
“main” — 2009/10/22 — 18:23 — page 539 — #1

Bull Braz Math Soc, New Series 40(4), 539-552
© 2009, Sociedade Brasileira de Matemática

On ramification in the compositum
of function fields
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Abstract. The aim of this paper is twofold: Firstly, we generalize well-known formu-
las for ramification and different exponents in cyclic extensions of function fields over
a field K (due to H. Hasse) to extensions E = F(y), where y satisfies an equation of
the form f (y) = u ∙ g(y) with polynomials f (y), g(y) ∈ K [y] and u ∈ F . This result
depends essentially on Abhyankar’s Lemma which gives information about ramifica-
tion in a compositum E = E1 E2 of finite extensions E1, E2 over a function field F .
Abhyankar’s Lemma does not hold if both extensions E1/F and E2/F are wildly ram-
ified. Our second objective is a generalization of Abhyankar’s Lemma if E1/F and
E2/F are cyclic extensions of degree p = char(K ). This result may be useful for
the study of wild towers of function fields over finite fields.
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1 Introduction

In general it is a difficult task to compute the genus g = g(E) of an algebraic
function field E/K with constant field K . Perhaps the most powerful tool to do
this is the Hurwitz genus formula, which relates g(E) with the genus g(F) of
a subfield K ⊆ F ⊆ E of finite degree [E : F] < ∞. The main ingredient of
this formula is the different Diff(E/F), which is a divisor of E and contains all
places of E which are ramified over F . It is therefore of fundamental importance
to determine the different exponents d(P ′|P) for all places P of F and all places
P ′ of E lying above P .

The field E is often obtained as the compositum of two subfields E = E1 E2,
where E1 and E2 are finite separable extensions of some field F ⊆ E1 ∩ E2.
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In this situation, Abhyankar’s Lemma (see Proposition 1.1 below) gives infor-
mation about ramification in E/E1 (resp. in E/E2) if one knows the behaviour
of ramified places in E1/F and E2/F .

The aim of our paper is twofold. In Section 2 we use Abhyankar’s Lemma
to give a simple proof for ramification and different exponents in cyclic ex-
tensions of function fields (due to H. Hasse [4]). Our approach yields a far-
reaching generalization of Hasse’s formulas, see Theorem 2.1. In Section 3 we
consider the case where E1 and E2 are both cyclic extensions of F of degree
[E1 : F] = [E2 : F] = p = char(K ) and hence E = E1 E2 is an elementary-
abelian extension of F of degree [E : F] = p2. This case (where Abhyankar’s
Lemma does not work because of wild ramification) has been of great interest
in the study of towers of function fields over finite fields, cf. [2, 3]. We give
a version of Abhyankar’s Lemma in this situation, which might be useful for
further investigations of towers.

Throughout this paper we use standard notations from the theory of algebraic
function fields, cf. [5, 6, 7]. Let F/K be a function field with K being the full
constant field of F , and assume always that K is a perfect field. The discrete
valuation corresponding to a place P of F/K is denoted by vP , and the corre-
sponding valuation ring is OP = {z ∈ F | vP(z) ≥ 0}. Let E/F be a finite
separable extension. For a place P of F and a place P ′ of E lying over P ,
denote by e(P ′|P) (resp. d(P ′|P)) the ramification index (resp. the different
exponent) of P ′|P . The extension P ′|P is said to be tame if e(P ′|P) is not
divisible by the characteristic of K , otherwise P ′|P is called wild. In the case of
tame ramification, the different exponent is given by d(P ′|P) = e(P ′|P) − 1,
and in case of wild ramification one has d(P ′|P) ≥ e(P ′|P).

Now we state Abhyankar’s Lemma [6, p. 137]:

Proposition 1.1 (Abhyankar’s Lemma). Let E/F be a finite separable exten-
sion of function fields over K . Suppose that E = E1 E2 is the compositum of
two intermediate fields F ⊆ E1, E2 ⊆ E. Let P ′ be a place of E and set
P := P ′ ∩ F, P1 := P ′ ∩ E1 and P2 := P ′ ∩ E2. Assume that at least one of
the extensions P1|P or P2|P is tame. Then

e(P ′|P) = lcm{e(P1|P), e(P2|P)} ,

where lcm stands for the least common multiple.

2 A generalization of Hasse’s Formulas

In his paper “Theorie der relativ-zyklischen algebraischen Funktionenkörper,
insbesondere bei endlichem Konstantenkörper” [4], H. Hasse gave explicit for-
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mulas for the different exponents if E can be written as E = F(y) and y satisfies
one of the following equations:

yn = u ∈ F, with gcd(n, char(K )) = 1 , or (2.1)

y p − y = u ∈ F, where char(K ) = p > 0 . (2.2)

In case (2.1), the extension E/F is a Kummer extension (if K contains all nth

roots of unity), in case (2.2) it is an Artin-Schreier extension; so in both cases,
E/F is a cyclic Galois extension. Hasse’s formulas are extremely useful for
genus computations in Galois extensions of function fields; we will recall them
in Corollary 2.2 and 2.3 below. Here we just remark that Hasse’s proofs in
the cases (2.1) and (2.2) are quite different; in case (2.2) one uses the explicit
description of the automorphisms of E/F .

Observe that both equations (2.1), (2.2) are of the form f (y) = u ∈ F with
some polynomial f (y) ∈ K [y]. We consider now a more general situation.
Suppose that E = F(y) and y satisfies an equation

f (y) = u ∙ g(y) with f (y), g(y) ∈ K [y] and u ∈ F \ K . (2.3)

Without loss of generality we can assume that the polynomials f (y), g(y)

are relatively prime in K [y]. If the characteristic of K is char(K ) = p > 0,
we also assume that the extension F/K (u) is separable, and not both f (y),
g(y) are in K [y p] (which implies that E/F is separable as well). It follows
from Equation (2.3) that K (u) ⊆ F ⊆ E and K (u) ⊆ K (y) ⊆ E , and
E is the compositum E = F ∙ K (y). Setting n := max{deg f, deg g}, it is
clear that [K (y) : K (u)] = n. We do not assume however that the polynomial
f (Y ) − ug(Y ) ∈ F[Y ] is irreducible over F ; it may happen that it is reducible
and hence [E : F] < n. The main result of this section is as follows:

Theorem 2.1. With notations and assumptions as above, let P ′ be a place of
E. Set P := P ′ ∩ F, Q := P ′ ∩ K (u) and Q′ := P ′ ∩ K (y). Assume that not
both extensions P|Q and Q′|Q are wild. We set e0 := e(P|Q), e := e(Q′|Q),
r := gcd(e0, e) and d := d(Q′|Q). Then the following hold:

(a) e(P ′|P) = e/r . In particular, if Q′|Q is tame then P ′|P is also tame and
hence its different exponent is d(P ′|P) = e(P ′|P) − 1 = e/r − 1.

(b) If P|Q is tame, then

d(P ′|P) =
e0(d + 1 − e) + e

r
− 1 .
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Proof.

(a) This is just Abhyankar’s Lemma.

(b) Using transitivity of different exponents [6, p. 98] in the extensions
K (u) ⊆ F ⊆ E and K (u) ⊆ K (y) ⊆ E and observing that the ex-
tensions P|Q and P ′|Q′ are tame, we obtain

d(P ′|P) + (e0 − 1) ∙ e(P ′|P) = (e(P ′|Q′) − 1) + e(P ′|Q′) ∙ d .

As e(P ′|P) = e/r and e(P ′|Q′) = e0/r by (a), the result follows easily. �

Hasse’s formulas for ramification and different exponents in Kummer and
Artin-Schreier extensions are simple special cases of Theorem 2.1:

Corollary 2.2 (Kummer extensions). Suppose that E = F(y) and y satisfies
the equation

yn = u ∈ F, with gcd(n, char(K )) = 1 .

Let P be a place of F and let P ′ be a place of E lying above P. Then P ′|P is
tame, and the ramification index of P ′|P is given by

e(P ′|P) = n/r , with r := gcd(n, vP(u)) .

In particular, all places P with vP(u) ≡ 0 mod n are unramified in E/F.

Proof. With notations as in Theorem 2.1, the only ramified places in the ex-
tension of rational function fields K (y)/K (yn) are the zero Q0 and the pole Q∞

of u = yn , and their ramification index in K (y)/K (yn) is e = n. The ramifica-
tion index of a place P of F lying above Q0 (resp. Q∞) is e0 = vP(u) (resp.
e0 = −vP(u)). Hence the result follows from Theorem 2.1. �

Corollary 2.3 (Artin-Schreier extensions). Suppose that E = F(y) and y
satisfies the equation

y p − y = u ∈ F, with char(K ) = p > 0 .

Let P be a place of F and let P ′ be a place of E lying above P. If vP(u) ≥ 0
then P ′|P is unramified in E/F. If vP(u) = −m < 0 with m 6≡ 0 mod p,
then e(P ′|P) = p, and the different exponent is given by

d(P ′|P) = (m + 1)(p − 1) .
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Proof. The only ramified place in the extension K (y)/K (u) is the pole Q∞

of u = y p − y. Let Q′
∞ be the place of K (y) above Q∞ (so Q′

∞ is the pole
of y in K (y)). It is easy to check that

e(Q′
∞|Q∞) = p and d(Q′

∞|Q∞) = 2p − 2

(see also Example 2.5 below). Now we apply Theorem 2.1(b) and obtain

d(P ′|P) = m((2p − 2) + 1 − p) + p − 1 = (m + 1)(p − 1) . �

In order to apply Theorem 2.1 in other cases, one has to know the ramified
places and their different exponents in the extension of rational function fields
K (y)/K (u), where u = f (y)/g(y) ∈ K (y). The polynomials f (y), g(y)

are relatively prime, and in case of positive characteristic char(K ) = p > 0
not both of them are in K [y p]. After an appropriate rational transformation
u 7→ (au + b)/(cu + d) with a, b, c, d ∈ K and ad − bc 6= 0 we can assume
that moreover

u =
f (y)

g(y)
, f (y) and g(y) are monic polynomials, and

deg f (y) =: n > m := deg g(y). (2.4)

In what follows we will assume all these normalizations implicitly. Note
that K (y)/K (u) is a separable extension of degree [K (y) : K (u)] = n. The
places of the rational function field K (y) are in 1-1 correspondence with monic
irreducible polynomials p(y) ∈ K [y], and the pole of y; we will denote them
as Pp(y) and P∞, respectively. Similarly the places of K (u) will be denoted as
Qq(u), resp. Q∞. From (2.4) it follows that the places of K (y) lying above
Q∞ are exactly the places corresponding to irreducible factors p(y)|g(y), and
also P∞ (since deg f (y) > deg g(y)).

Proposition 2.4. With the above notations, suppose that P = Pp(y) is a place
of K (y) which is neither the pole of y nor a zero of g(y) (i.e., p(y) - g(y)). Let
Q := P ∩ K (u). Then we have:

(a) P|Q is ramified if and only if p(y) divides ( f ′(y) ∙ g(y) − f (y) ∙ g′(y)).

(b) d(P|Q) = vP( f ′(y)g(y) − f (y)g′(y)) (i.e., d(P|Q) is the exponent of
p(y) in the factorization of f ′(y) ∙ g(y) − f (y) ∙ g′(y) into irreducible
factors).
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Proof. Let OQ ⊆ K (u) be the valuation ring of the place Q, and let ÕQ ⊆
K (y) be its integral closure in K (y). The minimal polynomial for y over K (u)

is the polynomial ϕ(Y ) = f (Y )− ug(Y ) ∈ OQ[Y ], so y is integral over OQ and

OQ[y] =
n−1∑

i=0

OQ ∙ yi ⊆ ÕQ .

As every ring R with K [y] ⊆ R ⊆ K (y) is integrally closed, it follows that
OQ[y] = ÕQ and hence {1, y, y2, . . . , yn−1} is an integral basis at Q. Then the
different exponent d(P|Q) is given by d(P|Q) = vP(ϕ′(y)) (see [6, p. 107]).
Since

ϕ′(y) = f ′(y) − u ∙ g′(y) = f ′(y) −
f (y)

g(y)
∙ g′(y) =

( f ′g − f g′)(y)

g(y)

and vP(g(y)) = 0, we obtain

d(P|Q) = vP( f ′(y)g(y) − f (y)g′(y)) .

Hence we have proved (b). From this we also conclude (a), because exactly the
ramified places have different exponents d(P|Q) > 0. �

Those places of K (y) whose ramification behaviour in K (y)/K (u) is not
described by Proposition 2.4, are the pole P∞ of y and the zeros of g(y); they
are just the poles of u in K (y), and one can read their ramification indices
immediately from the equation u = f (y)/g(y). The different exponents of
such places can be determined as follows: choose an element α ∈ K such that
f (α) = 0. (If necessary, one has to extend the constant field for finding α.
This does not matter since in a constant field extension the different exponents
do not change.) Then the element t := (y − α)−1 satisfies the equation

1

u
=

g(α + t−1) ∙ tdeg f

f (α + t−1) ∙ tdeg f
=:

f1(t)

g1(t)

with polynomials f1(t), g1(t) ∈ K [t] and deg f1 > deg g1. This gives an
integral equation for t at the pole of u, and we obtain the different exponents as
in Proposition 2.4.

We illustrate our results with 2 examples.

Example 2.5. Assume that u = f (y) is a polynomial of degree n > 1 (and
f is not a polynomial in y p if char(K ) = p > 0). Then the pole Q∞ of
u is totally ramified in K (y)/K (u), the place above is just the pole P∞ of y.

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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The other ramified places are exactly the zeros of f ′(y), by Proposition 2.4.
Their different exponents are

d(P|Q) = vP( f ′(y)) .

From Hurwitz genus formula follows that the degree of the different of
K (y)/K (u) is 2n − 2 and hence

d(P∞|Q∞) = 2n − 2 − deg f ′(y) .

A special case of this example is when f (y) has the form

f (y) = ay +
k∑

j=0

a j y jp with a, a j ∈ K and a 6= 0 .

In this case f ′(y) = a has no zeros, hence only the pole P∞ of y is ramified
in K (y)/K (u), with ramification index e(P∞|Q∞) = n and different exponent
d(P∞|Q∞) = 2(n − 1).

As an application we obtain a generalization of Corollary 2.3.

Corollary 2.6. Let F/K be a function field with char(K ) = p > 0, and
consider an extension E = F(y), where y satisfies the equation

ay +
k∑

j=1

a j y jp = u ∈ F with a, a j ∈ K and a, ak 6= 0 .

Then we have:

(a) All places of F with vP(u) ≥ 0 are unramified in E/F.

(b) Suppose that P is a place of F with vP(u) = −m < 0 and p - m.
Set r := gcd(m, k). Let P ′ be a place of E lying above P. Then the
ramification index and different exponent of P ′|P are

e(P ′|P) = kp/r and d(P ′|P) =
m(kp − 1) + kp

r
− 1 .

In particular, if gcd(m, kp) = 1, then [E : F] = kp, P is totally ramified in
E/F and

d(P ′|P) = (m + 1)(kp − 1) .
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Example 2.7. Suppose that char(K ) = p > 0. We consider the extension of
rational function fields K (y)/K (u) given by

u =
f (y)

g(y)
with f (y) = y2p − y p − 1 , g(y) = y p − y .

We assume that

p ≡ 2 or 3 mod 5, and Fp2 ⊆ K .

From these assumptions follows easily (using quadratic reciprocity) that the
two roots α, β of f (y) = 0 are in K \ Fp , hence f (y) and g(y) are rela-
tively prime. It is clear that above the zero Q0 of u there are exactly 2 places
Pα, Pβ of K (y), namely the zeros of y − α and of y − β. Their ramification
indices are e(Pα|Q0) = e(Pβ |Q0) = p, so they are wild. It is also obvious
that the pole P∞ of y lies above the pole Q∞ of u with ramification index
e(P∞|Q∞) = p, and the other places above Q∞ are unramified in K (y)/K (u).
We want to determine the different exponents of Pα, Pβ and P∞.

It follows from Proposition 2.4 that for each place P , which is not the pole of
y or a zero of y p − y, the different exponent of P over Q := P ∩ K (u) is

d(P|Q) = vP
(

f ′(y)g(y) − f (y)g′(y)
)

= vP
(
y2p − y p − 1

)
= p ∙ vP

(
y2 − y − 1

)
.

Hence d(Pα|Q0) = d(Pβ |Q0) = p. For the place P = P∞ we consider the
element t := (y − α)−1 which satisfies the equation

u−1 =

(
(α + t−1)p − (α + t−1)

)
∙ t2p

(
(α + t−1)2p − (α + t−1)p − 1

)
∙ t2p

=:
f1(t)

g1(t)
.

Now Proposition 2.4 gives

d(P∞|Q∞) = vP∞

(
f ′
1(t)g1(t) − f1(t)g

′
1(t)

)

= vP∞

(
f ′
1(t) ∙ g1(t)

)
= 2p − 2 .

All places except Pα, Pβ and P∞ are unramified in K (y)/K (u).

Another question which is raised by Abhyankar’s Lemma, is the following.
Given a compositum E = E1 E2 of function fields Ei ⊇ F (i = 1, 2) and places
P1 of E1 and P2 of E2 such that P1 ∩ F = P2 ∩ F , does there always exist a place
P ′ of E which lies over P1 and P2? Since we did not find an easily accessible
reference, we include here the following result (see [8]).

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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Proposition 2.8. Let E/F be a finite separable extension of function fields
such that E = E1 E2 is the compositum of two intermediate fields F ⊆ E1,
E2 ⊆ E. Let P be a place of F and let P1 (resp. P2) be a place of E1 (resp.
E2) lying above P. Assume moreover that [E : E1] = [E2 : F] (i.e., the fields
E1 and E2 are linearly disjoint over F). Then there exists a place P ′ of E which
lies over P1 and P2.

Proof. We fix a finite extension field M ⊇ E such that M/F is Galois, and
denote by Gal(M/F) the Galois group of M/F . Choose places R and S of M
with R|P1 and S|P2. Since Gal(M/F) acts transitively on the extensions of P
in M , there is an automorphism σ ∈ Gal(M/F) with σ(R) = S.

Next we choose an element z ∈ E1 with the following properties: vP1(z) > 0,
and vQ(z) ≤ 0 for all places Q 6= P1 of E1. It holds in particular that

vS
(
σ(z)

)
= vσ(R)

(
σ(z)

)
= vR(z) > 0.

Let h(T ) ∈ F[T ] be the minimal polynomial of z over F . Then h(T ) is also
irreducible over the field E2. The Galois group of M/E2 acts transitively on the
roots of h(T ), so there exists an automorphism τ ∈ Gal(M/E2) with τ(σ (z)) =
z. We claim that the place τ(S) of M lies over P1 and P2. In fact, since
S ∩ E2 = P2 and τ ∈ Gal(M/E2), it is clear that τ(S)|P2. On the other hand,

vτ(S)(z) = vτ(S)

(
τ(σ (z))

)
= vS

(
σ(z)

)
> 0.

As P1 is the only place of E1, which lies above P and is a zero of z, we con-
clude that τ(S)|P1. This proves our claim.

The restriction P ′ := τ(S) ∩ E of τ(S) to E is a common extension of P1

and P2 in E , as desired. �

Proposition 2.8 does not hold in general without the assumption that the
fields E1, E2 are linearly disjoint over F , as the following example shows. Let
E = E1 E2 with [E1 : F] = n, [E2 : F] = m and [E : F] = k < mn. Suppose
that P is a place of F which splits completely in E1/F and in E2/F ; i.e., there
are n distinct places Q1, . . . , Qn of E1 and m distinct places R1, . . . , Rm of E2

above P . Since P has at most k = [E : F] extensions P ′ in E , not all of the nm
pairs (Qi , R j ) can be obtained as (P ′ ∩ E1, P ′ ∩ E2).

3 Elementary abelian extensions of degree p2

As before, we consider a finite separable extension E/F of function fields over
K , where E can be obtained as the compositum E = E1 E2 of two intermediate

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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fields F ⊆ E1, E2 ⊆ E . We assume in this section that the characteristic of
K is positive, char(K ) = p > 0. Let P ′ be a place of E and P := P ′ ∩ F ,
Pi := P ′ ∩ Ei for i = 1, 2. If both extensions P1|P and P2|P are wild, then
Abhyankar’s Lemma does not apply to give information about ramification of
P ′|P1 (resp. P ′|P2).

In the papers [2, 3] the following lemma plays a key role for determining the
asymptotic behaviour of the genus in some towers of function fields over finite
fields of characteristic p.

Lemma 3.1. With notations as above, assume that the extensions E1/F and
E2/F are cyclic extensions of degree p with E1 6= E2, so their compositum
E = E1 E2 is Galois over F of degree [E : F] = p2. Assume that the places
P1|P and P2|P are ramified with ramification index e(P1|P) = e(P2|P) = p
and different exponent d(P1|P) = d(P2|P) = 2(p − 1). Then one of the
following assertions holds:

(1) e(P ′|P1) = e(P ′|P2) = 1, or

(2) e(P ′|P1) = e(P ′|P2) = p and d(P ′|P1) = d(P ′|P2) = 2(p − 1).

In Theorem 3.4 below we will generalize Lemma 3.1. As a preparation we
recall briefly Hilbert’s theory of ramification groups, cf. [6, Sec. 3.8]. Let E/F
be a Galois extension of function fields, G := Gal(E/F) its Galois group.
Let P be a place of F and P ′ a place of E lying over P . One defines for every
i ≥ −1 the i-th ramification group of P ′|P ,

Gi (P ′|P) =
{
σ ∈ G | vP ′(σ z − z) ≥ i + 1 for all z ∈ OP ′

}
.

Hilbert’s different formula states that the different exponent d(P ′|P) is then
given as

d(P ′|P) =
∑

i≥0

(
ord Gi (P ′|P) − 1

)
.

For a subgroup U ⊆ G we denote by EU the fixed field of U , so E/EU

is Galois with Galois group U . The restriction of P ′ to EU is denoted by
PU := P ′ ∩ EU .

An extension E/F is called elementary abelian of degree p2, if E/F is Galois
and Gal(E/F) is an elementary abelian group of order p2 (i.e., it is a non-cyclic
group of order p2). We need two lemmas.

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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Lemma 3.2. Let E/F be an elementary abelian extension of degree p2, let
P be a place of F and P ′ a place of E lying over P. Assume that P ′|P is
totally ramified, i.e. e(P ′|P) = p2. Set G := Gal(E/F) and Gi := Gi (P ′|P).
Suppose that

G = G0 = G1 = ∙ ∙ ∙ = Ga % Ga+1 = 1 .

Let U ⊆ G be a subgroup of order p. Then it follows that

d
(
P ′|P

)
= (a + 1)

(
p2 − 1

)
and

d
(
P ′|PU

)
= d

(
PU |P

)
= (a + 1)(p − 1) .

Moreover, a 6≡ 0 mod p.

Proof. The equation d(P ′|P) = (a + 1)(p2 − 1) follows immediately from
Hilbert’s different formula. The i-th ramification group Ui of P ′|PU is by defi-
nition equal to the intersection U ∩ Gi (P ′|P), hence

U = U0 = U1 = ∙ ∙ ∙ = Ua % Ua+1 = 1.

Again by Hilbert’s different formula, we obtain d(P ′|PU ) = (a + 1)(p − 1).
By transitivity of the different in F ⊆ EU ⊆ E we have that d(P ′|P) =
d(P ′|PU ) + p ∙ d(PU |P), and therefore we get d(PU |P) = (a + 1)(p − 1).
The assertion that a 6≡ 0 mod p follows from the following fact, see [6,
Lemma 3.7.7]: If H/F is a cyclic extension of degree p and P is a place of
F which is ramified in H , then its different exponent is d = (k + 1)(p − 1)

with k 6≡ 0 mod p. �

Lemma 3.3. With notations as in Lemma 3.2, suppose now that

G = G0 = G1 = ∙ ∙ ∙ = Ga % Ga+1 = ∙ ∙ ∙ = Gb % Gb+1 = 1 .

Then the following hold:

(1) d(P ′|P) = (a + 1)(p2 − 1) + (b − a)(p − 1) .

(2) If U = Gb then d(P ′|PU ) = (b + 1)(p − 1) and d(PU |P) =
(a + 1)(p − 1).

(3) If V is a subgroup of G of order p and V 6= Gb, then d(P ′|PV ) =
(a + 1)(p − 1) and d(PV |P) = (a + 1)(p − 1) + p−1(b − a)(p − 1).

Moreover, a 6≡ 0 mod p and b ≡ a mod p.
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Proof. The proof can be omitted since it is very similar to the proof of
Lemma 3.2. �

Now we can prove the main result of Section 3 (see also [1]).

Theorem 3.4. Let E1/F and E2/F be cyclic extensions of degree [E1 : F] =
[E2 : F] = p with E1 6= E2, and consider their compositum E := E1 E2. Let
P be a place of F and P1 (resp. P2) a place of E1 (resp. E2) over P. Let
P ′ be a place of E lying above P1 and P2. Assume that both places P1|P
and P2|P are totally ramified with different exponents d(P1|P) = s1(p − 1)

and d(P2|P) = s2(p − 1). Then s1 6≡ 1 mod p, s2 6≡ 1 mod p, and the
following hold:

(1) If s1 < s2, then P ′|P1 and P ′|P2 are totally ramified and their different
exponents are d(P ′|P1) = (p(s2 − s1) + s1)(p − 1) and d(P ′|P2) =
s1(p − 1).

(2) If s1 = s2 =: s, then e(P ′|P1) = e(P ′|P2) = 1 or p. The different
exponents of P ′|P1 and P ′|P2 satisfy d(P ′|P1) = d(P ′|P2) = t (p − 1)

with 0 ≤ t ≤ s and t 6≡ 1 mod p.

Proof. The assertions s1 6≡ 1 mod p, s2 6≡ 1 mod p and t 6≡ 1 mod p
follow again from [6, Lemma 3.7.7]. The case where P ′|P1 (and hence P ′|P2)
is unramified, is trivial. So we can assume that e(P ′|P1) = e(P ′|P2) = p.
We are then in the situation of Lemma 3.2 or Lemma 3.3. Denote by Gi :=
Gi (P ′|P) the higher ramification groups of P ′|P , for all i ≥ 0. If G0 = G1 =
∙ ∙ ∙ = Ga and Ga+1 = 1, then it follows from Lemma 3.2 that d(Pi |P) =
d(P ′|Pi ) = (a + 1)(p − 1) for i = 1, 2, so Theorem 3.4 holds in this case.

It remains to consider the case

G = G0 = G1 = ∙ ∙ ∙ = Ga % Ga+1 = ∙ ∙ ∙ = Gb % Gb+1 = 1.

There are exactly p subgroups V ⊆ Gal(E/F) of order p which are distinct
from Gb. For these subgroups it follows from Lemma 3.3 that d(PV |P) =
(a + 1)(p − 1) + p−1(b − a)(p − 1), and for the subgroup U := Gb we
have d(PU |P) = (a + 1)(p − 1). If both extensions E1 and E2 correspond to
subgroups V 6= Gb, then we conclude that s = s1 = s2 = a + 1 + p−1(b − a)

and d(P ′|Pi ) = (a + 1)(p − 1) < s(p − 1). If however E1 corresponds to
the subgroup U = Gb and E2 corresponds to a subgroup V 6= Gb, then it
follows from Lemma 3.3 that s1 = a + 1 and s2 = a + 1 + p−1(b − a). Now
Lemma 3.3 yields d(P ′|P2) = (a + 1)(p − 1) = s1(p − 1) and d(P ′|P1) =
d(P ′|PU ) = (b + 1)(p − 1) = (s1 + p(s2 − s1))(p − 1). �
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Remark 3.5. Note that Lemma 3.1 is a special case of Theorem 3.4 (namely
s1 = s2 = 2).

Remark 3.6. Suppose that the constant field of F is the finite field Fp of prime
order and P is a place of F of degree one. Then, in the situation of Theorem
3.4 (2), the case t = s cannot occur; i.e., one has d(P ′|Pi ) = t (p − 1) with
0 ≤ t < s. This follows from the fact that the factor groups Gi/Gi+1 are
isomorphic to subgroups of the additive group of the residue class field of P ′

(which is under our assumptions the additive group of Fp), see [6, Prop. 3.8.5].

Remark 3.7. One can easily construct examples which show that all situations
as in Theorem 3.4 can actually occur.

Remark 3.8. After completing this work, we learnt that the result of Theo-
rem 3.4 has also been obtained by Qingquan Wu and Renate Scheidler (private
communication).
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