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The influence of M-supplemented subgroups
on the structure of finite groups*
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Abstract. A subgroup H of a group G is said to be M-supplemented in G if there
exists a subgroup B of G such that G = H B and T B < G for every maximal sub-
group T of H . Moreover, a subgroup H is called c-supplemented in G if there exists a
subgroup K such that G = H K and H ∩ K ≤ HG where HG is the largest normal
subgroup of G contained in H . In this paper we give some conditions of supersolv-
ability of finite group under assumption that some primary subgroups have some kinds
of supplements, which are generalizations of some recent results.
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1 Introduction

A subgroup H of a group G is called to be supplemented in G if there ex-
ists a subgroup K of G such that H K = G and K is called a supplement of
H in G. Obviously every subgroup of G is supplemented in G as G can be
one of its supplements. Hence we should give some other restricted conditions.
The relationship between the properties of subgroups of the Sylow subgroups
of G and the structure of G has been investigated extensively by a number of
authors. For instance, Hall [6] proved that a group G is solvable if and only if
every Sylow subgroup of G is complemented in G. Arad and Ward [1] proved
that a group G is solvable if and only if every Sylow 2-subgroup and every
Sylow 3-subgroup of G are complemented in G. A. Ballester-Bolinches and
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Guo Xiuyun [2] proved that the class of all finite supersolvable groups with
elementary abelian Sylow subgroups is just the class of all finite groups for
which every minimal subgroup is complemented. Srinivassan [10] proved that a
finite group is supersolvable if every maximal subgroup of every Sylow subgroup
is normal. Recently, by considering some special supplements (c-supplement)
of some primary subgroups, Wang [12] obtained some new conditions for the
solvability and supersolvability of a group. More recently, Miao and Guo [8]
proved that G is supersolvable if and only if every maximal subgroups of the
Sylow subgroup of G is supersolvable s-supplemented in G. In this paper we
want to continue these works and obtain some sufficient conditions for a saturated
formation containing all supersolvable groups.

Now we will analyze the structure of finite groups with the following concept.

Definition 1.1. A subgroup H is called M-supplemented in a finite group G,
if there exists a subgroup B of G such that G = H B and T B is a proper
subgroup of G for every maximal subgroup T of H .

Throughout this paper, all groups are finite groups. Our terminology and
notation are standard, see [4] and [9]. In particular, let G denote a finite group,
M < ∙G indicates that M is a maximal subgroup of G. |G| denotes the order
of G. G p is the Sylow p-subgroup of G. U denotes the class of all supersolv-
able groups. π(G) denotes the set of all prime divisor of G.

Let π be a set of primes. We say that G ∈ Eπ if G has a Hall π -subgroup.
We say that G ∈ Cπ if G ∈ Eπ and any two Hall π -subgroups of G are
conjugate in G. We say that G ∈ Dπ if G ∈ Cπ and every π -subgroup of G
is contained in a Hall π -subgroup of G. We denote by [H ]K the semidirect of
H and K ; | G| denotes the order of a group G; H char G denotes that H is a
characteristic subgroup of G.

Let F be a class of groups. F is said to be a formation provided that (1)

if G ∈ F and H E G, then G/H ∈ F , and (2) if G/M and G/N are in F ,
then G/M ∩ N is in F . It is clear that for a formation, every group G has
a smallest normal subgroup (denoted by GF ) whose quotient G/GF is in F .
The normal subgroup GF is called the F-residual of G. A formation F is
said to be saturated if G ∈ F whenever G/8(G) ∈ F . It is well known that
the class of all supersolvable groups and the class of all p-nilpotent groups are
saturated formations (cf. [5]).

2 Preliminaries

For the sake of convenience, we first list here some known results which will be
useful in the sequel.
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Lemma 2.1. Let G be a group. Then

(1) If H is M-supplemented in G, H ≤ M ≤ G, then H is M-supplemented
in M .

(2) Let N E G and N ≤ H . If H is M-supplemented in G, then H/N is
M-supplemented in G/N .

(3) Let π be a set of primes. Let K be a normal π ′-subgroup and H be a
π -subgroup of G. Then H isM-supplemented in G if and only if H K/K
is M-supplemented in G/K .

Proof.

(1) If H is M-supplemented in G, then there exists a subgroup B of G such
that G = H B and H1 B < G for any maximal subgroup H1 of H . So
we may set L = B ∩ M . Clearly, B ∩ M ≤ M and M = M ∩ H B =
H(M ∩ B). Since H1 B < G for every maximal subgroup H1 of H , we
have M ∩ H1 B = H1(M ∩ B) is a proper subgroup of M .

(2) If H is M-supplemented in G, then there exists a subgroup B such that
G = H B and H1 B < G for any maximal subgroup H1 of H . So we have
B N < G. Otherwise we choose T be a maximal subgroup of H which
contain N , then T = T ∩ B N = N (T ∩ B) and hence T B = N (T ∩
B)B = N B = G, a contradiction. It is easy to have (H/N )(B N/N ) =
G/N . For any maximal subgroup H1 of H which contain N , we have
(H1/N )(B N/N ) = H1 B/N < G/N . Therefore H/N is M-supple-
mented in G/N .

(3) If H is M-supplemented in G, then there exists a subgroup B of G such
that G = H B and H1 B < G for any maximal subgroup H1 of H .
Clearly, (H K/K )(BK/K ) = G/K . For any maximal subgroup T/K
of H K/K , since K is a normal π ′-subgroup and H is a π -subgroup of
G, we have T = H1 K where H1 is a maximal subgroup of H . Therefore
(H1 K/K )(BK/K ) = H1 BK/K < G/K . Otherwise, if H1 BK = G,
then | G : H1 B| = |K : K ∩ H1 B| is a π ′-number, on the other hand,
| G : H1 B| = |H B : H1 B| is a π -number, a contradiction.

Conversely, if H K/K is M-supplemented in G/K , we may similarly get H
is M-supplemented in G.
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Lemma 2.2 [12]. Let G be a group. Then

(1) If H is c-supplemented in G, H ≤ K ≤ G, then H is c-supplemented
in K ;

(2) Let K G G and K ≤ H ≤ G. Then H is c-supplemented in G iff H/K is
c-supplemented in G/K ;

(3) Let π be a set of primes, H a π -subgroup of G and N a normal π ′-sub-
group of G. If H is c-supplemented in G, then H N/N is c-supplemented
in G/N ;

(4) A subgroup H of G is c-supplemented in G if and only if there exists a
subgroup L of G such that G = H L and H ∩ L = HG = CoreG(H);

(5) Let R be a solvable minimal normal subgroup of a group G. If there exists
a maximal subgroup R1 of R such that R1 is c-supplemented in G, then R
is a cyclic group of prime order.

Lemma 2.3. Let P be a p-subgroup of G where p is a prime divisor of | G|.
If P is M-supplemented in G, then there exists a subgroup B of G such that
| G : P1 B| = p where P1 is a maximal subgroup of P .

Proof. Since P isM-supplemented in G, then there exists a subgroup B of G
such that G = P B and P1 B < G for every maximal subgroup P1 of P . Then
P1 ≤ P ∩ P1 B = P1(P ∩ B) < P . Since P1 is a maximal subgroup of P ,
we have P ∩ B ≤ P1 and hence P ∩ B = P1 ∩ B. Therefore | G : P1 B| =
| P B : P1 B| = p.

Lemma 2.4. Let R be a solvable minimal normal subgroup of G, R1 be a
maximal subgroup of R. If R1 isM-supplemented in G, then R is a cyclic group
of prime order.

Proof. Since R1 is M-supplement in G, there exists a subgroup B of G
such that G = R1 B and T B < G for any maximal subgroup T of R1. By
Lemma 2.3, |G : T B| = p and hence T B is the maximal subgroup of G. Since
R is the minimal normal subgroup of G, we have R ∩ T B = R of R ∩ T B = 1.
If R ∩ T B = R, then T B = RT B = G, a contradiction. Therefore we have
R ∩ T B = 1 and hence |R| = p.

Lemma 2.5 [5, Theorem 1.8.17]. Let N be a solvable normal subgroup of a
group G (N 6= 1). If N ∩ 8(G) = 1, then the Fitting subgroup F(N ) of N is
the direct product of minimal normal subgroups of G which is contained in N .
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Lemma 2.6 [15]. If H is a subgroup of G with |G : H | = p, where p is the
smallest prime divisor of |G|, then H E G.

Lemma 2.7 [3, Main Theorem]. Suppose a finite group G has a Hall π -
subgroup where π is a set of primes not containing 2. Then all Hall π -subgroups
of G are conjugate.

Lemma 2.8 [11]. If P is a Sylow p-subgroup of a group G and N E G such
that P ∩ N ≤ 8(P), then N is p-nilpotent.

Lemma 2.9 Let G be a finite group and P a Sylow p-subgroup of G where p
is the smallest prime divisor of |G|. Then G is p-nilpotent if and only if P is
M-supplemented in G.

Proof. If G is p-nilpotent, then G has a normal p-complement D. For the
Sylow p-subgroup P of G and every maximal subgroup P1 of P , we may easily
get G = P D and P1 D < G. Therefore P is M-supplemented in G.

Conversely, if P is M-supplemented in G, there exists a subgroup B of G
such that G = P B and P1 B < G for every maximal subgroup P1 of P . By
Lemma 2.3, we have |G : P1 B| = p and hence P1 B E G by Lemma 2.6.
Since |G : P1 B| = |P B : P1 B| = p, we have P ∩ B = P1 ∩ B for every
maximal subgroup P1 of P . Therefore P ∩ B =

⋂
P1<∙P(P1 ∩ B) = 8(P) ∩ B.

On the other hand,

⋂

P1<∙P

(P1 B) =
( ⋂

P1<∙P

P1

)
B = 8(P)B and 8(P)B E G.

It follows from P ∩ 8(P)B = 8(P)(P ∩ B) ≤ 8(P) that we have 8(P)B
is p-nilpotent by Lemma 2.8. Let H be a normal Hall p′-subgroup of 8(P)B.
Clearly, H is also the normal Hall p′-subgroup of G and hence G is p-nil-
potent. The proof is over.

Lemma 2.10 Let G be a finite group and P a Sylow p-subgroup of G where
p is the smallest prime divisor of |G|. If every maximal subgroup of P having
no c-supplement in G, is M-supplemented in G, then G/Op(G) is solvable
p-nilpotent.

Proof. Assume that the claim is false and choose G to be a counterexample of
smallest order. Clearly, G is not a nonabelian simple group. Furthermore we
have,
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(1) Op(G) 6= 1.

If Op(G) = P , then G/Op(G) is a p′-group and of course it is p-nilpotent, a
contradiction. If 1 < Op(G) < P , then G/Op(G) satisfies the hypotheses and
the minimal choice of G implies that G/Op(G) ∼= G/Op(G)/Op(G/Op(G))

is p-nilpotent, a contradiction.

(2) Op(G) = 1.

Let P1 be a maximal subgroup of P . By hypotheses, if P1 is c-supplemented
in G, then there exists a subgroup K of G such that G = P1 K and P1 ∩ K ≤
(P1)G . Since Op(G) = 1 and (P1)G ≤ Op(G), we have P1 ∩ K = 1. Therefore
|K p| = p and hence K is p-nilpotent by Burnside p-nilpotent Theorem. Since
K is p-nilpotent, we have K p′ E K where K p′ is a Hall p′-subgroup of K and of
course is the Hall p′-subgroup of G. Hence G = P1 NG(K p′). If P ∩ NG(K p′) =
P , then K p′ E G, a contradiction. If P ∩ NG(K p′) = L where L is the
maximal subgroup of P , then |G : NG(K p′)| = |P : P ∩ NG(K p′)| = |P : L| =
p and hence NG(K p′) E G by Lemma 2.6, a contradiction. So we may assume
P ∩ NG(K p′) ≤ L2 < L1 where L1 is the maximal subgroup of P and L2 is the
maximal subgroup of L1. If L1 is c-supplemented in G, then there exists a p-
nilpotent subgroup H such that G = L1 H . With the similar discussion we have
G = L1 NG(Hp′) where Hp′ is the Hall p′-subgroup of H and of course of G. By
Lemma 2.8, there exists an element x of P such that NG(K p′) = (NG(Hp′))x .
Therefore G = L1 NG(Hp′) = (L1 NG(Hp′))x = L1 NG(K p′). Furthermore,
P = P ∩ L1 NG(K p′) = L1(P ∩ NG(K p′)) = L1, a contradiction.

So we may assume L1 is M-supplemented in G, there exists a subgroup
B of G such that G = L1 B and T B < G for any maximal subgroup T of
L1. Therefore L2 B < G and |G : L2 B| = p by Lemma 2.3. Since p is the
smallest prime divisor of |G|, Lemma 2.6 implies that L2 B E G. We have
G = L1 B = P B = P L2 B and P ∩ L2 B = L2(P ∩ B) is the Sylow p-subgroup
of L2 B. Clearly, L2(P ∩ B) is the maximal subgroup of P . By hypotheses if
L2(P ∩ B) is M-supplemented in G, then L2(P ∩ B) is M-supplemented in
L2 B by Lemma 2.1 and hence L2 B is p-nilpotent by Lemma 2.9. Therefore G
is p-nilpotent, a contradiction. So we may assume that L2(P ∩ B) has a c-sup-
plement R in G. With the similar discussion we have G = L2(P ∩ B)NG(Rp′)

where Rp′ is the Hall p′-subgroup of R and of course is the Hall p′-subgroup
of G. By Lemma 2.7, there exists an element x of P such that NG(K p′) =
(NG(Rp′))x . Therefore G = L2(P ∩ B)NG(Rp′) = (L2(P ∩ B)NG(Rp′))x =
L2(P ∩ B)NG(K p′). Furthermore, P = P ∩ L2(P ∩ B)NG(K p′) = L2(P ∩
B)(P ∩ NG(K p′)) = L2(P ∩ B), a contradiction.

The final contradiction completes our proof.
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Lemma 2.11 [7]. Let G be a group and N a subgroup of G. The general-
ized Fitting subgroup F∗(G) of G is the unique maximal normal quasinilpotent
subgroup of G. Then

(1) If N is normal in G, then F∗(N ) ≤ F∗(G);

(2) F∗(G) 6= 1 if G 6= 1; in fact, F∗(G)/F(G) = Soc(F(G)CG(F(G))/

F(G);

(3) F∗(F∗(G)) = F∗(G) ≥ F(G); if F∗(G) is solvable, then F∗(G) =
F(G);

(4) CG(F∗(G)) ≤ F(G);

(5) Let P E G and P ≤ Op(G); then F∗(G/8(P)) = F∗(G)/8(P);

(6) If K is a subgroup of G contained in Z(G), then F∗(G/K ) = F∗(G)/K .

Lemma 2.12 [13, Theorem 3.1]. Let F be a saturated formation containing
U, G a group with a soluble normal subgroup H such that G/H ∈ F . If for
any maximal subgroup M of G, either F(H) ≤ M or F(H) ∩ M is a maximal
subgroup of F(H), then G ∈ F . The converse also holds, in the case where
F = U.

Lemma 2.13 [14, Theorem 1.1]. LetF be a saturated formation containingU
and suppose that G is a group with a normal subgroup H such that G/H ∈ F .
If all maximal subgroups of all Sylow subgroups of F∗(H) are c-supplemented
in G, then G ∈ F .

3 Main results

Theorem 3.1. Let G be a group having a normal subgroup N such that G/N
is supersolvable. If every maximal subgroups of noncyclic Sylow subgroup
of N having no c-supplement in G, is M-supplemented in G, then G is super-
solvable.

Proof. Assume that the theorem is false and let G be a counterexample with
minimal order. Then we have following claims:

(1) G is solvable.

By hypotheses and Lemma 2.11, N/Op(N ) is solvable r -nilpotent where r is
the smallest prime divisor of |N | and hence G is solvable. Let L be a minimal
normal subgroup of G contained in N . Clearly, L is an elementary abelian
p-group for some prime divisor of |G|.
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(2) G/L is supersolvable and L is the unique minimal normal subgroup of G
contained in N such that N ∩ 8(G) = 1. Furthermore, L = F(N ) =
CN (L).

First, we check that (G/L , N/L) satisfies the hypotheses for (G, N ). We
know that N/L E G/L and (G/L)/(N/L) ∼= G/N is supersolvable. Let
Q = QL/L be a Sylow q-subgroup of N/L . We may assume that Q is a
Sylow q-subgroup of N . If p = q, we may assume that L ≤ P , where P is a
Sylow p-subgroup of N . If L ≤ P = Q and hence every maximal subgroup
of P/L is of the form P1/L with P1 a maximal subgroup of P . If P1/L has
no c-supplement in G/L , then P1 has no c-supplement in G, by hypotheses,
P1 is M-supplemented in G and hence P1/L is M-supplemented in G/L by
Lemma 2.1 and Lemma 2.2. Now we assume that p 6= q. Let Q1 be a maximal
subgroup of a Sylow q-subgroup of N . Without loss of generality, we may
assume that Q1 = Q1L/L with Q1 a maximal subgroup of a Sylow q-subgroup
of N . Clearly, if Q1L/L has no c-supplement in G/L , then Q1L/L is M-
supplemented in G/L by Lemma 2.1 and 2.2. So G/L satisfies the hypotheses
of the theorem. The minimal choice of G implies that G/L is supersolvable.
Since the class of all supersolvable groups is a saturated formation, we know
that L is the unique minimal normal subgroup of G which is contained in N and
L � 8(G). By Lemma 2.5 we have F(N ) = L . The solvability of N implies
that L ≤ CN (L) = CN (F(N )) ≤ F(N ) and so CN (L) = L = F(N ).

(3) L is a Sylow subgroup of N .

Let q be the largest prime divisor of | N | and Q a Sylow q-subgroup of N .
Since G/L is supersolvable, we have N/L is supersolvable. Consequently,
L Q/L char N/L E G/L and hence L Q E G. If p = q, then L ≤ Q E G.
Therefore Q ≤ F(N ) = L and L is a Sylow q-subgroup of N , a contradiction.

Now we assume that p < q. Let P be a Sylow p-subgroup of N . Clearly,
P is not cyclic. Otherwise, G/L ∈ U implies that G ∈ U. Then L ≤ P and
P Q = P L Q is a subgroup of N . Note that every maximal subgroup of non-
cyclic Sylow subgroup of P Q having no c-supplement in P Q, is M-supple-
mented in P Q by Lemma 2.1 and Lemma 2.2. Therefore P Q satisfies the
hypotheses for G. If P Q < G, the minimal choice of G implies that P Q
is supersolvable; in particular, Q E P Q. Hence L Q = L × Q and Q ≤
CN (L) ≤ L , a contradiction.

Now we may assume that G = P Q = N and L < P . Since G/L is su-
persolvable, L Q E G. By the Frattini argument, G = L NG(Q). Note that
L ∩ NG(Q) is normalized by NG(Q) and L . We have that L ∩ NG(Q) = 1
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“main” — 2009/10/22 — 15:31 — page 503 — #9

THE INFLUENCE OF M-SUPPLEMENTED SUBGROUPS 503

since L is the unique minimal normal subgroup of G and Q is not normal in
G in this case. Therefore G = [L]NG(Q). Let P2 be a Sylow p-subgroup of
NG(Q). Then L P2 is a Sylow p-subgroup of G. Choose a maximal subgroup
P1 of L P2 such that P2 ≤ P1. Clearly, L 
 P1 and hence (P1)G = 1. By our
hypotheses, if P1 is M-supplemented in G, that is, there exists a subgroup B
of G such that G = P1 B and T B < G for any maximal subgroup T of P1.
So we may assume P2 ≤ T for some maximal subgroup T of P1. Otherwise,
P2 = P1, then we have |L| = p and hence G/L is supersolvable implies that
G is supersolvable, a contradiction. By Lemma 2.3, |G : T B| = p and hence
T B E G by Lemma 2.6. Therefore L ≤ T B or L ∩ T B = 1. If L ∩ T B = 1,
then |G : T B| = |L| = p. In this case G/L is supersolvable implies that G is
supersolvable. So we may assume L ≤ T B. Since P2 ≤ T , we have L P2 ≤ T B,
contrary to |G : T B| = p. Now we may assume that P1 is c-supplemented
in G, that is, there exists a subgroup K of G such that G = P1 K and P1 ∩ K ≤
(P1)G = 1. Since |K p| = p, we have K is p-nilpotent by Burnside Theorem and
hence K has a normal Sylow q-subgroup Q1 which is also a Sylow q-subgroup
of G in this case. By Sylow’s theorem, there exists an element g ∈ L such that
Qg

1 = Q. Since P1 E L P2, we have that G = P1 K = (P1 K )g = P1 K g.
Since K g ∼= K has a normal Sylow q-subgroup and Q = Qg

1 ≤ K g, it
follows that K g ≤ NG(Q). Since L P2 = L P2 ∩ G = L P2 ∩ P1 K g =
P1(L P2 ∩ K g), we have that L P2 ∩ K g 
 P2. Otherwise L P2 ≤ P1 P2 = P1,
a contradiction. Therefore P2 is a proper subgroup of P3 = 〈P2, L P2 ∩ K g〉.
On the other hand, since both P2 and K g are contained in NG(Q), P3 is a p-
subgroup of NG(Q) which contains a Sylow subgroup P2 of NG(Q) as a proper
subgroup, a contradiction.

(4) G is supersolvable.

Let L1 be a maximal subgroup of L . If L1 is c-supplemented in G, then
|L| = p by Lemma 2.2(5) and G/L is supersolvable implies that G is super-
solvable. Hence L1 is M-supplemented in G, that is, there exists a subgroup B
of G such that L1 B = G and T B < G for every maximal subgroup T of L1.
By Lemma 2.4, we know that |L| = p. Consequently, G/L is supersolvable
implies that G is supersolvable.

The final contradiction completes our proof.

Corollary 3.2. Let G be a group. If every maximal subgroups of noncyclic
Sylow subgroup of G having no c-supplement in G, is M-supplemented in G,
then G is supersolvable.
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Corollary 3.3. Let F be a saturated formation containing U. Suppose that
G is a finite group with a normal subgroup N such that G/N ∈ F . If every
maximal subgroups of noncyclic Sylow subgroup of N having no c-supplement
in G, is M-supplemented in G, then G ∈ F .

Corollary 3.4. LetF be a saturated formation containingU. Suppose that G is
a finite group with a normal subgroup N such that G/N ∈ F . If every nonnormal
maximal subgroups of noncyclic Sylow subgroup of N , is M-supplemented in
G, then G ∈ F .

Theorem 3.5. Let F be a saturated formation containing all supersolvable
groups and G be a group with a normal subgroup N such that G/N ∈ F .
If every maximal subgroup of noncyclic Sylow subgroup of F∗(N ) having no
c-supplement in G, is M-supplemented in G. Then G ∈ F .

Proof. Assume that the assertion is false and choose G to be a counterexample
of minimal order. Next we consider the following two cases.

Case 1. F = U.

1) N = G, F∗(G) = F(G) 6= 1.

By Theorem 3.1, F∗(N ) is supersolvable. In particular, F∗(N ) is solvable
and hence F∗(N ) = F(N ) 6= 1 by Lemma 2.11. Since N satisfies the hypothe-
ses of the theorem, the minimal choice of G implies that N is supersolvable if
N < G. Next we will prove that G is supersolvable in the case of H is solvable
and divide into the following steps.

(1.1) 8(G) ∩ N 6= 1.

If 8(G) ∩ N 6= 1, there exists a prime p such that p||8(G) ∩ N |. Let L ∈
Sylp(8(G) ∩ N ). Then L E G and (G/L)/(N/L) ∈ U. By [5, P240 Satz 3.5]
we have that F(N/L) = F(N )/L . Let P1/L be a maximal subgroup of
the Sylow p-subgroup of F(N )/L . Then P1 is a maximal subgroup of the
Sylow p-subgroup of F(N ). If P1/L has no c-supplement in G/L , then P1

has no c-supplement in G, by hypotheses P1 is M-supplemented in G and
hence P1/L is M-supplemented in G/L by Lemma 2.1 and 2.2. Let Q/P
be a maximal subgroup of the Sylow q-subgroup of F(N )/L , where q 6= p.
It is clear that Q = Q1 P , where Q1 is a maximal subgroup of the Sylow
q-subgroup of F(N ). With the similar discussion, if Q1L/L has no c-sup-
plement in G/L , then Q1L/L is M-supplemented in G/L by Lemma 2.1 and
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Lemma 2.2. Hence, we have proved that G/L satisfies the hypotheses of the
theorem. So G/L is supersolvable by the minimal choice of G. Since P ≤
8(G) and U is a saturated formation, we have G ∈ U, a contradiction.

(1.2) 8(G) ∩ N = 1.

If N = 1, nothing need to prove, so we may assume that N 6= 1, the solv-
ability of N implies that F(N ) 6= 1. By Lemma 2.5, F(N ) is the direct product
of minimal normal subgroups of G contained in N . For any maximal sub-
group M of G, if F(N ) ≤ M , then G ∈ U by Lemma 2.12, a contradic-
tion. So we may assume that there at least exists a maximal subgroup M of
G not containing F(N ). Actually, since F(N ) � M , there at least exists a
prime p of π(| N |) with Op(H) � M . Then G = Op(H)M as Op(H) E G.
If |Op(H)| = p, then | G : M | = p and hence G ∈ F by Lemma 2.12. If
|Op(H)| > p and Op(H) is cyclic, then we have 8(Op(H)) 6= 1. Clearly,
G/8(Op(H)) satisfies the condition of the theorem, the minimal choice of G
implies that G/8(Op(H)) is supersolvable and hence G is supersolvable since
G is a saturated formation, a contradiction.

Denote P = Op(H). Then P is the direct product of some minimal normal
subgroup of G. So we may assume that P = R1 × . . . × Rt , where Ri is a
minimal normal subgroup of G, i = 1.2 . . . t . If every Ri (i = 1.2 . . . t) is of
prime order, there exist at least a minimal normal subgroup R j of G contained
in Op(H) such that R j � M . Since G = R j M and |R j | = p, we get that M
have a prime index in G and hence G ∈ F by Lemma 2.12, a contradiction.

Hence, we assume that there exist at least a minimal normal Ri of G contained
in N which is not of prime order. Without loss of generality, suppose that i = 1.

Since R1 6≤ 8(G), there exists a maximal subgroup H of G such that G =
R1 H and R1 ∩ H = 1. Then G p = R1 Hp where Hp is the Sylow p-subgroup
of H . Pick a maximal subgroup G∗

p of G p containing Hp. Then |R1 : G∗
p ∩

R1| = |R1G∗
p : G∗

p| = |G p : G∗
p| = p. Hence R∗

1 = G∗
p ∩ R1 is a maximal

subgroup of R1. This implies that P1 = R∗
1 R2 ∙ ∙ ∙ Rt is a maximal subgroup of

P . By hypotheses, if P1 has a c-supplement in G, then there exists a subgroup
K such that G = P1 K and P1 ∩ K = (P1)G by Lemma 2.2(4). Evidently
(P1)G = R2 × ∙ ∙ ∙ × Rt . So G = P1 K = R∗

1(P1)G K = R∗
1 K , moreover

R∗
1 ∩ K = 1 ≤ (R∗

1)G . Hence R∗
1 is c-supplemented in G by the definition

of c-supplemented subgroup. By Lemma 2.2(5), R1 is a cyclic group of prime
order, a contradiction.

So we may assume that P1 is M-supplemented in G, that is, there exists a
subgroup B of G such that G = P1 B and T B < G for any maximal subgroup

Bull Braz Math Soc, Vol. 40, N. 4, 2009



“main” — 2009/10/22 — 15:31 — page 506 — #12

506 LONG MIAO

T of P1. By Lemma 2.3, |G : T B| = p and hence T B is the maximal subgroup
of G. Therefore R1 ≤ T B or R1 ∩ T B = 1. If R1 ≤ T B, then T B = G, a
contradiction. If R1 ∩ T B = 1, then |G : T B| = |R1| = p, a contradiction.

2) Every proper normal subgroup H of G containing F∗(G) is super-
solvable.

By Lemma 2.11, F∗(G) = F∗(F∗(G)) ≤ F∗(H) ≤ F∗(G), so F∗(H) =
F∗(G). And if every maximal subgroup of noncyclic Sylow subgroups of
F∗(H) has no c-supplement in H , then has no c-supplement in G, by hypothe-
ses, isM-supplemented in G and hence isM-supplemented in H by Lemma 2.1
and Lemma 2.2. Hence H is supersolvable by the minimal choice of G.

3) 8(G) < F(G).

If every Sylow subgroup of F(G) is cyclic, then we denote that F(G) =
H1 × ∙ ∙ ∙ Hr where Hi (i = 1, . . . , r) is the cyclic Sylow of F(G) and hence
G/CG(Hi ) is abelian for any i ∈ {1 ∙ ∙ ∙ r}. Moreover, we have

G
⋂r

i=1 CG(Hi )
=

G

CG(F(G))

is abelian and hence G/F(G) is abelian since CG(F(G)) = CG(F∗(G)) ≤
F(G). Therefore G is solvable, a contradiction. Let P be a noncyclic Sylow
subgroup of F(G) and P1 be a maximal subgroup of P . If P1 is M-supple-
mented in G by hypotheses. Then there exists a subgroup B in G such that
G = P1 B and T B < G for every maximal subgroup T of P1. If F(G) = 8(G),
then G = P1 B = B, a contradiction. So we may assume that every maximal
subgroup P1 of P has a c-supplement in G, then there exists a subgroup K of
G such that G = P1 K and P1 ∩ K = (P1)G . If 8(G) = F(G), then G = K
and hence P1 is normal in G. Therefore G is supersolvable by Lemma 2.13,
a contradiction.

4) G = Op(G)M where M is a maximal subgroup of G.

Since 8(G) < F(G), for any Sylow subgroup Op(G) of F(G) such that
Op(G) � 8(G), there exists the maximal subgroup M of G such that Op(G) �
M and G = Op(G)M .

5) |Op(G)| = p.
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If |Op(G)| = p, then set C = CG(Op(G)). Clearly, F(G) ≤ C E G.
If C < G, then C is solvable by 2). On the other hand, since G/C is cyclic,
we have G is solvable and hence G is supersolvable 1), a contradiction. So we
may assume C = G. Now we have Op(G) ≤ Z(G). Then we consider factor
group G/Op(G). By Lemma 2.11, we have F∗(G/Op(G)) = F∗(G)/Op(G) =
F(G)/Op(G). In fact, every maximal subgroup of noncyclic Sylow subgroup
of F∗(G/Op(G)) having no c-supplement in G/Op(G), is M-supplemented in
G/Op(G) by Lemma 2.1 and Lemma 2.2. Therefore the minimal choice of G
implies that G/Op(G) ∈ U and hence G is supersolvable, a contradiction.

6) |Op(G)| > p.

So we may assume that |Op(G)| > p. If 8(Op(G)) 6= 1, then we easy to
know that factor group G/8(Op(G)) satisfies the condition of the theorem.
The minimal choice of G implies that G/8(Op(G)) is supersolvable and hence
G is supersolvable since the class of all supersolvable groups is a saturated
formation, a contradiction. Therefore, 8(Op(G)) = 1 and Op(G) is an elemen-
tary abelian p-group. Let P1 be a maximal subgroup of Op(G).

If P1 is M-supplemented in G, then there exists a subgroup B of G such that
G = P1 B and T B < G for every maximal subgroup T of P1. By Lemma 2.3,
|G : T B| = p and P1 ∩ B = T ∩ B for every maximal subgroup T of P1.
Therefore we have

P1 ∩ B =
⋂

T <∙P1

(T ∩ B) = 8(P1) ∩ B.

On the other hand P1 E Op(G) and hence 8(P1) ≤ 8(Op(G)) = 1. So we
have P1 ∩ B = 8(P1) ∩ B = 1. Therefore, if the maximal subgroup P1 of
the Sylow subgroup of F∗(G) is M-supplemented in G, we have that P1 is
complemented in G and hence c-supplemented in G. By hypotheses and 3), we
have every maximal subgroup of noncyclic Sylow subgroup is c-supplemented
in G and hence G is supersolvable by Lemma 2.13, a contradiction.

Case 2. F 6= U.

By case 1, H is supersolvable. Particularly, H is solvable and hence F∗(H) =
F(H). Therefore G ∈ F by case 1.

The final contradiction completes our proof.

Corollary 3.6. Let F be a saturated formation containing U. Suppose that
G is a finite group with a normal subgroup H such that G/H ∈ F . If every
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maximal subgroup of noncyclic Sylow subgroup of F∗(H) is M-supplemented
in G, then G ∈ F .

Corollary 3.7. Let F be a saturated formation containing U. Suppose that
G is a finite group with a normal subgroup H such that G/H ∈ F . If every
maximal subgroup of noncyclic Sylow subgroup of F∗(H) has c-supplement in
G, then G ∈ F .

Corollary 3.8. Let F be a saturated formation containing all supersolvable
groups and H be a solvable normal subgroup of G such that G/H ∈ F . If every
maximal subgroup of noncyclic Sylow subgroup of F(H) having no c-supplement
in G is M-supplemented in G, then G ∈ F .

Corollary 3.9. Let F be a saturated formation containing U. Suppose that G
is a finite group with a solvable normal subgroup H such that G/H ∈ F . If every
maximal subgroup of noncyclic Sylow subgroup of F(H) isM-supplemented in
G, then G ∈ F .

Corollary 3.10. Let F be a saturated formation containing U. Suppose that
G is a finite group with a solvable normal subgroup H such that G/H ∈ F .
If every maximal subgroup of noncyclic Sylow subgroup of F(H) has c-supple-
ment in G, then G ∈ F .
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