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Families of periodic orbits in resonant
reversible systems
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Abstract. We study the dynamics near an equilibrium point p0 of a Z2(R)-reversible
vector field in R2n with reversing symmetry R satisfying R2 = I and dim Fix(R) = n.
We deal with one-parameter families of such systems Xλ such that X0 presents at p0

a degenerate resonance of type 0 : p : q. We are assuming that the linearized system
of X0 (at p0) has as eigenvalues: λ1 = 0 and λ j = ±iα j , j = 2, . . . n. Our main
concern is to find conditions for the existence of one-parameter families of periodic
orbits near the equilibrium.
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1 Introduction

In this paper we deal with C∞ reversible vector fields on R2n . These objects are
assumed to have an equilibrium at 0 and the linearized systems (at 0) have as
eigenvalues: λ1 = 0 and λ j = ±iα j , j = 2, . . . , n. The latter assumption is
not generic in the class of all reversible vector fields.

One of characteristic properties of reversible systems is that generically (sym-
metric) periodic orbits or invariant tori or minimal sets of such systems typically
appear in one-parameter families. So a number of natural questions can be
formulated, such as:

(i) how do branches of such minimal sets terminate or originate?

(ii) can one branch of minimal sets bifurcate from another such branch?
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(iii) how persistent is such branching process when the original system is
slightly perturbed?

In this work we present some results in this direction, mainly extending and
generalizing some issues got from [2], [5], [7], [12] and [14]. Recently, there
has been a surging interest in the study of systems with time-reversal symmetries
and we refer [8] for a survey in reversible systems and related problems.

We present some relevant historical facts. In 1895 Lyapunov published his
celebrated center theorem, see Abraham and Marsden [1] p. 498. This theorem,
for analytic Hamiltonians with n degrees of freedom, states that if the eigen-
frequencies of the linearized Hamiltonian are independent over Z, near a stable
equilibrium point, then there exists n families of periodic solutions filling up
smooth 2-dimensional manifolds going through the equilibrium point. This re-
sult was generalized by Weinstein [15] and Moser [10]. Weinstein considered
the case where the Hamiltonian has positive definite Hessian at the equilibrium,
and Moser, using Lyapunov-Schmidt reduction, extended the Weinstein’s theo-
rem for systems having an integral, not necessarily Hamiltonian. Devaney [2]
proved a time-reversible version of the Lyapunov center theorem. Recently
this center theorem has been generalized to equivariant systems, by Golubit-
sky, Krupa and Lim [3] in the time-reversible case, and by Montaldi, Roberts
and Stewart [9] in the Hamiltonian case. We recall that in [3] the Devaney’s
theorem was extended and some extra symmetries were considered. Contrast-
ing Devaney’s geometrical approach, they used Lyapunov-Schmidt reduction,
adapting an alternative proof of the reversible Lyapunov center theorem given
by Vanderbauwhede [13]. In [9] the existence of families of periodic orbits
around an elliptic semi-simple equilibrium is analyzed. Systems with sym-
metry, including time-reversal symmetry, which is anti-symplectic are studied.
Their approach is a continuation of the work of Vanderbauwhede, in [13], where
the families of periodic solutions correspond bijectively to solutions of a varia-
tional problem.

In this paper we study a codimension-one reversible bifurcation. Such bi-
furcation is characterized by the appearance of a zero eigenvalue at the linear
part of the system at an equilibrium. We study the existence of families of
periodic solutions near an equilibrium whose eigenvalues are near a 0 : p : q
resonance. Most of our technical analysis are based on a combined use of
normal form theory and the Lyapunov-Schmidt Reduction (shortly denoted by
LSR). The system is first subjected to the normalization procedure and the Beli-
tiskii normal form (shortly denoted by BNF) plays a crucial role in our context.
We focus on the 6-dimensional case.
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We say that a vector field X is reversible if there exists a linear involution
R ∈ L(R2n) satisfying RX = −X R. We are assuming dim(Fix(R)) = n. An
orbit solution γ of X is called symmetric if Rγ = γ .

So we also consider reversible systems of the form ẋ = X (x, λ) with
X (Rx, λ) = −R X (x, λ) again with x ∈ R2n and λ ∈ Rk and with X (x, λ)
a smooth parameter-dependent vector field.

Now we introduce some of the terminology and basic concepts for the formu-
lation of our results.

We start by fixing, throughout the paper, the linear part of the vector field X .

A = DX (0) =














0 1
0 0

0 −α1

α1 0
. . .

0 −αn−1

αn−1 0














.

So the eigenvalues of A are λ1 = 0 and λ j = ±iα j , j = 2, . . . , n.
We also fix the involution R as being

R
(
x1, x2, . . . , x2n

)
=

(
x1,−x2, . . . , x2n−1,−x2n

)
.

Fixed A one of the main questions one wants to answer is under which condi-
tions, periodic solutions survive when we turn on the nonlinearities and change
parameters.

Recall that the linear vector field B = AT is also R-reversible. Some meth-
ods employed in this work can be applied on reversible perturbations of B and
probably similar results can be achieved. This paper does not touch this case.

Definition 1. We say that the set of eigenvalues {±α j , j = 2, . . . , n} satisfies
the non-resonance condition if they are rationally independent. That is:

n∑

j=2

k jα j = 0, k j ∈ Z ⇒ k j = 0, j = 2, . . . , n.

Definition 2. The vector field X , with X (0) = 0 is 0-non-resonant if the set
{±α j , j = 2, . . . , n} satisfies the non-resonance condition.
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Definition 3. We say that X is (0 : p : q)-resonant at 0 if there is a unique pair
of indices l and k such that ±iαl, ±iαk are in p : q-resonance, (that means that
qαl − pαk = 0, with p, q ∈ Z+) and the others nonzero eigenvalues satisfy the
non-resonance condition.

The most results contained in this paper can be illustrated by the following
model: 





ẋ1 = x2

ẋ2 = a1x2
1 + a2

(
x2

3 + x2
4

)
+ a3

(
x2

5 + x2
6

)

ẋ3 = −αx4 − b1x1x4

ẋ4 = αx3 + b1x1x3

ẋ5 = −βx6 − b2x1x6

ẋ6 = βx5 + b2x1x5

where a1, a2, a3, b1, b2 ∈ R. Examples are given in subsection 3.2.

Denote by χ2n
0 (resp. χ2n(λ)) the space of all jets of R-reversible vector fields

X at 0 such that DX (0) = A (resp. space of one parameter families of R-
reversible vector fields Xλ at (0, 0) such that X (x, 0) ∈ χ2n

0 and DX (0, 0) = A)
endowed with the C∞ topology. Moreover we assume that the elements in χ2n

0
are at 0 either 0-non-resonant or 0 : p : q-resonant with p + q > 2.

Summarizing, in what follows we give a rough overall description of the main
results of the paper.

• (0-non-resonant normal form): The normal form X̃ of X is exhibited
for the 0-non-resonant case (Theorem A). The dynamics of any polyno-
mial truncation of order k (or simply k-truncated vector field) X̃k of X̃ can
be completely understood (Proposition A).

• (Version of the Lyapunov Center Theorem): Sufficient conditions for
the existence of families of periodic solutions of X ∈ χ2n(λ) are presented
(Theorems B and B∗). We focus on those systems that present 0 : p : q-
resonances with p + q > 2. The main discussion in this setting raises
the question whether there is persistence, or birth or else disappearance of
families of periodic solutions (terminating at the origin) when λ crosses
the value 0. The answer to this question depends mainly on some second
order coefficients in the normal form of the vector field.

Mention that the 0 : 1 : 1-resonant case was discussed in [6].
The paper is organized as follows. In Section 2 the main results of the pa-

per are stated. A BNF approach and the proof of Theorem A are in Section 3.
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In Section 4, the LSR adapted to our systems is presented and Theorems B and
B∗ are proved.

The authors want to thank the referee for many helpful comments and
suggestions.

2 Statement of Main Results

Theorem A. Let X be in χ2n
0 . Assume that X is 0-non-resonant at 0 ∈ R2n.

Then X is formally conjugated to






ẋ1 = x2

ẋ2 = ϕ2
(
x1, |z1|2, . . . , |zn−1|2

)

ż1 = i z1ϕ3
(
x1, |z1|2, . . . , |zn−1|2

)

˙̄z1 = −i z̄1ϕ3
(
x1, |z1|2, . . . , |zn−1|2

)

...

żn−1 = i zn−1ϕn+1
(
x1, |z1|2, . . . , |zn−1|2

)

˙̄zn−1 = −i z̄n−1ϕn+1
(
x1, |z1|2, . . . , |zn−1|2

)

where z j = x2 j+1 + i x2 j+2 and ϕ j are real functions.

Remark 2.0. From Theorem A we may find a coordinate system such that
any X ∈ χ2n

0 is expressed by

X (x) = Ax + Q(x)+ H(x)

where

Q(x) =
(

0, a1x2
1 +

n−2∑

j=2

a j
(
x2

j+1 + x2
j+2

)
,−b1x1x4, b1x1x3, . . .

. . . ,−bn−1x1x2n−1, bn−1x1x2n

) (1)

and H(x) = O(|x |3). It is worth mentioning that the expression still holds
for the 0 : p : q resonances with p + q > 3 and n = 3 (see Proposition 3.2).

Let X ∈ χ2n
0 and X̃ its normal form as presented in Theorem A. For each

k, k ≥ 2, X̃k represents the k-truncated vector field of X̃ . Regarding the
expression given in Theorem A in cylindrical coordinates, the proof of the next
result is straightforward.
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Proposition A: Assume X ∈ χ2n
0 satisfying the hypothesis of Theorem A.

Then:

(I) The system X̃k possesses n independent first integrals for each k;

(II) There exist an open set U0 in χ2n
0 characterized by U0 =

{
X ∈ χ2n

0 ;
a1 ∙ a j < 0, j = 2, . . . , n − 2 and bi 6= 0, i = 1, . . . , n − 1

}
in (1) such

that any X ∈ U0 satisfies:

– There exist two (n − 1)-parameter families of (n − 1)-tori, T n−1
μ and

Sn−1
μ , both terminating at the origin;

– There is a one-parameter family of topological n-tori , T n
μ contain-

ing T n−1
μ and terminating at the origin;

– There is a two-parameter family of n-tori, T n
μ,ν , terminating at the

origin when μ → 0, and for each μ0, the family originates at
T n
μ0

and terminates at Sn−1
μ0

, when ν goes to ±∞;

(III) There is an integer s < n, depending on Q(x) (given above) such that X̃k

has: (a) 2s one-parameter families of periodic orbits terminating at the
origin (with bounded periods) γ i

μ and δi
μ; (b) s one-parameter families of

homoclinic orbits T i
μ terminating at origin; (c) s two-parameter families

of 2-tori, T i
μ,ν , terminating at the origin when μ → 0, and for each μ0,

the family originates at T i
μ0

and terminates at δi
μ0
, i = 1, 2, . . . , s when

ν goes to ±∞.

Letχ6
2 be the set contained inχ6

0 constituted by the elements X ∈ χ6
0 presenting

at the origin either a 0-non-ressonance or a 0 : p : q-resonance with p, q > 1.

Theorem B: There exists an open subset U =
{
(U1 ∪ U2) × (−δ,+δ)

}
of

χ6
2 (λ) such that:

(I) U1 ∪U2 ⊆ χ6
2 is characterized byU1 =

{
X ∈ χ6

2 ; a1 ∙a2 < 0, a1 ∙a3 < 0
and bi 6= 0

}
and U2 =

{
X ∈ χ6

2 ; a1 ∙ a2 > 0, a1 ∙ a3 > 0 and bi 6= 0
}

with a′
i s and b′

i s described in (1);

(II) If X (x, 0) ∈ U1 then:

– For λ = 0 there are f our families of periodic orbits terminating
at 0;

– For λ < 0 (resp. λ > 0) there are two symmetric equilibria (a
saddle-center and a elliptic point) and two families of periodic or-
bits converging to each one of these points, provided that a1 < 0
(resp. a1 > 0);

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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– For λ > 0 (resp. λ < 0) there are no equilibria and just two
families of periodic orbits walking around the origin, provided that
a1 < 0 (resp. a1 > 0).

(III) If X (x, 0) ∈ U2 then at λ = 0 occurs a subcritical Hopf bifurcation.
So at λ = 0 there is no periodic orbit nearby the origin and for λ < 0
there are two families of periodic orbits, each one terminating at each
equilibrium point that is an elliptic or a saddle-center singularity.

Let χ6
2 ∗ be the set contained in χ6

0 constituted by the elements X presenting
at the origin a 0 : 1 : 2-resonance.

λ < 0

qλ

pλ

λ = 0

p0

λ > 0

Figure 1: Bifurcation diagram illustrating case II, a1 < 0, of Theorem B: the
curves represent Lyapunov-centre families and the points are equilibria.

λ < 0

qλ

pλ

λ = 0

p0

Figure 2: Bifurcation diagram illustrating case III of Theorem B: the curves
represent Lyapunov-centre families and the points are equilibria.

λ = 0

p0

λ > 0

qλpλ

b1(0) < 0
λ < 0

qλpλ

b1(0) > 0

Figure 3: Bifurcation diagram illustrating case II of Theorem B∗: the curves
represent Lyapunov-centre families and the points are equilibria.
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Remark 2.1. When X ∈ χ6
0 presents at the equilibria a 0 : 1 : 2 resonance then

as before we may write (see Proposition 3.2) X (x) = Ax + S(x)+ H̃(x) where

S(x) =
(

0, a1x2
1 + a2(x

2
3 + x4

3)+ a3(x
2
5 + x2

6 ),−b1x1x4 − c1(x3x6 − x4x5),

b1x1x3 + c1(x3x5 + x4x6),−b2x1x6 − 2c2x3x4, b2x1x5 + c2(x
2
3 − x2

4 )
) (2)

and H̃(x) = O(|x |3). This expression will be used in the statement of the
next result.

Theorem B∗. There exists a set V =
{
(V1 ∪V2) × (−δ, δ)

}
in χ6

2 ∗ (λ)
such that:

(I) {V1 ∪V2} ⊂ χ6
2 ∗ and V1 and V2 are characterized by V1 =

{
X ∈ χ6

2 ∗;
a1 ∙ a3 < 0 and b2 6= 0

}
and V2 =

{
X ∈ χ6

2 ∗; a1 ∙ a3 > 0 and b2 6= 0
}

with a′
i s and b′

i s described in Remark 2.1.
(II) if X (x, 0) ∈ V1 then: for λ = 0 there are two families of symmetric

periodic orbits with period near 2π converging to the equilibrium. More-
over these families are persistent for λ 6= 0. In this case, there are two
equilibria near the origin for λ > 0 (resp. λ < 0) if b1(0) < 0 (resp. if
b1(0) > 0). Moreover each family converges to a different equilibrium.

(III) If X (x, 0) ∈ V2 then at λ = 0 we get a Hopf bifurcation that is subcritical
if b1(0) > 0 and supercritical if b1(0) < 0. We find two families of
symmetric periodic orbits each one converging to a different equilibrium
point.

3 BNF and Proof of Theorem A

We say that X (x) = Ax + h(x) in χ2n
0 is in BNF if the non linear term h(x)

satisfies A∗h(x) = Dh(x)A∗x where A∗ is the adjoint matrix of A.
Observe that the homological equation associated to the BNF is L A∗ :=

A∗h(x)− Dh(x)A∗x .

3.1 Proof of Theorem A.

First of all consider our system written in complex coordinates. So:

A =













0 1
0 0

iα1
−iα1

. . .

iαn−1
−iαn−1













.
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As h(x) = (h1(x), . . . , h2n(x)) must satisfy A∗h(x) = Dh(x)A∗x , with
x = (x1, x2, z1, z̄1, . . . , zn−1, z̄n−1), then Dh1(x) = 0, Dh2(x) = h1,
Dh3(x) = −iα1h3, Dh4(x) = iα1h4, . . . , Dh2n−1(x) = −iαn−1h2n−1 and
Dh2n = iαn−1h2n , where

D := x1
∂

∂x2
−iα1z1

∂

∂z1
+iα1 z̄1

∂

∂ z̄1
−∙ ∙ ∙−iαn−1zn−1

∂

∂zn−1
+iαn−1 z̄n−1

∂

∂ z̄n−1
.

Hence Dh1(x) = 0 ⇒ h1(x) = ϕ1(x1, |z1|2, . . . , |zn−1|2) provided the
non-resonance conditions are satisfied.

The reversibility of the system gives us that

h1
(
x1, |z1|

2, . . . , |zn−1|
2
)

= −h1
(
x1, |z1|

2, . . . , |zn−1|
2
)
.

Moreover the relations Dh2 = h1 = 0 imply that

h2 = ϕ2
(
x1, |z1|

2, . . . , |zn−1|
2
)
.

Consider now g2 j+1 = z̄ j h2 j+1, j = 1, . . . , n − 1. We derive that:

i) Dg2 j+1 = 0 ⇒ g2 j+1 = g2 j+1
(
x1, |z1|2, . . . , |zn−1|2

)
;

ii) as g2 j+1 = 0 on z j = 0, j = 1, . . . , n − 1 we have

g2 j+1 = |z j |
2ϕ̃2 j+1

(
x1, |z1|

2, . . . , |zn−1|
2
)

and so
h2 j+1 = z j ϕ̃2 j+1

(
x1, |z1|

2, . . . , |zn−1|
2
)
;

iv) In the same way we get the equality

h2 j+2 = z̄ j ϕ̃2 j+2
(
x1, |z1|

2, . . . , |zn−1|
2
)
;

v) The expression ˉ̃ϕ2 j+2 = ϕ̃2 j+1 plus the reversibility condition imply that
ϕ̃2 j+1 = −ϕ̃2 j+2. And so ϕ̃2 j+1 = iϕ2 j+1, with ϕ2 j+1 ∈ R;

vi) Hence

h2 j+1 = i z jϕ2 j+1
(
x1, |z1|

2, . . . , |zn−1|
2
)

and

h2 j+2 = − i z̄ jϕ2 j+2
(
x1, |z1|

2, . . . , |zn−1|
2
)

where j = 1, . . . , n − 1.
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In this way we get the R-reversible normal form of our system:






ẋ1 = x2

ẋ2 = ϕ2
(
x1, |z1|2, . . . , |zn−1|2

)

ż1 = i z1ϕ3
(
x1, |z1|2, . . . , |zn−1|2

)

˙̄z1 = −i z̄1ϕ3
(
x1, |z1|2, . . . , |zn−1|2

)

...

żn−1 = i zn−1ϕn+1
(
x1, |z1|2, . . . , |zn−1|2

)

˙̄zn−1 = −i z̄n−1ϕn+1
(
x1, |z1|2, . . . , |zn−1|2

)
.

�

Remark 3.0. The BNF (*) in coordinates (x1, . . . , x2n) is written as:






ẋ1 = x2

ẋ2 = ϕ2
(
x1, x2

3 + x2
4 , . . . , x2

2n−1 + x2
2n

)

ẋ3 = −x4ϕ3
(
x1, x2

3 + x2
4 , . . . , x2

2n−1 + x2
2n

)

ẋ4 = x3ϕ3
(
x1, x2

3 + x2
4 , . . . , x2

2n−1 + x2
2n

)

...

˙x2n−1 = −x2nϕn+1
(
x1, x2

3 + x2
4 , . . . , x2

2n−1 + x2
2n

)

˙x2n = x2n−1ϕn+1
(
x1, x2

3 + x2
4 , . . . , x2

2n−1 + x2
2n

)
.

(3)

Proposition 3.1. Let X, Y ∈ χ6
0 presenting at the origin a 0-non-resonance

and 0 : p : q-resonance with p + q > 3 respectively. Then the 2-jets of X and
Y at 0 have similar BNF.

Proof. First of all observe that the operator D is the same as before. Let us
solve Dh1 = 0 (∗∗).

The monomial v = xk1
1 zk2 z̄k3ωk4ω̄k5 is a solution of (**) if and only if,

(k2 − k3)α + (k4 − k6)β = 0 ⇒
{

k2 = k3 + kq
k5 = k4 + kp

.

Hence

v = xk1
1 zk3+kq z̄k3ωk4ω̄k4+kp = xk1

1 (zz̄)k3(ωω̄)k4(zq ω̄p)k .
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That means h1 = h1(x1, |z|2, |ω|2, zq ω̄p).
In this way O(2, h1) = h1(x1, |z|2, |ω|2).
The reversibility condition on X implies that O(2, h1) = 0.
The condition Dh2 = h1 implies that que Dh2 = 0 (for terms of order 2).

So h2 = h2(x1, |z|2, |ω|2, zqω̄p).
When we restrict to terms of order 2 we get O(2, h2) = h2(x1, |z|2, |ω|2)).
Arguing in the same way as in the proof of Theorem A we obtain h3, . . . , h6

and the desired proof now is straightforward. �

Proposition 3.2. Let X ∈ χ6
0 presenting at the origin a 0 : 1 : 2-resonance.

Then we can find a coordinate system where X can be written as:





ẋ1 = x2 + O(3)

ẋ2 = a1x2
1 + a2

(
x2

3 + x2
4

)
+ a3

(
x2

5 + x2
6

)
+ O(3)

ẋ3 = −x4 − b1x1x4 − c1
(
x3x6 − x4x5

)
+ O(3)

ẋ4 = x3 + b1x1x3 + c1
(
x3x5 + x4x6

)
+ O(3)

ẋ5 = −2x6 − b2x1x6 − 2c2x3x4 + O(3)

ẋ6 = 2x5 + b2x1x5 + c2
(
x2

3 − x2
4

)
+ O(3).

Proof. First of all consider coordinates (x1, x2, z1, z2) with z1 = x3 + i x4,

z2 = x5 + i x6. The linear part of the system is then:

A =











0 1
0 0

i
−i

2i
−2i











.

Let ẋ = Ax + h(2)(x) + O(3). The condition A∗h(2)(x) = Dh(2)(x)A∗x ,
with x = (x1, x2, z1, z̄1, z2, z̄2), implies that Dh(2)1 (x) = 0, Dh(2)2 (x) = h(2)1 ,
Dh(2)3 (x) = −ih(2)3 , Dh(2)4 (x) = ih(2)4 , Dh(2)5 (x) = −2ih(2)5 and Dh(2)6 (x) =
2ih(2)6 where

h(2)(x) =
(
h(2)1 , h(2)2 , h(2)3 , h(2)4 , h(2)5 , h(2)6

)

and

D := x1
∂

∂x2
− i z1

∂

∂z1
+ i z̄1

∂

∂ z̄1
− 2i z2

∂

∂z2
+ 2i z̄2

∂

∂ z̄2
.
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We look now for those monomials u = xk1
1 zk2

1 z̄k3
1 zk4

2 z̄k5
2 that are in normal

form up to degree 2. Observe that we are assuming that |k| =
∑5

j=1 k j = 2
with k = (k1, k2, k3, k4, k5).

Analysis of h(2)1 .

Du = 0 ⇒ (−ik2 + ik3 − 2ik4 + 2ik5)u = 0 ⇒ (k2 − k3)+ 2(k4 − k5) = 0.

The elements k that satisfy the cited condition plus |k| = 2 are:

(0, 1, 1, 0, 0); (0, 0, 0, 1, 1); (2, 0, 0, 0, 0).

In fact they are: |z1|2; |z2|2; x2
1 .

So Dh(2)1 = 0 implies that h(2)1 = h(2)1 (x1, |z1|2, |z2|2).
The R-reversibility condition implies that h(2)1 ≡ 0.
Hence

Dh(2)2 = h(2)1 = 0 ⇒ h(2)2 = ϕ
(
x1, |z1|

2, |z2|
2
)

= a1x2
2 + a2|z1|

2 + a3|z2|
2.

Analysis of h(2)3 .

Du = −iu ⇒ (k2 − k3 − 1)+ 2(k4 − k5) = 0.

The elements that satisfy the above condition with |k| = 2 are (1, 1, 0, 0, 0)
and (0, 0, 1, 1, 0) that represent the monomials x1z1 and z̄1z2 respectively.

So h(2)3 = b̃1x1z1 + c̃1 z̄1z2.
Similarly we obtain h(2)4 = ẽ1x1 z̄1 + d̃1z1 z̄2.

Now we already know that h̄3 = h4. This implies that ˉ̃b1 = ẽ1 and ˉ̃c1 = d̃1.
The R-reversibility of the system implies that ẽ1 = −b̃1 and d̃1 = −c̃1.

So it follows that

{
b̃1 = ib1

c̃1 = ic1
, b1, c1 ∈ R.

Hence h(2)3 = i[b1x1 + c1 z̄1z2] and h(2)4 = −i[b1x1z1 + c1z1 z̄2]

Similar computations allow us to analyze the terms h(2)5 and h(2)6 and finally
obtain: 





ẋ1 = x2 + o(3)

ẋ2 = a1x2
1 + a2|z1|2 + a3|z2|2 + o(3)

ż1 = i z1 + i
[
b1x1z1 + ca z̄1z2

]
+ o(3)

ż2 = 2i z2 + i
[
c2z2

1 + b2x1z2
]
+ o(3)
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or in real coordinates (x1, x2, x3, x4, x5, x6):





ẋ1 = x2 + O(3)

ẋ2 = a1x2
1 + a2

(
x2

3 + x2
4

)
+ a3

(
x2

5 + x2
6

)
+ O(3)

ẋ3 = −x4 − b1x1x4 − c1
(
x3x6 − x4x5

)
+ O(3)

ẋ4 = x3 + b1x1x3 + c1
(
x3x5 + x4x6

)
+ O(3)

ẋ5 = −2x6 − b2x1x6 − 2c2x3x4 + O(3)

ẋ6 = 2x5 + b2x1x5 + c2
(
x2

3 − x2
4

)
+ O(3).

�

3.2 Systems in BNF

We present a brief discussion of the systems derived from Proposition A.
Let X ∈ χ2n

0 and X̃k be its corresponding truncated system, k > 1. The
first integrals of this system are:

H1 = x2
3 + x2

4 , H2 = x2
5 + x2

6 , . . . , Hn−1 = x2
2n−1 + x2

2n

and Hn = x2
2 −

∫
ϕ2

(
x1, H1, . . . , Hn−1

)
dx1.

In what follows we illustrate the Proposition A in the 4- and 6-dimensional
cases:

Case n = 2. We may assume, without loss of generality, that the eigenvalues
of A are λ1 = 0 and λ± = ±i . In the coordinate system (x1, x2, r, θ) with
x3 = rcosθ and x4 = rsenθ , X̃k is represented by






ẋ1 = x2

ẋ2 = ϕ2(x1, r2)

ṙ = 0
θ̇ = 1 + ϕ̃3(x1, r2).

Taking θ as the time we consider the auxiliary system X1 in R3 expressed by
{

ẋ1 = x2

ẋ2 = ϕ2(x1, r2)

for each r2 = k > 0.

The later system allows us to understand the phase portrait of the original X0.
For example, when ϕ2(x1, r2) = a1x2

1 + a2r2 + O(3) with a1 ∙ a2 < 0 and
r = c > 0 we observe that any equilibrium of X1 away from r = 0 corresponds
to a periodic orbit of X̃k . So X̃k possesses:
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i) two one-parameter families of periodic orbits (of saddle and elliptical
types) converging to 0; as one moves along the family towards 0 the min-
imal period tends to 2π .

ii) two one-parameter family of homoclinic orbits at each periodic orbit of
saddle type converging to 0.

For r = 0 we have a cusp singularity.

Case n = 3. As above consider on the (x3, x4, x5, x6)-space the bi-polar co-
ordinate system (r, θ, ρ, ψ).

We get then: 




ẋ1 = x2

ẋ2 = ϕ2
(
x1, r2, ρ2

)

ṙ = 0

θ̇ = α + η3
(
x1, r2, ρ2

)

ρ̇ = 0

ψ̇ = β + η4
(
x1, r2, ρ2

)
.

So on r = k1, ρ = k2 with k1, k2 > 0 we have:

i) The auxiliary system contains two critical points that correspond to two
invariant 2-tori T1 and T2.

ii) Corresponding to the periodic orbits of the auxiliary system there is a one-
parameter family of invariant 3-tori terminating at T1 and originating at an
invariant “Topological 3-Torus” T3 that contains T2.

iii) the orbits in T3 not in T2 are bi-asymptotic to T2.

If r = k1 and ρ = 0 or r = 0 and ρ = k2 the configuration is similar to the
case n = 2.

4 LSR and Proof of Theorem B

The main goal of this section is to verify how persistent are the one-parameter
families of periodic orbits detected for the truncated system X̃2 when the orig-
inal vector field X or the external parameter λ are considered. This approach
has a certain natural structure allowing a narrow comparison between different
cases. Some of the strategies in the proofs use similar arguments and methods
in many different situations.
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4.1 Generic Bifurcations

Fix a coordinate system such that the 2-jet of any X0 ∈ χ2n
0 is written in normal

formal. Recall that we consider both cases:

i) 0 : non-resonant or

ii) 0 : p : q-resonant with p + q > 2.

It is worth to point out that the systems treated here appear generically in
one-parameter families of reversible vector fields.

For n = 2, in the reversible universe a generic one-parameter family Xλ

passing through X ∈ at λ = 0 is expressed as:





ẋ1 = x2 + O(3)

ẋ2 = λ+ a1(λ)x2
1 + a2(λ)

(
x2

3 + x2
4

)
+ O(3)

ẋ3 = −x4 − b1(λ)x4x1 + O(3)

ẋ4 = x3 + b1(λ)x3x1 + O(3).

Assuming for instance that a1 > 0, a2 < 0 (X ∈ U1) we derive that:

For λ < 0: the auxiliary system has two equilibria (a center and a saddle-
center).

For λ = 0: the origin is the unique equilibrium.

For λ > 0: the system has no equilibrium nearby the origin.

The analysis when a1 > 0 ∙ a2 > 0 (X ∈ U2) can be done by solving simple
algebraic equations and it will be omitted.

It seems clear that this discussion can be performed in R2n in a very straight-
forward way.

4.2 LSR in R2n (0-non-resonant case)

In what follows we are going to analyze the existence of families of periodic
orbits for the bifurcation scenario Xλ via the LSR. There are a few complications
which arise in our context. We must be careful when handling splittings of
projections. As we are looking for periodic solutions, the (minimal) period is
one of the “unknowns” of the problem. As will be seen in the treatment which
follows the circle group S1 plays an important role in the bifurcation analysis of
periodic orbits.
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So let
ẋ = X (x, λ); X ∈ χ2n(λ) (4)

Recall that X (0, 0) = 0.
Consider

A0 = DX (0, 0) :=














0 1
0 0

0 −α1

α1 0
. . .

0 −αn−1

αn−1 0














be 0-non-resonant.
Denote by C0

2π the space of all 2π -periodic continuous functions x : R →
R2n, n ≥ 2, and let C1

2π be the correspondent C1-subspace.
In C0

2π we define the product

(x1, x2) =
1

2π

∫ 2π

0
〈x1(t), x2(t)〉dt

where 〈. , .〉 is an inner product in R2n .
Consider now the mappings: Fj : C1

2π × R× R → C0
2π defined by

Fj (x, σ, λ)(t) = (1 + σ) α j ẋ(t)− X (x(t), λ), j = 1, . . . , n − 1 (5)

We recall that if (xo, σo, λo) ∈ C1
2π × R × R satisfies Fj (xo, σo, λo) = 0

then x̃(t) := xo((1 + σo) α j t) is a 2π
(1+σo)α j

-periodic solution of (4) for λ = λo.

So the problem is carried out to find the zeroes of Fj . In this way to each
solution of Fj = 0 corresponds a periodic solution of the original system with

period near 2π
α j

.
Of course (0, 0, 0) is always a solution of (5).
Let L j := D1 Fj (0, 0, 0) : C1

2π → C0
2π be given by L j x(t) = ẋ(t)− 1

α j
A0x(t).

Consider A0 = S0 + N0 the unique decomposition of A0 with (S0) and (N0)
being the semi-simple and nilpotent parts respectively with S0 N0 = N0S0.

Denote Vj := ger{e1, e2, e2 j+1, e2 j+2}, j = 1, . . . , n − 1 where ek
′s are

elements of the canonical basis of R2n .
Take the following subspaces in C1

2π :

N j :=
{
q; q(t) = exp(t S0/α j )v j , v j ∈ Vj

}
, j = 1, . . . , n − 1.
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We are putting the solutions of (5) in 1 : 1-correspondence with the solutions
of an equation defined inN j . Hence for each j , define the following subspaces:

X j =
{

x ∈ C1
2π ; (x,N j ) = 0

}
and

Y j =
{

y ∈ C0
2π ; (y,N j ) = 0

}
, j = 1, . . . , n − 1

as the orthogonal complements of N j in C1
2π and C0

2π , respectively.
Recall that the dimension of N j in C1

2π is 4 for every j .
Consider (q j,1, q j,2, q j,3, q j,4) with q j,i = exp(t S0/α j )v j,i and {v j,1 = e1,

v j,2 = e2, v j,3 = e2 j+1, v j,4 = e2 j+2} a basis of Vj .
Take the projections P j : C0

2π → C0
2π defined by

P j (.) =
4∑

i=1

(
q j,i

)∗
(.)q j,i (6)

where (q j,i )
∗(x) = (q j,i , x). We get: Im(P j ) = N j , Ker(P j ) = Y j , C1

2π =
X j ⊕N j and C0

2π = Y j ⊕N j .
Finally we define

Fj (x, σ, λ) = Fj (q j + x j , σ, λ) =: F̂j (q j , x j , σ, λ), q j ∈ N j , x j ∈ X j .

The proof of next result is in [4].

Lemma 4.1 (Fredholm alternative). Let A(t) be a matrix in C0
T and g be in

CT . Then the equation ẋ = A(t)x + g(t) has a solution in CT if and only if
∫ T

0 〈y(t), g(t)〉dt = 0 for every solution y of the adjoint equation ẏ = −A∗(t)y

with y in CT .

As L j
(
N j

)
⊂ N j the last lemma implies immediately that

Lemma 4.2. The mappings L̂ j : = L j |X j : X j → Y j are bijections for
every j = 1, . . . , n − 1.

In what follows we establish a discussion that will be useful in the sequel.
We have the following equivalence

F̂j (q j , x j , σ, λ) = 0 ⇔ (I − P j ) ◦ F̂j (q j , x j , σ, λ) = 0

P j ◦ F̂j (q j , x j , σ, λ) = 0 .
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So from the Implicity Function Theorem and Lemma 4.2 the equation

F̂j (q j , x j , σ, λ) = 0

can be solved as x j = x∗
j (q j , σ, λ).

So (5) can be reduced to

F̃j (q j , σ, λ) := P j ◦ F̂j (q j , x j
∗(q j , σ, λ), σ, λ) = 0.

On the other hand, it follows from (6) that this equation is satisfied if and
only if

q j,i
∗
(
F̂j (q j , x j

∗(q j , σ, λ), σ, λ
)

= 0, i = 1, . . . , 4. (7)

So (v j , σ, λ), v j = (x1, x2, x2 j+1, x2 j+2) is a solution of (5) provided that

B j (v j , σ, λ) = 0

with B j : R4 × R× R → R4 defined by

B j
(
v j , σ, λ

)
:=

1

2π

∫ 2π

0
exp

(
− t S0, j/α j

)
5 j F̂j

(
x j

∗(v j , σ, λ), σ, λ
)
dt,

where

x j
∗
(
v j , σ, λ

)
:= exp

(
t S0, j/α j

)
v j + x j

∗
(

exp(t S0, j/α j )v j , σ, λ
)
.

and

5 j
(
x1, x2, . . . , x2 j+1, x2 j+2, . . . , x2n

)
=

(
x1, x2, x2 j+1, x2 j+2

)

with

S0, j :=







0 0
0 0

0 −α j

α j 0





 , j = 1 . . . , n − 1.

4.2.1 Properties of the mapping B j

The proof of the following lemma is in [11] and [14].
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Lemma 4.3. Each mapping B j satisfies:

(i) R′ B j (v j , σ, λ) = −B j (R′v j , σ, λ), and

(ii) sφB j (v j , σ, λ) = B j (sφv j , σ, λ), where sφv j = exp(−φS0, j )v j and

R′
(
x1, x2, x2 j+1, x2 j+2

)
=

(
x1,−x2, x2 j+1,−x2 j+2

)
.

Recall that we are assuming that the m-jet of (4) at 0 is in BNF. That implies
that X (x, λ) = λe2 + A0x + X̃(x, λ)+ rm(x, λ), where x ∈ R2n, Tm X (x, λ) =
λe2 + A0x + X̃(x, λ) is in normal form and rm(x, λ) = o(|x |m+1).

The proof of the next result will be omitted since it is a slight variation of the
proof of Theorem 4.5 in [14].

Proposition 4.4.

(i) x j
∗(v j , σ, λ) = exp(t S0, j/α j )v j + o(‖v j‖m+1)

(ii) B j (v j , σ, λ) = (1+σ) S0, j v j − A0, j v j −λ e2, j − X̃ j (v j , λ)+o(‖v j‖m+1),
where

S0, j =







0 0
0 0

0 −α j

α j 0





 , A0, j =







0 1
0 0

0 −α j

α j 0





 , e2, j =







0
1
0
0







and

X̃ j =









x̃1

x̃2

x̃2 j+1

x̃2 j+2








.

Remark 4.5. It is worth mentioning that the reduction above performed
can be reproduced ipse-literis to the 0 : p : q-ressonant case with p, q > 1
and it will be omitted. So Proposition 4.4 remains valid whether applied to the
present case.
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4.3 LSR in R6 (0 : 1 : 2-resonant case)

Let X ∈ χ6(λ).
Recall that X (0, 0) = 0 and so:

A0 = D1 X (0, 0) =











0 1
0 0

0 −1
1 0

0 −2
2 0











.

We emphasize that we search for periodic solutions of the original system with
periods nearby π and 2π . In the first situation the same analysis done in the last
section can be performed here by means of B2 : R4 × R× R → R4 given by

B2(u2, σ, λ) = (1 + σ) S0,2 u2 − Ao,2 u2 − λ e2,2 − X̃2(u2, λ)+ o
(
‖u2‖

m+1
)

where

S0,2 =







0 0
0 0

0 −2
2 0





 , A0,2 =







0 1
0 0

0 −2
2 0





 , e2,2 =







0
1
0
0





 ,

X̃2 =







x̃1

x̃2

x̃5

x̃6





 and u2 = (x1, x2, x5, x6).

In the second situation (periods near 2π ) we argue as follows.
First of all, consider the mapping F1 : C1

2π × R × R → C0
2π defined by

F1(x, σ, λ)(t) = (1 + σ) ẋ(t)− X (x(t), λ).
As before let L1 := D1 F1(0, 0, 0) : C1

2π → C0
2π be given by L1 x(t) =

ẋ(t)− A0x(t).
Define now:

N1 :=
{
q ∈ C1

2π ; q(t) = exp(t S0)u, u ∈ R6
}
,

X1 =
{

x ∈ C1
2π ; (x,N1) = 0

}
and Y1 =

{
y ∈ C0

2π ; (y,N1) = 0
}
.

Consider (q1,1, q1,2 , q1,3 , q1,4 , q1,5 , q1,6) with q1,i = exp(t S0)ei , where
{ei , i = 1, . . . , 6} is the canonical basis of R6.
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As above we get in a similar way a reduction given by B1 : R6 ×R×R → R6

where

B1(u1, σ, λ) :=
1

2π

∫ 2π

0
exp(−t S0)F1(x1

∗(u1, σ, λ), σ, λ)dt

and
x1

∗(u1, σ, λ) = exp(t S0)u1 + x1
∗(exp(t S0)u1, σ, λ).

The proofs of the followings results are direct and they will be omitted.

Lemma 4.6. The mapping B1 satisfies: (i) R B1(u1, σ, λ) = −B1 (Ru1, σ, λ)

and (ii) sφ B1(u1, σ, λ) = B1(sφ u1, σ, λ), with sφ u1 = exp (−φS0) u1.

Proposition 4.7. The mapping B1 is expressed by

B1(u2, σ, λ) = (1 + σ) S0 u2 − A0 u2 − λ e2 − X̃(u2, λ)+ o(|u2|
m+1)

provided that the m-jet (the m-truncation) of the system at 0 is in BNF and
u2 = (x1, x2, x3, x4, x5, x6).

4.4 Proof of Theorem B.

(a) First we present a brief discussion on the case n = 2. It will be very
useful in the sequel.

The 2-truncated BNF system is expressed by:





ẋ1 = x2

ẋ2 = λ+ a1(λ)x2
1 + a2(λ)

(
x2

3 + x2
4

)

ẋ3 = −x4 − b1(λ)x1x4

ẋ4 = x3 + b1(λ)x1x3.

Let’s solve B(x, σ, λ) = 0 with B(x, σ, λ) given in Theorem 4.4.
Let

S0 =







0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0







So B(x, σ, λ) =







−x2

−λ− a1(λ)x2
1 − a2(λ)(x2

3 + x2
4)

−σ x4 + b1(λ)x1x4

σ x3 − b1(λ)x1x3





 + higher order terms.
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We separate the cases:

(i) a1(0)a2(0) < 0 (for abuse of terminology we say that X (x, 0) ∈ U1);

(ii) a1(0)a2(0) > 0 (we say that X (x, 0) ∈ U2).

We have then:

(a) −x2 + O(‖x‖3) = 0,

(b) λ+ a1(λ)x2
1 + a2(λ)

(
x2

3 + x2
4

)
+ O(‖x‖3) = 0,

(c) −σ x4 + b1(λ)x1x4 + O(‖x‖3) = 0,

(d) σ x3 − b1(λ)x1x3 + O(‖x‖3) = 0.

Consider the following auxiliary system:

λ+ a1(λ)x
2
1 + a2(λ)

(
x2

3 + x2
4

)
= 0

− σ x4 + b1(λ)x1x4 = 0

σ x3 − b1(λ)x1x3 = 0.

We see that the problem is reduced to the analysis of the relative position
between elements of two 2-parameter families of curves in the plane depending
on λ and σ .

Case i) For simplicity assume that a1(0) = −a2(0) = b1(0) = 1.
That means that in the (x1, x3, x4)-space we have:
Subcase i1) λ = 0: the equation (b) represents a cone 6b centered in the

origin whereas the equation (c) represents an algebraic surface 6c = π4 ∪ π
and equation (d) represents another algebraic variety 6d = {π3 ∪ π} where:
π = {x1 = σ }, π j = {x j = 0} with j = 3, 4.

Observe now that any pair among the following manifolds, 6b, π , π3 and π4,
are in general position. So the solution of the auxiliary system is represented
by S = 6b ∩ π ∩ πi . In another words we have that γi = 6b ∩ π ∩ πi ,
i = 3, 4 is constituted by two distinct points pi (σ ) ∪ qi (σ ). This situation is
generic and it persists if we add higher order terms to the auxiliary system. It
is worthwhile to mention that in the general case we cannot conclude a priori
about the symmetric properties of such solutions.

The analysis of the Subcases i2) λ < 0 and i3) λ > 0 follow similarly.
Also the case ii) can be performed in a straightforward way. Such analysis

will be also omitted.
In conclusion we have: if i) X (x, 0) ∈ U1 in the level λ = 0 we derive the

existence of two one-parameter families of periodic orbits terminating at the
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origin with periods converging to 2π . When λ < 0 these families split from
the origin in such a way each one of them terminates at one of the bifurcated
critical points. For λ > 0 there is only one such family walking around the
origin. When ii) X (x, 0) ∈ U2 then we deduce that λ = 0 is a subcritical Hopf
bifurcation value since for λ < 0 we have two families of symmetric periodic
orbits terminating at each one of the equilibria.

(b) n = 3.

Let ẋ = X (x, λ) with x ∈ R6 and X (0, 0) = 0 be such that:

(i) A0 = DX (0, 0) =











0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 −α 0 0
0 0 α 0 0 0
0 0 0 0 0 −β
0 0 0 0 β 0











;

(ii) X is R-reversible, with

R
(
x1, x2, x3, x4, x5, x6

)
=

(
x1,−x2, x3,−x4, x5,−x6

)
;

(iii) αk1 + βk2 = 0, k1, k2 ∈ Z ⇒ k1 = k2 = 0.

The truncated normal form is:





ẋ1 = x2

ẋ2 = λ+ a1(λ)x2
1 + a2(λ)

(
x2

3 + x2
4

)
+ a3(λ)

(
x2

5 + x2
6

)

ẋ3 = −x4
[
α + b1(λ)x1

]

ẋ4 = x3
[
α + b1(λ)x1

]

ẋ5 = −x6
[
β + b2(λ)x1

]

ẋ6 = x5
[
β + b2(λ)x1

]
.

We assume that b1(0) 6= 0 and b2(0) 6= 0.
Recall that:

U1 =
{

X; a1(0) ∙ a2(0) < 0 and a1(0) ∙ a3(0) < 0
}

and

U2 =
{

X; a1(0) ∙ a2(0) > 0 and a1(0) ∙ a3(0) > 0
}
.
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Of course we may consider α = 1 and γ = β

α
, γ ∈ Qc. So

A0 = DX (0, 0) =











0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −γ
0 0 0 0 γ 0











.

As shown in Proposition 4.4 the LSR in the general case is analogous to that
one in dimension 4. So we just have to analyze the system:






x2 + O(3) = 0 (a)

λ+ a1(λ)x2
1 + a2(λ)

(
x2

3 + x2
4

)
+ O(3) = 0 (b)

−σ x4 + b1(λ)x1x4 + O(3) (c)

σ x3 − b1(λ)x1x3 + O(3) = 0. (d)

Hence the discussion of the system is reduced to the 4-dimensional case analy-
sis. So the original system is R-symmetric and at level λ = 0, when the families
approach to 0 the periods converge to 2π

α
. As before we may reproduce the above

procedure on the generalized eigenspace: V1 = ger{e1, e2, e5, e6} and so obtain
similar results on the space (x1, x2, x5, x6).

In this way, for λ = 0, we get four families of periodic orbits terminating at
the origin. Moreover, the same considerations made before on the bifurcation
phenomenon can be ipse-literis formulated here.

In this way, to finish the present proof is enough to appeal directly to the
procedure made for n = 2 since the analysis was reduced to solve a 4D system
of four equations. �

4.5 Proof of Theorem B*:

In this case the system Xλ can be written as:





ẋ1 = x2 + O(3)

ẋ2 = λ+ a1(λ)x2
1 + a2(λ)

(
x2

3 + x2
4

)
+ a3(λ)

(
x2

5 + x2
6

)
+ O(3)

ẋ3 = −x4 − b1(λ)x1x4 − c1(λ)
(
x3x6 − x4x5

)
+ O(3)

ẋ4 = x3 + b1(λ)x1x3 + c1(λ)
(
x3x5 + x4x6

)
+ O(3)

ẋ5 = −2x6 − b2(λ)x1x6 − 2c2(λ)x3x4 + O(3)

ẋ6 = 2x5 + b2(λ)x1x5 + c2(λ)
(
x2

3 − x2
4

)
+ O(3).

(8)
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The characterization of the subsetsU1 andU2 in χ6
2 ∗ will become clear along

the performance of this proof.
We search now for periodic orbits of periods nearby 2π of X (x, λ) with

X (x, 0) ∈ U1 ∪U2.
As before we focus on the zeroes of:






x2 + O(3) = 0

−λ− a1(λ)x2
1 − a2(λ)

(
x2

3 + x2
4

)
− a3(λ)

(
x2

5 + x2
6

)
+ O(3) = 0

−σ x4 + b1(λ)x1x4 + c1(λ)
(
x3x6 − x4x5

)
+ O(3) = 0

σ x3 − b1(λ)x1x3 − c1(λ)
(
x3x5 − x4x6

)
+ O(3) = 0

−2σ x6 + b2(λ)x1x6 + 2c2(λ)x3x4 + O(3) = 0

2σ x5 − b2(λ)x1x5 − c2(λ)
(
x2

3 − x2
4

)
+ O(3) = 0.

In order to find symmetric periodic orbits with period near 2π we have to
study the reduced system






−λ− a1(λ)x2
1 − a2(λ)x2

3 − a3(λ)x2
5 + O(3) = 0

σ x3 − b1(λ)x1x3 − c1(λ)x3x5 + O(3) = 0
2σ x5 − b2(λ)x1x5 − c2(λ)x2

3 + O(3) = 0.

Consider, as before, the auxiliary system:





−λ− a1(λ)x2
1 − a2(λ)x2

3 − a3(λ)x2
5 = 0

σ x3 − b1(λ)x1x3 − c1(λ)x3x5 = 0
2σ x5 − b2(λ)x1x5 − c2(λ)x2

3 = 0.
(9)

Now, with respect to this system we obtain:
If X (x, 0) ∈ V1 =

{
X given by (8) such that a1(0)a3(0) < 0 and

b2(0) 6= 0
}

then there are two families of symmetric periodic orbits for λ = 0
and these families are persistent for λ 6= 0. This periodic orbits are given by

x∗
σ =

(
2σ

b2(λ)
, 0,

√

−
1

a3(λ)

(
λ+

4a1(λ)

b2
2

σ 2

))

that is a solution of (9).
On the other hand, if X (x, 0) ∈ V2 =

{
X given by (8) such that

a1(0)a3(0) > 0 and b2(0) 6= 0
}

then we have: if a1(0) > 0 a subcritical Hopf
bifurcation occurs where two families of symmetric periodic orbits related to
x∗
σ appear and if a1(0) < 0 a supercritical Hopf bifurcation, also related to x∗

σ ,
occurs. In this case the number of families of periodic orbits is two.
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As the intersection of (9) in x∗
σ is transversal these solutions are persistent

when the O(3) terms are considered.
A similar analysis can be done in the case of symmetric periodic orbits with

period near π .
This ends the proof. �
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