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The influence of M-supplemented subgroups
on the structure of finite groups™

Long Miao

Abstract. A subgroup H of a group G is said to be M-supplemented in G if there
exists a subgroup B of G such that G = HB and TB < G for every maximal sub-
group T of H. Moreover, a subgroup H is called c-supplemented in G if there exists a
subgroup K such that G = HK and H N K < Hg where Hg is the largest normal
subgroup of G contained in H. In this paper we give some conditions of supersolv-
ability of finite group under assumption that some primary subgroups have some kinds
of supplements, which are generalizations of some recent results.
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1 Introduction

A subgroup H of a group G is called to be supplemented in G if there ex-
ists a subgroup K of G such that HK = G and K is called a supplement of
H in G. Obviously every subgroup of G is supplemented in G as G can be
one of its supplements. Hence we should give some other restricted conditions.
The relationship between the properties of subgroups of the Sylow subgroups
of G and the structure of G has been investigated extensively by a number of
authors. For instance, Hall [6] proved that a group G is solvable if and only if
every Sylow subgroup of G is complemented in G. Arad and Ward [1] proved
that a group G is solvable if and only if every Sylow 2-subgroup and every
Sylow 3-subgroup of G are complemented in G. A. Ballester-Bolinches and
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Guo Xiuyun [2] proved that the class of all finite supersolvable groups with
elementary abelian Sylow subgroups is just the class of all finite groups for
which every minimal subgroup is complemented. Srinivassan [10] proved that a
finite group is supersolvable if every maximal subgroup of every Sylow subgroup
is normal. Recently, by considering some special supplements (c-supplement)
of some primary subgroups, Wang [12] obtained some new conditions for the
solvability and supersolvability of a group. More recently, Miao and Guo [8]
proved that G is supersolvable if and only if every maximal subgroups of the
Sylow subgroup of G is supersolvable s-supplemented in G. In this paper we
want to continue these works and obtain some sufficient conditions for a saturated
formation containing all supersolvable groups.

Now we will analyze the structure of finite groups with the following concept.

Definition 1.1. A4 subgroup H is called M-supplemented in a finite group G,
if there exists a subgroup B of G such that G = HB and T B is a proper
subgroup of G for every maximal subgroup T of H.

Throughout this paper, all groups are finite groups. Our terminology and
notation are standard, see [4] and [9]. In particular, let G denote a finite group,
M < -G indicates that M is a maximal subgroup of G. |G| denotes the order
of G. G, is the Sylow p-subgroup of G. ‘U denotes the class of all supersolv-
able groups. 7 (G) denotes the set of all prime divisor of G.

Let 7 be a set of primes. We say that G € E if G has a Hall 7-subgroup.
We say that G € C, if G € E, and any two Hall w-subgroups of G are
conjugate in G. We say that G € D, if G € C, and every m-subgroup of G
is contained in a Hall w-subgroup of G. We denote by [ H]K the semidirect of
H and K; | G| denotes the order of a group G; H char G denotes that H is a
characteristic subgroup of G.

Let F be a class of groups. F is said to be a formation provided that (1)
if G e Fand H < G, then G/H € F,and 2) if G/M and G/N are in F,
then G/M N N is in F. It is clear that for a formation, every group G has
a smallest normal subgroup (denoted by G7) whose quotient G/G7 is in F.
The normal subgroup G7 is called the ‘F-residual of G. A formation F is
said to be saturated if G € F whenever G/®(G) € F. It is well known that
the class of all supersolvable groups and the class of all p-nilpotent groups are
saturated formations (cf. [5]).

2 Preliminaries

For the sake of convenience, we first list here some known results which will be
useful in the sequel.
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Lemma 2.1. Let G be a group. Then

(1) If H is M-supplemented in G, H < M < G, then H is M-supplemented
in M.

(2) Let N Q Gand N < H. If H is M-supplemented in G, then H/N is
M-supplemented in G/ N.

(3) Let  be a set of primes. Let K be a normal ©t’-subgroup and H be a
nw-subgroup of G. Then H is M-supplemented in G if and only if HK /| K
is M-supplemented in G /K.

Proof.

(1) If H is M-supplemented in G, then there exists a subgroup B of G such
that G = HB and H; B < G for any maximal subgroup H; of H. So
wemayset L = BN M. Clearly, BN M < Mand M = MN HB =
H(M N B). Since H| B < G for every maximal subgroup H; of H, we
have M N HiB = H;(M N B) is a proper subgroup of M.

(2) If H is M-supplemented in G, then there exists a subgroup B such that
G = HB and H| B < G for any maximal subgroup H; of H. So we have
BN < G. Otherwise we choose T be a maximal subgroup of H which
contain N, then T = TN BN = N(T' N B) and hence TB = N(T N
B)B = NB = G, a contradiction. It is easy to have (H/N)(BN/N) =
G/N. For any maximal subgroup H; of H which contain N, we have
(Hi/N)(BN/N) = HiB/N < G/N. Therefore H/N is M-supple-
mented in G/N.

(3) If H is M-supplemented in G, then there exists a subgroup B of G such
that G = HB and H;B < G for any maximal subgroup H; of H.
Clearly, (HK/K)(BK/K) = G/K. For any maximal subgroup 7/K
of HK /K, since K is a normal x’-subgroup and H is a w-subgroup of
G, we have T = H;K where H is a maximal subgroup of H. Therefore
(H1K/K)(BK/K) = HHIBK/K < G/K. Otherwise, if HiBK = G,
then |G: HiB| = |K: K N H|B| is a w'-number, on the other hand,
| G: HB| = |HB: H;B|is am-number, a contradiction.

Conversely, if HK /K is M-supplemented in G/K, we may similarly get H
is M-supplemented in G.
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Lemma 2.2 [12]. Let G be a group. Then

(1) If H is c-supplemented in G, H < K < G, then H is c-supplemented
in K;

(2) Let K <G and K < H < G. Then H is c-supplemented in G iff H/K is
c-supplemented in G /K ;

(3) Let  be a set of primes, H a w-subgroup of G and N a normal 7'-sub-
group of G. If H is c-supplemented in G, then HN /N is c-supplemented
in G/N;

(4) A subgroup H of G is c-supplemented in G if and only if there exists a
subgroup L of G such that G = HL and H N L = Hg = Coreg(H);

(5) Let R be a solvable minimal normal subgroup of a group G. If there exists
a maximal subgroup Ry of R such that R, is c-supplemented in G, then R
is a cyclic group of prime order.

Lemma 2.3. Let P be a p-subgroup of G where p is a prime divisor of | G|.
If P is M-supplemented in G, then there exists a subgroup B of G such that
| G: PyB| = p where Py is a maximal subgroup of P.

Proof. Since P is M-supplemented in G, then there exists a subgroup B of G
such that G = PB and P; B < G for every maximal subgroup P; of P. Then
P < PNPB=P(PNB) < P. Since P, is a maximal subgroup of P,
we have PN B < P; and hence P N B = P, N B. Therefore |G: PB| =
| PB: P|B| = p.

Lemma 2.4. Let R be a solvable minimal normal subgroup of G, R, be a
maximal subgroup of R. If R, is M-supplemented in G, then R is a cyclic group
of prime order.

Proof. Since R; is M-supplement in G, there exists a subgroup B of G
such that G = R|B and TB < G for any maximal subgroup 7 of R;. By
Lemma 2.3, |G: T B| = p and hence T B is the maximal subgroup of G. Since
R is the minimal normal subgroup of G, wehave RNTB =Rof RNTB = 1.
IfRNTB = R,then TB = RTB = G, a contradiction. Therefore we have
RN TB =1and hence |R| = p.

Lemma 2.5 [5, Theorem 1.8.17]. Let N be a solvable normal subgroup of a
group G (N # 1). If NN ®(G) = 1, then the Fitting subgroup F(N) of N is
the direct product of minimal normal subgroups of G which is contained in N.
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Lemma 2.6 [15]. If H is a subgroup of G with |G: H| = p, where p is the
smallest prime divisor of |G|, then H < G.

Lemma 2.7 [3, Main Theorem]. Suppose a finite group G has a Hall -
subgroup where 1 is a set of primes not containing 2. Then all Hall 7 -subgroups
of G are conjugate.

Lemma 2.8 [11]. If P is a Sylow p-subgroup of a group G and N < G such
that PN\ N < ®(P), then N is p-nilpotent.

Lemma 2.9 Let G be a finite group and P a Sylow p-subgroup of G where p
is the smallest prime divisor of |G|. Then G is p-nilpotent if and only if P is
M-supplemented in G.

Proof. If G is p-nilpotent, then G has a normal p-complement D. For the
Sylow p-subgroup P of G and every maximal subgroup P; of P, we may easily
get G = PD and PiD < G. Therefore P is M-supplemented in G.

Conversely, if P is M-supplemented in G, there exists a subgroup B of G
such that G = PB and P B < G for every maximal subgroup P; of P. By
Lemma 2.3, we have |G: PB| = p and hence P;B < G by Lemma 2.6.
Since |G: PiB| = |PB: PiB| = p, we have P N B = P; N B for every
maximal subgroup P; of P. Therefore PN B = ﬂPl<_P(P1 NB)=®(P)NBAB.
On the other hand,

N B) = ( N P1>B — ®(P)B and ®(P)B < G.

P1<~P P1<‘P

It follows from P N ®(P)B = ®(P)(P N B) < ®(P) that we have ®(P)B
is p-nilpotent by Lemma 2.8. Let H be a normal Hall p’-subgroup of ®(P)B.
Clearly, H is also the normal Hall p’-subgroup of G and hence G is p-nil-
potent. The proofis over.

Lemma 2.10 Let G be a finite group and P a Sylow p-subgroup of G where
p is the smallest prime divisor of |G|. If every maximal subgroup of P having
no c-supplement in G, is M-supplemented in G, then G/O,(G) is solvable
p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of
smallest order. Clearly, G is not a nonabelian simple group. Furthermore we
have,
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(1) 0,(G) # 1.

If 0,(G) = P, then G/O,(G) is a p’-group and of course it is p-nilpotent, a
contradiction. If 1 < O,(G) < P, then G/0,(G) satisfies the hypotheses and
the minimal choice of G implies that G/0,(G) = G/0,(G)/0,(G/0,(G))
is p-nilpotent, a contradiction.

) 0,(G) = 1.

Let P; be a maximal subgroup of P. By hypotheses, if P; is c-supplemented
in G, then there exists a subgroup K of G such that G = P/K and PN K <
(P1)g- Since O,(G) = 1 and (P1)g < O,(G), we have PyN K = 1. Therefore
|K,| = p and hence K is p-nilpotent by Burnside p-nilpotent Theorem. Since
K is p-nilpotent, we have K,» < K where K, is a Hall p’-subgroup of K and of
course is the Hall p’-subgroup of G. Hence G = P Ng(K ). If PNNG(K /) =
P, then K,, < G, a contradiction. If P N Ng(K,) = L where L is the
maximal subgroup of P, then |G: Ng(K,)| =|P: PNNg(K,)| =|P: L| =
p and hence Ng(K,/) < G by Lemma 2.6, a contradiction. So we may assume
PN NGg(K,) < Ly < Ly where L is the maximal subgroup of P and L is the
maximal subgroup of L. If L; is c-supplemented in G, then there exists a p-
nilpotent subgroup H such that G = L H. With the similar discussion we have
G = L Ng(H,) where H,, is the Hall p’-subgroup of / and of course of G. By
Lemma 2.8, there exists an element x of P such that Ng(K,) = (Ng(H,))*.
Therefore G = LiNg(H,) = (LiNg(Hy))* = L{Ng(K,). Furthermore,
P=PNLNg(K,)=L{(PNNg(K,)) =Ly, acontradiction.

So we may assume L is M-supplemented in G, there exists a subgroup
B of G such that G = LB and TB < G for any maximal subgroup 7 of
Ly. Therefore LB < G and |G: L,B| = p by Lemma 2.3. Since p is the
smallest prime divisor of |G|, Lemma 2.6 implies that L, B < G. We have
G=LB=PB=PLyBand PNL,B = L,(PNB)isthe Sylow p-subgroup
of L, B. Clearly, L,(P N B) is the maximal subgroup of P. By hypotheses if
Lo(P N B) is M-supplemented in G, then L,(P N B) is M-supplemented in
L,B by Lemma 2.1 and hence L, B is p-nilpotent by Lemma 2.9. Therefore G
is p-nilpotent, a contradiction. So we may assume that L,(P N B) has a c-sup-
plement R in G. With the similar discussion we have G = L,(P N B)Ng(R,/)
where R, is the Hall p’-subgroup of R and of course is the Hall p’-subgroup
of G. By Lemma 2.7, there exists an element x of P such that Ng(K,) =
(Ng(Ry))*. Therefore G = Ly(P N B)Ng(R,) = (L2(P N B)NGg(Ry)) =
L,(P N B)Ng(K,). Furthermore, P = P N Ly(P N B)Ng(K,) = L,(P N
B)(P N Ng(K,)) = L,(P N B), a contradiction.

The final contradiction completes our proof.
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Lemma 2.11 [7]. Let G be a group and N a subgroup of G. The general-
ized Fitting subgroup F*(G) of G is the unique maximal normal quasinilpotent
subgroup of G. Then

(1) If N is normal in G, then F*(N) < F*(G);

(2) F*(G) # 1if G # 1; in fact, F*(G)/F(G) = Soc(F(G)CG(F(G))/
F(G),

3) F*(F*(G)) = F*(G) = F(G), if F*(G) is solvable, then F*(G) =
F(G),

(4) Ca(F*(G)) = F(G);

(5) Let P 4 G and P < O,(G), then F*(G/®(P)) = F*(G)/P(P),

(6) If K is a subgroup of G contained in Z(G), then F*(G/K) = F*(G)/K.

Lemma 2.12 [13, Theorem 3.1]. Let F be a saturated formation containing
‘U, G a group with a soluble normal subgroup H such that G/H € F. If for
any maximal subgroup M of G, either F(H) < M or F(H) N M is a maximal
subgroup of F(H), then G € ‘F. The converse also holds, in the case where

F ="

Lemma 2.13 [14, Theorem 1.1].  Let ‘F be a saturated formation containing ‘U
and suppose that G is a group with a normal subgroup H such that G/H € ‘F.
If all maximal subgroups of all Sylow subgroups of F*(H) are c-supplemented
in G, then G € F.

3 Main results

Theorem 3.1. Let G be a group having a normal subgroup N such that G/ N
is supersolvable. If every maximal subgroups of noncyclic Sylow subgroup
of N having no c-supplement in G, is M-supplemented in G, then G is super-
solvable.

Proof. Assume that the theorem is false and let G be a counterexample with
minimal order. Then we have following claims:

(1) G is solvable.

By hypotheses and Lemma 2.11, N/O,(N) is solvable r-nilpotent where r is
the smallest prime divisor of |N| and hence G is solvable. Let L be a minimal
normal subgroup of G contained in N. Clearly, L is an elementary abelian
p-group for some prime divisor of |G].
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(2) G/L is supersolvable and L is the unique minimal normal subgroup of G
contained in N such that N N ®(G) = 1. Furthermore, L = F(N) =
Cy(L).

First, we check that (G/L, N/L) satisfies the hypotheses for (G, N). We
know that N/L < G/L and (G/L)/(N/L) = G/N is supersolvable. Let
O = QL/L be a Sylow g-subgroup of N/L. We may assume that Q is a
Sylow g-subgroup of N. If p = ¢, we may assume that L < P, where P is a
Sylow p-subgroup of N. If L < P = (Q and hence every maximal subgroup
of P/L is of the form P;/L with P; a maximal subgroup of P. If P;/L has
no c-supplement in G/L, then P; has no c-supplement in G, by hypotheses,
Py is M-supplemented in G and hence P;/L is M-supplemented in G/L by
Lemma 2.1 and Lemma 2.2. Now we assume that p # ¢. Let Q| be a maximal
subgroup of a Sylow g-subgroup of N. Without loss of generality, we may
assume that O; = QL /L with Q; a maximal subgroup of a Sylow ¢-subgroup
of N. Clearly, if Q;L/L has no c-supplement in G/L, then Q|L/L is M-
supplemented in G/L by Lemma 2.1 and 2.2. So G/L satisfies the hypotheses
of the theorem. The minimal choice of G implies that G/L is supersolvable.
Since the class of all supersolvable groups is a saturated formation, we know
that L is the unique minimal normal subgroup of G which is contained in N and
L £ ®(G). By Lemma 2.5 we have F(N) = L. The solvability of N implies
that L < Cy(L) = Cy(F(N)) < F(N)andso Cy(L) =L = F(N).

(3) L is a Sylow subgroup of N.

Let ¢ be the largest prime divisor of | N| and O a Sylow g-subgroup of N.
Since G/L is supersolvable, we have N/L is supersolvable. Consequently,
LQ/Lchar N/L < G/L andhence LO < G. If p =¢q,thenl < Q0 I G.
Therefore O < F(N) = L and L is a Sylow g-subgroup of N, a contradiction.

Now we assume that p < ¢g. Let P be a Sylow p-subgroup of N. Clearly,
P is not cyclic. Otherwise, G/L € ‘U implies that G € ‘U. Then L < P and
PO = PLQ is a subgroup of N. Note that every maximal subgroup of non-
cyclic Sylow subgroup of PQ having no c-supplement in P Q, is M-supple-
mented in PO by Lemma 2.1 and Lemma 2.2. Therefore P Q satisfies the
hypotheses for G. If PQ < G, the minimal choice of G implies that PQ
is supersolvable; in particular, Q < PQ. Hence LQ = L x Q and Q <
Cn(L) < L, a contradiction.

Now we may assume that G = PQ = N and L < P. Since G/L is su-
persolvable, LQ < G. By the Frattini argument, G = LNg(Q). Note that
L N Ng(Q) is normalized by Ng(Q) and L. We have that L N Ng(Q) = 1
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since L is the unique minimal normal subgroup of G and Q is not normal in
G in this case. Therefore G = [L]Ng(Q). Let P, be a Sylow p-subgroup of
Ng(Q). Then L P, is a Sylow p-subgroup of G. Choose a maximal subgroup
Py of L P, such that P, < P;. Clearly, L ;{ Py and hence (P))¢ = 1. By our
hypotheses, if P; is M-supplemented in G, that is, there exists a subgroup B
of G such that G = P;B and TB < G for any maximal subgroup 7 of P,.
So we may assume P, < T for some maximal subgroup 7 of P;. Otherwise,
P, = Pj, then we have |L| = p and hence G/L is supersolvable implies that
G is supersolvable, a contradiction. By Lemma 2.3, |G: T B| = p and hence
TB < G by Lemma 2.6. Therefore L < TBorLNTB=1.1fLNTB =1,
then |G: TB| = |L| = p. In this case G/L is supersolvable implies that G is
supersolvable. Sowe mayassume L < T'B. Since P, < T,wehave LP, < T B,
contrary to |G: TB| = p. Now we may assume that P; is c-supplemented
in G, that is, there exists a subgroup K of G suchthat G = PK and P, N K <
(P1)g = 1. Since |K,| = p, we have K is p-nilpotent by Burnside Theorem and
hence K has a normal Sylow g-subgroup Q; which is also a Sylow g-subgroup
of G in this case. By Sylow’s theorem, there exists an element g € L such that
Of = Q. Since Pi < LP,, we have that G = PK = (PK)¢ = P K?.
Since K¢ = K has a normal Sylow g-subgroup and Q = Of < K&, it
follows that K$ < NG(Q) Since LP2 = LP2 NG = LP2 N P]Kg =
P (LP, N K8), we have that LP, N K8 ;{ P,. Otherwise LP, < PP, = P,
a contradiction. Therefore P, is a proper subgroup of P; = (P>, L P, N K¥).
On the other hand, since both P, and K# are contained in Ng(Q), P; is a p-
subgroup of Ng(Q) which contains a Sylow subgroup P, of Ng(Q) as a proper
subgroup, a contradiction.

(4) G is supersolvable.

Let L; be a maximal subgroup of L. If L; is c-supplemented in G, then
|L| = p by Lemma 2.2(5) and G/L is supersolvable implies that G is super-
solvable. Hence L is M-supplemented in G, that is, there exists a subgroup B
of G such that LB = G and TB < G for every maximal subgroup T of L;.
By Lemma 2.4, we know that |L| = p. Consequently, G/L is supersolvable
implies that G is supersolvable.

The final contradiction completes our proof.

Corollary 3.2. Let G be a group. If every maximal subgroups of noncyclic
Sylow subgroup of G having no c-supplement in G, is M-supplemented in G,
then G is supersolvable.
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Corollary 3.3. Let F be a saturated formation containing ‘U. Suppose that
G is a finite group with a normal subgroup N such that G/N € F. If every
maximal subgroups of noncyclic Sylow subgroup of N having no c-supplement
in G, is M-supplemented in G, then G € F.

Corollary3.4. Let T be asaturated formation containing ‘U. Suppose that G is
afinite group with a normal subgroup N suchthat G/N € F. Ifevery nonnormal
maximal subgroups of noncyclic Sylow subgroup of N, is M-supplemented in
G, then G € F.

Theorem 3.5. Let F be a saturated formation containing all supersolvable
groups and G be a group with a normal subgroup N such that G/N € F.
If every maximal subgroup of noncyclic Sylow subgroup of F*(N) having no
c-supplement in G, is M-supplemented in G. Then G € F.

Proof. Assume that the assertion is false and choose G to be a counterexample
of minimal order. Next we consider the following two cases.

Casel. F ="U.
1) N=G, F*(G)=F(G) #1.

By Theorem 3.1, F*(N) is supersolvable. In particular, F*(XN) is solvable
and hence F*(N) = F(N) # 1 by Lemma 2.11. Since N satisfies the hypothe-
ses of the theorem, the minimal choice of G implies that N is supersolvable if
N < G. Next we will prove that G is supersolvable in the case of H is solvable
and divide into the following steps.

(1.1) ®G)NN # 1.

If ®(G) N N # 1, there exists a prime p such that p||®(G) N N|. Let L €
Syl,(®(G) N N). Then L < G and (G/L)/(N/L) € ‘U. By [5, P Satz3.5]
we have that F(N/L) = F(N)/L. Let P;/L be a maximal subgroup of
the Sylow p-subgroup of F(N)/L. Then P; is a maximal subgroup of the
Sylow p-subgroup of F(N). If P;/L has no c-supplement in G/L, then P,
has no c-supplement in G, by hypotheses P, is M-supplemented in G and
hence P;/L is M-supplemented in G/L by Lemma 2.1 and 2.2. Let Q/P
be a maximal subgroup of the Sylow g-subgroup of F(N)/L, where g # p.
It is clear that O = Q;P, where Q; is a maximal subgroup of the Sylow
g-subgroup of F(N). With the similar discussion, if Q;L/L has no c-sup-
plement in G/L, then QL /L is M-supplemented in G/L by Lemma 2.1 and
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Lemma 2.2. Hence, we have proved that G/L satisfies the hypotheses of the
theorem. So G/L is supersolvable by the minimal choice of G. Since P <
®(G) and U is a saturated formation, we have G € ‘U, a contradiction.

(12) ®(G)NN = 1.

If N = 1, nothing need to prove, so we may assume that N # 1, the solv-
ability of N implies that /() # 1. By Lemma 2.5, F(N) is the direct product
of minimal normal subgroups of G contained in N. For any maximal sub-
group M of G, if F(N) < M, then G € ‘U by Lemma 2.12, a contradic-
tion. So we may assume that there at least exists a maximal subgroup M of
G not containing F(N). Actually, since F(N) f M, there at least exists a
prime p of 7 (| N|) with O,(H) £ M. Then G = O,(H)M as O,(H) < G.
If |O,(H)| = p, then |G: M| = p and hence G € F by Lemma 2.12. If
|O,(H)| > p and O,(H) is cyclic, then we have ®(0,(H)) # 1. Clearly,
G/®(0,(H)) satisfies the condition of the theorem, the minimal choice of G
implies that G/ ® (0, (H)) is supersolvable and hence G is supersolvable since
G is a saturated formation, a contradiction.

Denote P = O,(H). Then P is the direct product of some minimal normal
subgroup of G. So we may assume that P = Ry X ... X R;, where R; is a
minimal normal subgroup of G,i = 1.2...¢. Ifevery R;(i = 1.2...¢) is of
prime order, there exist at least a minimal normal subgroup R; of G contained
in O,(H) such that R; £ M. Since G = R; M and |R;| = p, we get that M
have a prime index in G and hence G € F by Lemma 2.12, a contradiction.

Hence, we assume that there exist at least a minimal normal R; of G contained
in N which is not of prime order. Without loss of generality, suppose that i = 1.

Since R; £ ®(G), there exists a maximal subgroup H of G such that G =
RiH and Ry " H = 1. Then G, = R H, where H, is the Sylow p-subgroup
of H. Pick a maximal subgroup G, of G, containing H,. Then |R;: G} N
R = |R1G;: G;l = |G,: G;l = p. Hence R} = G; N R; is a maximal
subgroup of R;. This implies that P, = R} R, - - - R, is a maximal subgroup of
P. By hypotheses, if P has a c-supplement in G, then there exists a subgroup
K such that G = PK and P, N K = (P)g by Lemma 2.2(4). Evidently
(P)g = Ry x---xR. SoG = PIK = R{(P1)¢K = R{K, moreover
Ry NK =1 =< (R})g. Hence R is c-supplemented in G by the definition
of c-supplemented subgroup. By Lemma 2.2(5), R; is a cyclic group of prime
order, a contradiction.

So we may assume that P is M-supplemented in G, that is, there exists a
subgroup B of G such that G = P;B and T B < G for any maximal subgroup
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T of P;. By Lemma 2.3, |G: T B| = p and hence T B is the maximal subgroup
of G. Therefore Ry < TBorRiNTB =1. If Ry < TB,thenTB =G, a
contradiction. If Ry, N TB = 1, then |G: T B| = |R;| = p, a contradiction.

2) Every proper normal subgroup H of G containing F*(G) is super-
solvable.

By Lemma 2.11, F*(G) = F*(F*(G)) < F*(H) < F*(G), so F*(H) =
F*(G). And if every maximal subgroup of noncyclic Sylow subgroups of
F*(H) has no c-supplement in H, then has no c-supplement in G, by hypothe-
ses, is M-supplemented in G and hence is M-supplemented in H by Lemma 2.1
and Lemma 2.2. Hence H is supersolvable by the minimal choice of G.

3) (G) < F(G).

If every Sylow subgroup of F(G) is cyclic, then we denote that F(G) =
H, x ---H, where H;(i = 1,...,r) is the cyclic Sylow of F(G) and hence
G/Cg(H;) is abelian for any i € {1 ---r}. Moreover, we have

G G
N_, Co(H)  Ca(F(G))

is abelian and hence G/F(G) is abelian since Cg(F(G)) = Cg(F*(G)) <
F(G). Therefore G is solvable, a contradiction. Let P be a noncyclic Sylow
subgroup of F(G) and P; be a maximal subgroup of P. If P, is M-supple-
mented in G by hypotheses. Then there exists a subgroup B in G such that
G = PiBand T B < G for every maximal subgroup 7T of P;. If F(G) = ®(G),
then G = P;B = B, a contradiction. So we may assume that every maximal
subgroup P; of P has a c-supplement in G, then there exists a subgroup K of
G suchthat G = PIK and Py N K = (P)g. If ®(G) = F(G),then G = K
and hence P; is normal in G. Therefore G is supersolvable by Lemma 2.13,
a contradiction.

4) G = 0,(G)M where M is a maximal subgroup of G.

Since ®(G) < F(G), for any Sylow subgroup O,(G) of F(G) such that
0,(G) £ ®(G), there exists the maximal subgroup M of G such that 0,(G) %
Mand G = O0,(G)M.

5) 10,(G)] = p.
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If |0,(G)| = p, then set C = C;(0,(G)). Clearly, F(G) < C < G.
If C < G, then C is solvable by 2). On the other hand, since G/C is cyclic,
we have G is solvable and hence G is supersolvable 1), a contradiction. So we
may assume C = G. Now we have O,(G) < Z(G). Then we consider factor
group G/0,(G). By Lemma2.11, wehave F*(G/0,(G)) = F*(G)/0,(G) =
F(G)/0,(G). In fact, every maximal subgroup of noncyclic Sylow subgroup
of F*(G/0,(G)) having no c-supplement in G/O0,(G), is M-supplemented in
G/0,(G) by Lemma 2.1 and Lemma 2.2. Therefore the minimal choice of G
implies that G/O,(G) € ‘U and hence G is supersolvable, a contradiction.

6) [0,(G)| > p.

So we may assume that |0,(G)| > p. If ®(0,(G)) # 1, then we easy to
know that factor group G/®(0,(G)) satisfies the condition of the theorem.
The minimal choice of G implies that G/ ®(0,(G)) is supersolvable and hence
G is supersolvable since the class of all supersolvable groups is a saturated
formation, a contradiction. Therefore, ®(0,(G)) = 1 and O,(G) is an elemen-
tary abelian p-group. Let P; be a maximal subgroup of O,(G).

If P, is M-supplemented in G, then there exists a subgroup B of G such that
G = PiB and T B < G for every maximal subgroup 7 of P;. By Lemma 2.3,
|G: TB| = pand PN B = T N B for every maximal subgroup 7' of P;.
Therefore we have

PNB= ﬂ (TN B)=®(P)N B.

T<-P

On the other hand P; < O,(G) and hence ®(P;) < ®(0,(G)) = 1. So we
have P, N B = ®(P;) N B = 1. Therefore, if the maximal subgroup P; of
the Sylow subgroup of F*(G) is M-supplemented in G, we have that P, is
complemented in G and hence c-supplemented in G. By hypotheses and 3), we
have every maximal subgroup of noncyclic Sylow subgroup is c-supplemented
in G and hence G is supersolvable by Lemma 2.13, a contradiction.

Case2. F #U.

By case 1, H is supersolvable. Particularly, H is solvable and hence F*(H) =
F(H). Therefore G € F by case 1.

The final contradiction completes our proof.

Corollary 3.6. Let F be a saturated formation containing ‘U. Suppose that
G is a finite group with a normal subgroup H such that G/H € F. If every
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maximal subgroup of noncyclic Sylow subgroup of F*(H) is M-supplemented
in G, then G € F.

Corollary 3.7. Let F be a saturated formation containing ‘U. Suppose that
G is a finite group with a normal subgroup H such that G/H € F. If every
maximal subgroup of noncyclic Sylow subgroup of F*(H) has c-supplement in
G, then G € F.

Corollary 3.8. Let F be a saturated formation containing all supersolvable
groups and H be a solvable normal subgroup of G such that G/H € F. If every
maximal subgroup of noncyclic Sylow subgroup of F(H) having no c-supplement
in G is M-supplemented in G, then G € F.

Corollary 3.9. Let F be a saturated formation containing ‘U. Suppose that G
is a finite group with a solvable normal subgroup H suchthat G/H € F. Ifevery
maximal subgroup of noncyclic Sylow subgroup of F'(H) is M-supplemented in
G, then G € F.

Corollary 3.10. Let [F be a saturated formation containing U. Suppose that
G is a finite group with a solvable normal subgroup H such that G/H € F.
If every maximal subgroup of noncyclic Sylow subgroup of F'(H) has c-supple-
ment in G, then G € F.
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