and $O_p(H)$ is cyclic, then we have $\Phi(O_p(H)) \neq 1$. Clearly, $G/\Phi(O_p(H))$ satisfies the condition of the theorem, the minimal choice of G implies that $G/\Phi(O_p(H))$ is supersolvable and hence G is supersolvable since G is a saturated formation, a contradiction.

Denote $P = O_p(H)$. Then P is the direct product of some minimal normal subgroup of G. So we may assume that $P = R_1 \times \ldots \times R_t$, where R_i is a minimal normal subgroup of G, i = 1.2...t. If every $R_i(i = 1.2...t)$ is of prime order, there exist at least a minimal normal subgroup R_j of G contained in $O_p(H)$ such that $R_j \nleq M$. Since $G = R_j M$ and $|R_j| = p$, we get that M have a prime index in G and hence $G \in \mathcal{F}$ by Lemma 2.12, a contradiction.

Hence, we assume that there exist at least a minimal normal R_i of G contained in N which is not of prime order. Without loss of generality, suppose that i = 1.

Since $R_1 \not\leq \Phi(G)$, there exists a maximal subgroup H of G such that $G = R_1H$ and $R_1 \cap H = 1$. Then $G_p = R_1H_p$ where H_p is the Sylow *p*-subgroup of H. Pick a maximal subgroup G_p^* of G_p containing H_p . Then $|R_1: G_p^* \cap R_1| = |R_1G_p^*: G_p^*| = |G_p: G_p^*| = p$. Hence $R_1^* = G_p^* \cap R_1$ is a maximal subgroup of R_1 . This implies that $P_1 = R_1^*R_2 \cdots R_t$ is a maximal subgroup of P. By hypotheses, if P_1 has a *c*-supplement in G, then there exists a subgroup K such that $G = P_1K$ and $P_1 \cap K = (P_1)_G$ by Lemma 2.2(4). Evidently $(P_1)_G = R_2 \times \cdots \times R_t$. So $G = P_1K = R_1^*(P_1)_GK = R_1^*K$, moreover $R_1^* \cap K = 1 \leq (R_1^*)_G$. Hence R_1^* is *c*-supplemented in G by the definition of *c*-supplemented subgroup. By Lemma 2.2(5), R_1 is a cyclic group of prime order, a contradiction.

So we may assume that P_1 is \mathcal{M} -supplemented in G, that is, there exists a subgroup B of G such that $G = P_1 B$ and TB < G for any maximal subgroup

T of *P*₁. By Lemma 2.3, |G: TB| = p and hence *TB* is the maximal subgroup of *G*. Therefore $R_1 \leq TB$ or $R_1 \cap TB = 1$. If $R_1 \leq TB$, then TB = G, a contradiction. If $R_1 \cap TB = 1$, then $|G: TB| = |R_1| = p$, a contradiction.

2) Every proper normal subgroup H of G containing $F^*(G)$ is supersolvable.

By Lemma 2.11, $F^*(G) = F^*(F^*(G)) \le F^*(H) \le F^*(G)$, so $F^*(H) = F^*(G)$. And if every maximal subgroup of noncyclic Sylow subgroups of $F^*(H)$ has no *c*-supplement in *H*, then has no *c*-supplement in *G*, by hypotheses, is \mathcal{M} -supplemented in *G* and hence is \mathcal{M} -supplemented in *H* by Lemma 2.1 and Lemma 2.2. Hence *H* is supersolvable by the minimal choice of *G*.

3) $\Phi(G) < F(G)$.

If every Sylow subgroup of F(G) is cyclic, then we denote that $F(G) = H_1 \times \cdots H_r$ where $H_i(i = 1, \dots, r)$ is the cyclic Sylow of F(G) and hence $G/C_G(H_i)$ is abelian for any $i \in \{1 \cdots r\}$. Moreover, we have

$$\frac{G}{\bigcap_{i=1}^{r} C_G(H_i)} = \frac{G}{C_G(F(G))}$$

is abelian and hence G/F(G) is abelian since $C_G(F(G)) = C_G(F^*(G)) \le F(G)$. Therefore G is solvable, a contradiction. Let P be a noncyclic Sylow subgroup of F(G) and P_1 be a maximal subgroup of P. If P_1 is \mathcal{M} -supplemented in G by hypotheses. Then there exists a subgroup B in G such that $G = P_1B$ and TB < G for every maximal subgroup T of P_1 . If $F(G) = \Phi(G)$, then $G = P_1B = B$, a contradiction. So we may assume that every maximal subgroup P_1 of P has a c-supplement in G, then there exists a subgroup K of G such that $G = P_1K$ and $P_1 \cap K = (P_1)_G$. If $\Phi(G) = F(G)$, then G = K and hence P_1 is normal in G. Therefore G is supersolvable by Lemma 2.13, a contradiction.

4) $G = O_p(G)M$ where M is a maximal subgroup of G.

Since $\Phi(G) < F(G)$, for any Sylow subgroup $O_p(G)$ of F(G) such that $O_p(G) \nleq \Phi(G)$, there exists the maximal subgroup M of G such that $O_p(G) \nleq M$ and $G = O_p(G)M$.

5) $|O_p(G)| = p$.

If $|O_p(G)| = p$, then set $C = C_G(O_p(G))$. Clearly, $F(G) \le C \le G$. If C < G, then C is solvable by 2). On the other hand, since G/C is cyclic, we have G is solvable and hence G is supersolvable 1), a contradiction. So we may assume C = G. Now we have $O_p(G) \le Z(G)$. Then we consider factor group $G/O_p(G)$. By Lemma 2.11, we have $F^*(G/O_p(G)) = F^*(G)/O_p(G) = F(G)/O_p(G)$. In fact, every maximal subgroup of noncyclic Sylow subgroup of $F^*(G/O_p(G))$ having no c-supplement in $G/O_p(G)$, is \mathcal{M} -supplemented in $G/O_p(G)$ by Lemma 2.1 and Lemma 2.2. Therefore the minimal choice of G implies that $G/O_p(G) \in U$ and hence G is supersolvable, a contradiction.

6) $|O_p(G)| > p$.

So we may assume that $|O_p(G)| > p$. If $\Phi(O_p(G)) \neq 1$, then we easy to know that factor group $G/\Phi(O_p(G))$ satisfies the condition of the theorem. The minimal choice of G implies that $G/\Phi(O_p(G))$ is supersolvable and hence G is supersolvable since the class of all supersolvable groups is a saturated formation, a contradiction. Therefore, $\Phi(O_p(G)) = 1$ and $O_p(G)$ is an elementary abelian p-group. Let P_1 be a maximal subgroup of $O_p(G)$.

If P_1 is \mathcal{M} -supplemented in G, then there exists a subgroup B of G such that $G = P_1 B$ and TB < G for every maximal subgroup T of P_1 . By Lemma 2.3, |G: TB| = p and $P_1 \cap B = T \cap B$ for every maximal subgroup T of P_1 . Therefore we have

$$P_1 \cap B = \bigcap_{T < P_1} (T \cap B) = \Phi(P_1) \cap B.$$

On the other hand $P_1 \leq O_p(G)$ and hence $\Phi(P_1) \leq \Phi(O_p(G)) = 1$. So we have $P_1 \cap B = \Phi(P_1) \cap B = 1$. Therefore, if the maximal subgroup P_1 of the Sylow subgroup of $F^*(G)$ is \mathcal{M} -supplemented in G, we have that P_1 is complemented in G and hence c-supplemented in G. By hypotheses and 3), we have every maximal subgroup of noncyclic Sylow subgroup is c-supplemented in G and hence G is supersolvable by Lemma 2.13, a contradiction.

Case 2. $\mathcal{F} \neq \mathcal{U}$.

By case 1, *H* is supersolvable. Particularly, *H* is solvable and hence $F^*(H) = F(H)$. Therefore $G \in \mathcal{F}$ by case 1.

The final contradiction completes our proof.

Corollary 3.6. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a normal subgroup H such that $G/H \in \mathcal{F}$. If every

maximal subgroup of noncyclic Sylow subgroup of $F^*(H)$ is \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Corollary 3.7. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a normal subgroup H such that $G/H \in \mathcal{F}$. If every maximal subgroup of noncyclic Sylow subgroup of $F^*(H)$ has c-supplement in G, then $G \in \mathcal{F}$.

Corollary 3.8. Let \mathcal{F} be a saturated formation containing all supersolvable groups and H be a solvable normal subgroup of G such that $G/H \in \mathcal{F}$. If every maximal subgroup of noncyclic Sylow subgroup of F(H) having no c-supplement in G is \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Corollary 3.9. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If every maximal subgroup of noncyclic Sylow subgroup of F(H) is \mathcal{M} -supplemented in G, then $G \in \mathcal{F}$.

Corollary 3.10. Let \mathcal{F} be a saturated formation containing \mathcal{U} . Suppose that G is a finite group with a solvable normal subgroup H such that $G/H \in \mathcal{F}$. If every maximal subgroup of noncyclic Sylow subgroup of F(H) has c-supplement in G, then $G \in \mathcal{F}$.

Acknowledgement. The author thanks the referee for many helpful suggestions improving the presentation of the paper.

References

- Z. Arad and M.B. Ward. New criteria for the solvability of finite groups. J. Algebra, 77 (1982), 234–246.
- [2] A. Ballester-Bolinches and X. Guo. On complemented subgroups of finite groups. Arch. Math, 72 (1999), 161–166.
- F. Gross. Conjugacy of odd order Hall subgroups. Bull. London Math. Soc., 19 (1987), 311–319.
- [4] K. Doerk and T. Hawkes. "Finite Soluble Groups", de Gruyter, Berlin/New York (1992).
- [5] W. Guo. "The Theory of Classes of Groups", Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London (2000).
- [6] P. Hall. A characteristic property of soluble groups. J. London Math. Soc., 12 (1937), 188–200.

- [7] B. Huppert. Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York (1967).
- [8] L. Miao and W. Guo. Finite groups with some primary subgroups *F*-ssupplemented. Comm. Algebra, 33(8) (2005), 2789–2800.
- [9] D.J. Robinson. A Course in the Theory of Groups, Springer-Verlag, Berlin/ New York (1993).
- S. Srinivasan. Two sufficient conditions for supersolvability of finite groups. Israel J. Math, 35(3) (1980), 210–214.
- [11] J. Tate. *Nilpotent quotient groups*. Topology, **3** (1964), 109–111.
- Y. Wang. *Finite groups with some subgroups of Sylow subgroups c-supplemented*.
 J. Algebra, **224** (2000), 467–478.
- [13] Y. Wang, H. Wei and Y. Li. A generalization of Kramer's theorem and its applications. Bull. Austral. Math. Soc., 65 (2002), 467–475.
- [14] H. Wei, Yanming Wang and Yangming Li. On c-supplemented maximal and minimal subgroups of Sylow subgroups of finite groups. Proc. Amer. Math. Soc., 132(8) (2004), 2197–2204.
- [15] M. Xu. An Introduction to Finite Groups, Beijing, Science Press, 1999 (in Chinese).

Long Miao

School of Mathematical Science Yangzhou University Yangzhou 225002 PEOPLE'S REPUBLIC OF CHINA

E-mail: miaolong714@vip.sohu.com