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1 Introduction

This paper addresses the open problem Cr Closing Lemma, which can be stated
as follows:

Problem 1.1 (Cr Closing Lemma). Let M be a compact smooth manifold,
r ≥ 2 be an integer, X ∈ Xr (M) be a Cr vector field on M, and p ∈ M be a
non-wandering point of X. Does there exist Y ∈ Xr (M) arbitrarily Cr -close to
X having a periodic trajectory passing through p?

C. Pugh [24] proved the C1 Closing Lemma for flows and diffeomorphisms on
manifolds. As for greater smoothness r ≥ 2, the Cr Closing Lemma is an open
problem even for flows on the 2-torus. Concerning flows on closed surfaces,
only a few, partial results are known in the orientable case (see [5, 8, 12]). No
affirmative Cr -closing results are known for flows on non-orientable surfaces. In
this paper, we present a class of flows defined on every closed surface supporting
non-trivial recurrence for which Problem 1.1 has an affirmative answer – see
Theorem A. Notice that every closed surface distinct from the sphere, from the
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projective plane and from the Klein bottle (see [18]) admits flows with non-trivial
recurrent trajectories (see [14]).

To achieve our results we provide a partial, positive answer to the following
local version of the Cr Closing Lemma for flows on surfaces:

Problem 1.2 (Localized Cr Closing Lemma). Let M be a closed surface,
r ≥ 2 be an integer, X ∈ Xr (M) be a Cr vector field on M, and p ∈ M be a
non-wandering point of X. For each neighborhood V of p in M and for each
neighborhoodV of X in Xr (M), does there exist Y ∈ V , with Y − X supported
in V , having a periodic trajectory meeting V ?

Due to a C. Pugh’s argument (see [8, p. 1887]), it is known that if Problem
1.2 has a positive answer for some class of vector fields N ⊂ Xr (M) then so
does Problem 1.1, considering the same class N . The approach we use to show
that a flow has local Cr -closing properties is to make arbitrarily small Cr -twist-
perturbations of the original flow along a transversal segment. This requires a
tight control of the perturbation: it may happen that a twist-perturbation leaves
the non-wandering set unchanged [13] or else collapses it into the set of sin-
gularities [5, 9]. More precisely: C. Gutierrez [9] proved that local C2-closing
is not always possible even for flows on the 2-torus; C. Carroll [5] presented
a flow (having finitely many singularities) on the 2-torus with poor Cr -closing
properties: no arbitrarily small C2-twist-perturbation yields closing; C. Gutier-
rez and B. Pires [13] provided a flow on a non-orientable surface of genus four
whose non-trivial recurrent behaviour persists under a class of arbitrarily small
Cr -twist-perturbations of the original flow. Recently, S. Lloyd [17] found Cr

closing perturbations of twist-type for vector fields on the 2-torus with bounded
type rotation number which are area-preserving at all saddle-points.

Deeply related to Problem 1.1 is the Peixoto-Wallwork Conjecture that the
Morse-Smale vector fields are Cr -dense on non-orientable closed surfaces,
which is implied by the following open problem:

Problem 1.3 (Weak Cr Connecting Lemma). Let M be a non-orientable closed
surface, r ≥ 2 be an integer, and X ∈ Xr (M) have singularities, all of which
hyperbolic. Assume that X has a non-trivial recurrent trajectory. Does there
exist Y ∈ Xr (M) arbitrarily Cr -close to X having one more saddle-connection
than X?

M. Peixoto [23] gave an affirmative answer to the Weak Cr Connecting Lemma,
r ≥ 1, for flows on orientable closed surfaces whereas C. Pugh [25] solved the
Peixoto-Wallwork Conjecture in class C1.
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To give a positive answer to the Peixoto-Wallwork Conjecture, it would be
enough to prove either the Cr -Closing Lemma or the Weak Cr Connecting
Lemma for the class G ∞(M) of smooth vector fields having nontrivial recur-
rent trajectories and finitely many singularities, all hyperbolic. However there
is not a useful classification of vector fields of G ∞(M). Surprisingly, this is not
contradictory with the fact that the class F∞(M) of smooth vector fields having
nontrivial recurrent trajectories and finitely many singularities, all locally topo-
logically equivalent to hyperbolic ones, is essentially classified. The vector fields
that are constructed to classify F∞(M) have flat singularities [7]. The answer
to either of the following questions is unknown (see [19] for related results):

(1) Given X ∈ F∞(M), is there a vector field Y ∈ G ∞(M) topologically
equivalent to X?

(2) Given X ∈ G ∞(M)which is dissipative at its saddles, is there Y ∈ G ∞(M)
topologically equivalent to X but which has positive divergence at some
of its saddles?

Considering vector fields of G ∞(M) which are dissipative at their saddles,
their existence in a broad context was considered by C. Gutierrez [10]. The
motivation of this work was to find a Cr - Closing Lemma for all vector fields
of G ∞(M) whose existence is ensured by the work done in [10]. In this paper
we have accomplished this aim. We do not know any other existence result
improving that of [10].

2 Statement of the results

Throughout this paper, we shall denote by M a closed Riemannian surface,
that is, a compact, connected, boundaryless, C∞, Riemannian 2-manifold and
by Xr

H (M) the open subspace of Xr (M) formed by the Cr vector fields on
M having singularities (at least one), all of which hyperbolic. When M is
neither the torus nor the Klein bottle, Xr

H (M) is also dense in Xr (M). To each
X ∈ Xr

H (M) we shall associate its flow {Xt}t∈R. Given a transversal segment
6 to X ∈ Xr

H (M) and an arc length parametrization θ : I ⊂ R → 6 of 6,
we shall perform the identification 6 = θ(I ) = I , where I is a subinterval of
R. In this way, subintervals of I will denote subsegments of 6. The transversal
segments we use are assumed to be C∞ smooth. If P : 6 → 6 is the forward
Poincaré Map induced by X on 6 and x belongs to the domain dom (P) of P ,
we shall denote:

D P(x) = D
(
θ−1 ◦ P ◦ θ

)(
θ−1(x)

)
.
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Notice that D P(x) does not depend on the particular arc length parametrization
θ of 6 and may take positive and negative values. Given n ∈ N \ {0}, we let

O−
n (∂6) =

{
P−i (∂6) : 0 ≤ i ≤ n − 1

}
,

where ∂6 denotes the set of endpoints of 6 and P0 is the identity map. In this
way, the n-th iterate Pn is differentiable on dom (Pn) \ O−

n (∂6).

Definition 2.1 (Infinitesimal contraction). Let 6 be a transversal segment to
a vector field X ∈ Xr

H (M) and let P : 6 → 6 be the forward Poincaré Map
induced by X. Given n ∈ N \ {0} and 0 < κ < 1, we say that Pn is an
infinitesimal κ-contraction if |D Pn(x)| < κ for all x ∈ dom (Pn) \ O−

n (∂6).

We say that N ⊂ M is a quasiminimal set if N is the topological closure of a
non-trivial recurrent trajectory of X .

Definition 2.2. We say that X ∈ Xr
H (M) has the infinitesimal contraction

property at a subset V of M if for every non-trivial recurrent point p ∈ V , for
every κ ∈ (0, 1) and for every transversal segment 61 to X passing through
p, there exists a subsegment 6 of 61 passing through p such that the forward
Poincaré Map P : 6 → 6 induced by X is an infinitesimal κ-contraction.

Given a transversal segment 6 to X ∈ Xr
H (M) passing through a non-trivial

recurrent point of X , we let MP(6) denote the set of Borel probability measures
on6 invariant by the forward Poincaré Map P : 6 → 6 induced by X . We say
that a Borel subset B ⊂ 6 is of total measure if ν(B) = 1 for all ν ∈ MP(6).

Definition 2.3 (Lyapunov exponents). We say that X ∈ Xr
H (M) has negative

Lyapunov exponents at a subset V of M if for each non-trivial recurrent point
p ∈ V and for each transversal segment 61 passing through p, there exist a
subsegment 6 of 61 containing p and a total measure set W ⊂ �+ such that
for all x ∈ W ,

χ(x) = lim inf
n→∞

1

n
log |D Pn(x)| < 0,

where P : 6 → 6 is the forward Poincaré Map induced by X and �+ =
∩∞

n=1 dom (Pn).

Now we state our results.

Theorem A. Suppose that X ∈ Xr
H (M), r ≥ 2, has the contraction property

at a quasiminimal set N . For each p ∈ N, there exists Y ∈ Xr
H (M) arbitrarily

Cr -close to X having a periodic trajectory passing through p.
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Theorem B. Suppose that X ∈ Xr
H (M), r ≥ 2, has divergence less or equal

to zero at its saddle-points and that X has negative Lyapunov exponents at a
quasiminimal set N . Then X has the infinitesimal contraction property at N .

Theorem C. Suppose that X ∈ Xr
H (M), r ≥ 2, has the contraction property

at a quasiminimal set N . There exists Y ∈ Xr
H (M) arbitrarily Cr -close to X

having one more saddle-connection than X.

3 Preliminares

A transversal segment 6 to X ∈ Xr
H (M) passes through p ∈ M if p ∈ 6 \ ∂6.

Given p ∈ M , we shall denote by γp the trajectory of X that contains p. We
may write γp = γ−

p ∪ γ+
p as the union of its negative and positive semitrajec-

tories, respectively. We shall denote by α(p) or α(γp) (resp. ω(p) or ω(γp))
the α-limit set (resp. ω-limit set) of γp. The trajectory γp is recurrent if it
is either α-recurrent (i.e. γp ⊂ α(γp)) or ω-recurrent (i.e. γp ⊂ ω(γp)).
A recurrent trajectory is either trivial (a singularity or a periodic trajectory)
or non-trivial. A point p ∈ M is recurrent (resp. non-trivial recurrent, ω-
recurrent,. . .) according to whether γp is recurrent (resp. non-trivial recurrent,
ω-recurrent. . .). We say that N ⊂ M is a quasiminimal set if N is the topo-
logical closure of a non-trivial recurrent trajectory of X . There are only finitely
many quasiminimal sets {N j }m

j=1, all of which are invariant. Furthermore, every
non-trivial recurrent trajectory is a dense subset of exactly one quasiminimal set
(see [7, p. 18, Structure Theorem]).

Proposition 3.1. Let N be a quasiminimal set of X ∈ Xr
H (M). Suppose that

for some non-trivial recurrent point p ∈ N, there exist a transversal segment 6
to X passing through p, (κ, n) ∈ (0, 1) × N, and L > 0 such that the forward
Poincaré Map P : 6 → 6 induced by X has the following properties:

(a) The n-th iterate Pn is an infinitesimal κ-contraction;

(b) sup
{
|D P(x)| : x ∈ dom (P)

}
≤ L.

Then X has the infinitesimal contraction property at N .

Proof. We claim that

(a) for every K ∈ (0, 1) there exists a subsegment 6K of 6 passing through
p such that the forward Poincaré Map PK : 6K → 6K induced by X is
an infinitesimal K -contraction.
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In fact, let L0 = max {1, Ln−1} and d ∈ N be such that L0κ
d < K . We shall

proceed considering only the case in which p is nontrivial α-recurrent. We can
take a subsegment6K of6 passing through p such that 6K ⊂ dom (P−dn) and
6K , P−1(6K ), ∙ ∙ ∙ , P−dn(6K ) are paiwise disjoint. Hence, if PK : 6K → 6K

is the forward Poincaré Map induced by X, then, for all q ∈ dom (PK ), there
exists m(q) > dn such that PK (q) = Pm(q)(q). In this way, since the function
m : q 7→ m(q) is locally constant, |D PK (q)| = |D Pm(q)(q)| ≤ L0κ

d < K for
all q ∈ dom (PK ) \ P−1

K (∂6K ). This proves (a).
Let q ∈ N be a nontrivial recurrent point. Now we shall shift the property

obtained in (a) to any segment 6̃ transversal to X passing through q. We shall
only consider the case in which q is non-trivial α-recurrent and so γ−

q is dense
in N .

Let K ∈ (0, 1) and take p1 ∈ (γ−
q ∩ 6K/2) \ {p}. Select a subsegment 61

of 6K/2 passing through p1 and a subsegment 6̃K of 6̃ passing through q such
that the forward Poincaré Map T : 61 → 6̃K is a diffeomorphism and, for
all x ∈ 61, y ∈ 6̃K , |DT (x)DT −1(y)| < 2. This implies that the forward
Poincaré Map P̃K : 6̃K → 6̃K will be an infinitesimal K -contraction because

|D P̃K (y)| = |D(T ◦ P1 ◦ T −1)(y)| ≤ 2|D P1(z)| < K ,

where P1 : 61 → 61 is the forward Poincaré Map induced by X and
T (z) = y. �

Definition 3.2 (Flow box). Let X ∈ Xr
H (M) and let 61, 62 be disjoint, com-

pact transversal segments to X such that the forward Poincaré Map T : 61 →
62 induced by X is a diffeomorphism. For each p ∈ 61, let τ(p) = min {t >
0 : Xt(p) ∈ 62}. The compact region {Xt(p) : p ∈ 61, 0 ≤ t ≤ τ(p)} is called
a flow box of X.

Theorem 3.3 (Flow box theorem). Let U ⊂ M be an open set, X ∈ Xr
H (U ),

6 ⊂ U be a (C∞ smooth) compact transversal segment to X and p ∈ 6 \ ∂6.
There exist ε > 0 arbitrarily small such that B = B(6, ε) = {Xt(p) : p ∈
6 , t ∈ [−ε, 0]} is a flow box of X, and a Cr -diffeomorphism h : B → [−ε, 0]×
[a, b] such that h(p) = (0, 0), h(6) = {0} × [a, b], h|6 is an isometry and
h∗(X |B) = (1, 0)|[−ε,0]×[a,b], where a < 0 < b, (1, 0) is the unit horizontal
vector field in R2 and h∗(X |B) is the pushforward of the vector field X |B by h.
The map h is denominated a Cr -rectifying diffeomorphism for B.

Proof. See Palis and de Melo [21, Tubular Flow Theorem, p. 40]. �
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Definition 3.4. Given a compact transversal segment 6 to X ∈ Xr
H (M), p ∈

6 \ ∂6 and ε > 0 small, we say that B(6, ε) = {Xt(p) : t ∈ [−ε, 0] , p ∈ 6}
is a flow box of X ending at 6 or at p. We say that B(6, ε) is arbitrarily thin
if ε can be taken arbitrarily small and we say that B(6, ε) is arbitrarily small
if B(6, ε) can be taken contained in any neighborhood of p.

Next lemma will be used in the proofs of Theorem 5.5 and Theorem 6.4.

Lemma 3.5. Suppose that X ∈ Xr
H (M) has the infinitesimal contraction prop-

erty at a non-trivial recurrent point p ∈ M of X. There exist an arbitrarily
small flow box B0 of X ending at p and an arbitrarily small neighborhood V0

of X in Xr
H (M) such that every Z ∈ V0, with Z − X supported in B0, has the

infinitesimal contraction property at B0.

Proof. Let 61 = (a1, b1) be a transversal segment to X passing through p
such that the forward Poincaré Map P1 : 61 → 61 induced by X is an infinites-
imal κ-contraction for some κ ∈ (0, 1). Let [a, b] ⊂ (a1, b1) be a compact
subsegment passing through p and let B0 = B([a, b], ε) be a flow box. There
exists a neighborhood V1 of X in Xr

H (M) such that for every Z ∈ V1 with
Z − X supported in B0 we have that B0 is still a flow box of Z . In particular,
for every Z ∈ V1 such that Z − X supported in B0, dom (PZ ) = dom (P1),
where PZ denotes the forward Poincaré Map induced by Z on (a1, b1). Given
δ > 0 satisfying 0 < κ + δ < 1, by the continuity of the map Z 7→ D PZ , there
exists a neighborhod V0 ⊂ V1 of X such that for every Z ∈ V0 with Z − X
supported in B0 we have that |D PZ (w)| < |D P1(w)| + δ < κ + δ < 1 for all
w ∈ dom (P1). Hence PZ is an infinitesimal (κ+δ)-contraction. The rest of the
proof follows as in the proof of Proposition 3.1 by recalling that the trajectory
of every non-trivial recurrent point of Z in B0 meets (a, b). �

4 Topological dynamics

Let X ∈ Xr
H (M). We say that N ⊂ M is an invariant set of X if Xt(N ) ⊂ N

for all t ∈ R. We say that K ⊂ N is a minimal set of X if K is compact, non-
empty and invariant, and there does not exist any proper subset of K with these
properties. We shall need the following lemmas from topological dynamics.

As every vector field of Xr
H (M) has singularities, the Denjoy-Schwartz

Theorem (see [26] or [27, pp. 39–40]) implies that

Lemma 4.1. Let X ∈ Xr
H (M), r ≥ 2. Then any minimal set of X is either a

singularity or a periodic trajectory.
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Definition 4.2. A graph of X ∈ Xr
H (M) is a connected closed subset of M

consisting of saddle-points and separatrices such that:

(a) the ω-limit and the α-limit set of each separatrix of the graph are saddle-
points;

(b) each saddle-point in the graph has at least one stable and one unstable
separatrix in the graph.

The proof of the following lemma can be found in [20, Theorem 2.6.1].

Lemma 4.3. Let X ∈ Xr
H (M) and let p ∈ M. Then ω(p) (resp. α(p)) is

exactly one of the following sets: a singularity, a periodic trajectory, a graph,
or a quasiminimal set.

Remark 4.4. It shoud be remarked that if a graph σ is contained in the ω-limit
of a trajectory γp of X ∈ Xr

H (M) then there exists an open annulus A ⊂ M
containing p such that σ is a connected component of the boundary of A and
ω(p) = σ for all p ∈ A. In this case, we say that the graph is attracting.

Lemma 4.5. Let N be a quasiminimal set of X ∈ Xr
H (M). Then every trajec-

tory of N is either a saddle-point or a saddle-connection or else a non-trivial
recurrent trajectory dense in N (which may possibly be a saddle-separatrix.)

Proof. See [20, Theorem 2.4.2, pp. 31–32]. �

Lemma 4.6. Let X ∈ Xr
H (M), r ≥ 2, and let N be a quasiminimal set of X.

Then there exist saddle-separatrices σ1, σ2 ⊂ N, both dense in N, such that
α(σ1) = N = ω(σ2).

Proof. Firstly let us prove that X has singularities in N and that all of them
are hyperbolic saddle-points. If this was not the case, then N would contain no
singularities and, by Lemma 4.5, N would be a minimal set of X contradicting
Lemma 4.1.

We shall only prove that N contains dense unstable separatrices. Suppose by
contradiction that

(?) every unstable separatrix σ ⊂ N is a saddle-connection.

Let γ ⊂ N be a non-trivial recurrent trajectory. Without loss of generality,
we may assume that γ is ω-recurrent. Hence, γ+ is dense in N and in particular
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accumulates in all the saddle-points of N . By standard arguments of topologi-
cal dynamics (see [21, p. 140]), one may show that (?) implies that ω(γ +) is a
graph, which so is a trapping region contradicting the density of γ+ in N . Con-
sequently, (?) is false and there exists an unstable separatrix in N which is not
a saddle-connection. By Lemma 4.5, in a quasiminimal set N every separatrix
which is not a saddle-connection is necessarily a non-trivial recurrent trajec-
tory dense in N . �

Definition 4.7. Let X ∈ Xr
H (M) and let σ be a non-trivial recurrent unstable

separatrix of a saddle-point s. We say that a transversal segment 6 to X is σ -
adapted if σ (oriented as starting at s) intersects 6 infinitely many times and
the first two of such intersections are precisely the endpoints of 6.

Lemma 4.8. Let σ be a non-trivial recurrent unstable saddle-separatrix of
X ∈ Xr

H (M). Then every transversal segment 61 = (a1, b1) to X intersecting
σ contains a compact subsegment [a, b] ⊂ (a1, b1) which is σ -adapted.

Proof. Orient σ so that it starts at the saddle-point α(σ). Let p1, p2, p3 be
the first three points at which σ intersects (a1, b1) and denoted in such a way
that a1 < p1 < p2 < p3 < b1. If σ accumulates in p2 from above (resp.
from below) then [p2, p3] (resp. [p1, p2]) will be σ -adapted. �

Lemma 4.9. Let X ∈ Xr
H (M), 6 = [a, b] be a transversal segment to X

passing through a non-trivial recurrent point of X and P : [a, b] → [a, b] be
the forward Poincaré Map induced by X. Then dom (P) \ {a, b} is properly
contained in (a, b) and consists of finitely many open intervals such that if
s /∈ {a, b} is an endpoint of one of these intervals then the positive semi-
trajectory γ+

s starting at s goes directly to a saddle-point without returning
to [a, b].

Proof. The proof of this lemma can be found in Palis and de Melo [21, pp.
144–146] or in Peixoto [23]. �

5 Cr -connecting results

Definition 5.1. Given X ∈ Xr
H (M) and a flow box B of X, we shall denote

by A(B, X) the set of the vector fields Y ∈ Xr
H (M) supported in B such that

for all λ ∈ [0, 1], B is still a flow box of X + λY .

Bull Braz Math Soc, Vol. 40, N. 4, 2009
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In next lemma we assume that the domain of the forward Poincaré Map P
is non-empty. In the applications of Lemma 5.2 and Theorem 5.3, p will be a
non-trivial recurrent point.

Lemma 5.2. Let X ∈ Xr
H (M) be smooth in a neighborhood V0 of a point

p ∈ M and let6 = [a, b] ⊂ V0, with a < 0 < b, be a transversal segment to X
passing through p = 0. There exist an arbitrarily thin flow box B = B([a, b], ε)
contained in V0, and Y ∈ A(B, X) ⊂ Xr

H (M) arbitrarily Cr -close to the
zero-vector-field such that for each λ ∈ [0, 1] the forward Poincaré Map
Pλ : [a, b] → [a, b] induced by X + λY is of the form Pλ = Eλ ◦ P, where
P = P0, E0 is the identity map, c = min {−a, b}, δ ∈ (0, c/8), and
Eλ : [a, b] → [a, b] is a Cr diffeomorphism satisfying the following conditions:

Eλ(x)− x = λδ, x ∈ [−4δ, 4δ], (1)

Eλ(x)− x ≤ λδ, x ∈ [a, b]. (2)

Proof. By Theorem 3.3, there exist ε > 0 arbitrarily small, a flow box B =
B([a, b], ε) ⊂ V0, and a Cr+1-rectifying diffeomorphism h : B → [−ε, 0] ×
[a, b]. Let φ1 : [−ε, 0] → [0, 1] and φ2 : [a, b] → [0, 1] be smooth functions
such that

(φ1)
−1(1) = [−8ε/10,−2ε/10], (φ1)

−1(0) = [−ε, 0] \ [−9ε/10,−ε/10],

(φ2)
−1(1) = [−6δ, 6δ], (φ2)

−1(0) = [a, b] \ [−7δ, 7δ].

Let Y0 : [−ε, 0] × [a, b] → R2 be the smooth vector field which at each
(x, y) ∈ [−ε, 0] × [a, b] takes the value:

Y0(x, y) = (1, 0)+ ηφ1(x)φ2(y)(0, δ),

where η > 0 is a positive constant such that the positive semitrajectory γ+
(−ε,−4δ)

of Y0 starting at (−ε,−4δ) intersects {0} × [a, b] at the point (0,−3δ). By
construction, for each y ∈ [−4δ, 4δ], the positive semitrajectory γ+

(−ε,y) of Y0

starting at (−ε, y) is an upward shift of γ+
(−ε,−4δ) and so intersects {0} × [a, b]

at (0, y + δ). Define Y ∈ Xr
H (M) to be a vector field supported in B such that

Y |B = (h−1)∗(Y0). Accordingly,

(X + λY )|B = (h−1)∗((1, 0)+ λY0).

Recall that by Theorem 3.3, the map h takes isometrically [a, b] onto
{0} × [a, b]. By construction, the one-parameter family of vector fields X + λY
has all the required properties. �
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Theorem 5.3. Let X ∈ Xr
H (M), σ be a non-trivial recurrent unstable sad-

dle-separatrix, 6 = [a, b] be a σ -adapted transversal segment to X, B =
B([a, b], ε) be a flow box of X and Y ∈ A(B, X). If q ∈ [a, b] is the third
intersection of σ with [a, b] then either of the following alternatives happens:

(a) for some λ ∈ [0, 1], [a, b] intersects a saddle-connection of X + λY or,

(b) for every (λ, n) ∈ [0, 1]×N, the point q belongs to dom (Pn
λ ) and Pn

λ (q)
depends continuously on λ. In this case, for each λ ∈ [0, 1], the se-
quence {Pn

λ (q)}n∈N accumulates in a point of [a, b] belonging, with re-
spect to X + λY, to either a closed trajectory or to a non-trivial recurrent
trajectory, where Pλ : [a, b] → [a, b] denotes the forward Poincaré map
induced by X + λY .

Proof. Assume that (a) does not happen. Let us prove that then (b) oc-
curs. Firstly we have to show that for every (λ, n) ∈ [0, 1] × N, the point
q belongs to dom (Pn

λ ). Suppose that this does not happen. So for some
(λ1, n1) ∈ (0, 1]×N−{0}, we have that q ∈ dom (Pn1−1

λ ) for all λ ∈ [0, 1], and
q 6∈ dom (Pn1

λ1
). Hence, we have that Pn1−1

λ1
(q) does not belong to dom (Pλ1) =

dom (P0) whereas Pn1−1
0 (q) ∈ dom (P0). By construction, Pn1−1

λ (q) depends
continuously on λ, and so for some λ2 ∈ [0, λ1], Pn1−1

λ2
(q) intersects the bound-

ary of dom (P0). By Lemma 4.9, X + λ2Y has a saddle-connection intersecting
[a, b], which contradicts the initial assumption. Therefore, the first part of (b)
is proved. The second part of (b) follows from Lemma 4.3 since the existence
of an attracting graph intersecting [a, b] would imply (a). �

In the proof of next lemma we shall use the fact that a transversal segment
6 = [a, b] to X ∈ Xr

H (M) may also be represented by [a + s, b + s], for any
s ∈ R. Henceforth, if A is a subset of M then A will denote its topological
closure.

Lemma 5.4. Let X ∈ Xr
H (M), r ≥ 2, be smooth in a neighborhood V0 of a

non-trivial recurrent point p ∈ M. Assume that X has the infinitesimal con-
traction property at p. Given a neighborhood V of p, there exist a flow box
B ⊂ V and Y ∈ A(B, X) arbitrarily Cr -close to the zero-vector-field such that
for some λ ∈ [0, 1], X + λY has a saddle-connection meeting B.

Proof. By Lemma 4.6, there exist non-trivial recurrent saddle-separatrices
σ1, σ2 such that ω(σ2) ∩ α(σ1) = γp. Let 61 = [a1, b1] ⊂ V0 ∩ V be a
transversal segment to X passing through p such that P61 is an infinitesimal
κ-contraction for some 0 < κ < 0.1. By Lemma 4.8, there exists a σ2-adapted
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subsegment 6 = [a, b] ⊂ [a1, b1]. Let p ∈ (a, b) be the last intersection of
σ1 with (a, b). Accordingly, p is a non-trivial recurrent point. Modulo shift-
ing the interval [a1, b1], we may assume that a < 0 < b and p = 0. Let
B = B([a, b], ε) ⊂ V0 ∩ V be a flow box for some ε > 0. By Lemma
5.2, there exists Y ∈ A(B, X) arbitrarily Cr -close to the zero-vector-field such
that the forward Poincaré Map Pλ = Eλ ◦ P induced by X + λY on [a, b] has
the properties (1) and (2). We shall consider only the case in which 0 is an
accumulation point of σ2 ∩ [a, 0). Let q ∈ σ2 ∩ [a, b] be the third intersection
of σ2 with [a, b].

Suppose by contradiction that, for all λ ∈ [0, 1], X + λY has no saddle-
connections. Then by Theorem 5.3, for all (λ, n) ∈ [0, 1] × N, the point q
belongs to dom (Pn

λ ) and Pn
λ (q) depends continuously on λ. By (2) of Lemma

5.2 and by proceeding inductively, we may see that, for all integer n ≥ 1,

|P ◦ (Eλ ◦ P)n−1(q)− Pn(q)| ≤ κδ
(
1 + κ + ∙ ∙ ∙ + κn−2

)
≤

κδ

1 − κ
.

As 0 is an accumulation point of σ2 ∩ [a, 0) there exists N ∈ N such that
P N (q) ∈ [−κδ, 0]. Therefore,

P ◦ (E1 ◦ P)N−1(q) ≥ P N (q)−
κδ

1 − κ
≥ −κδ −

κδ

1 − κ
≥ −3κδ.

Hence, by (1) of Lemma 5.2 and by the fact that 0 < κ < 0.1,

(E1 ◦ P)N (q) = E1 ◦
(
P ◦ (E1 ◦ P)N−1

)
(q)

= P ◦
(
E1 ◦ P

)N−1
(q)+ δ ≥ −3κδ + δ > 0 .

This implies that there exists λ ∈ [0, 1] such that P N
λ (q) = (Eλ ◦ P)N (q) = 0

(see (b) of Theorem 5.3). That is, X + λY has a saddle-connection passing
through 0. This contradiction proves the lemma. �

Theorem 5.5. Suppose that Xr
H (M), r ≥ 2, has the infinitesimal contraction

property at a non-trivial recurrent point p. Then, given neighborhoods V of
p in M and V of X in Xr (M), there exist Z ∈ V , with Z − X supported
in V , having either a periodic trajectory meeting V or a saddle-connection
meeting V .

Proof. Let be given neighborhoods V of p in M and V of X in Xr
H (M). By

Lemma 3.5, there exist a flow box B0 ⊂ V and a neighborhood V0 ⊂ V of
X in Xr

H (M) such that every Z ∈ V0, with Z − X supported in B0, has the
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infinitesimal contraction property at B0. By the proof of Lemma 3.5 and by
Lemma 4.8, we may assume that B0 = B(6, ε), where 6 is a σ -adapted
transversal segment to X for some non-trivial recurrent unstable saddle-
separatrix σ . By shrinking V0 if necessary, we may assume that for every
Z ∈ V0 with Z − X supported in B0 we have that Z − X ∈ A(B, X). Sup-
pose, by contradiction, that every vector field in V0 with Z − X supported in B0

has neither periodic trajectories meeting B0 nor saddle-connections meeting B0.
We claim that, under these assumptions, every Z ∈ V0 with Z − X supported
in B0 has a non-trivial recurrent point in the interior of B0. Indeed, by taking
λ = 1 in (b) of Theorem 5.3, we get that every Z = X + (Z − X) ∈ V0 with
Z − X supported in B0 has a non-trivial recurrent point intersecting the bound-
ary of B0. Since B0 is still a flow box of Z , we have that the interior of B0 has
non-trivial recurrent points of Z . This proves the claim. Now let Z1 ∈ V0 be
a Cr vector field which is smooth in B0 and is such that Z1 − X supported in
B0. By the claim, Z1 has a non-trivial recurrent point p1 in the interior of B0,
and Z1 has the infinitesimal contraction property at B0. By Lemma 5.4, there
exist a flow box B ⊂ V and Z2 ∈ V0, with Z2 − X supported in B, having a
saddle-connection meeting B. This contradiction finishes the proof. �

6 Cr -closing results

An interval exchange transformation or simply an iet is an injective map
E : R/Z → R/Z of the unit circle, differentiable everywhere except possi-
bly at finitely many points and such that for all x ∈ dom (E) (its domain of
definition), |DE(x)| = 1. The trajectory of E passing through x ∈ R/Z is the
set O(x) = {En(x) : n ∈ Z and x ∈ dom (En)}. We say that E is minimal
if O(x) is dense in R/Z for every x ∈ R/Z. Given a transversal circle C to
X ∈ Xr

H (M), we say that the forward Poincaré Map P : C → C is topologi-
cally semiconjugate to an iet E : R/Z → R/Z if there is a monotone contin-
uous map h : C → R/Z of degree one such that E ◦ h(x) = h ◦ P(x) for all
x ∈ dom (P).

We shall need the following structure theorem due to Gutierrez [7]. We
should remark that in this theorem below, the item (d) although not explic-
itly stated in [7] follows from the proof given therein and from the fact that
X has finitely many singularities.

Theorem 6.1. Let X ∈ Xr
H (M). The topological closure of the non-trivial

recurrent trajectories of X determines finitely many quasiminimal sets
N1, N2 . . ., Nm. For each 1 ≤ i ≤ m, there exists a transversal circle Ci
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to X intersecting every non-trivial recurrent trajectory of X |Ni such that if
Pi : Ci → Ci is the forward Poincaré Map induced by X on Ci then:

(a) Either Ni ∩ Ci = Ci or Ni ∩ Ci is a Cantor set;

(b) N j ∩ Ci = ∅, for all j ∈ {1, 2 . . . , i − 1, i + 1, . . . ,m};

(c) Pi is topologically semiconjugate to a minimal interval exchange trans-
formation Ei : R/Z → R/Z;

(d) For each q ∈ Ci , γq ∩ Ci is an infinite set.

We call the circle Ci a special transverse circle for Ni .

Corollary 6.2. Let X ∈ Xr
H (M) and let N be a quasiminimal set. Given a

transversal segment 61 passing through a non-trivial recurrent point p ∈ N,
there exists a subsegment 6 of 61 passing through p such that if z ∈ 6 then
either α(z) = N or ω(z) = N. In particular, either z ∈ ∩∞

n=1 dom (Pn) or
z ∈ ∩∞

n=1 dom (P−n), where P : 6 → 6 is the forward Poincaré Map induced
by X.

Proof. Let C be a special transversal circle for N . There exist a subsegment
6 of 61 passing through p and a subsegment 0 of C such that the forward
Poincaré Map T : 6 → 0 induced by X is a diffeomorphism. Since C is free
of finite trajectories (by (d) of Theorem 6.1), so is 6. Hence, by Lemma 4.3,
either α(z) or ω(z) is a quasiminimal set, which by (b) of Theorem 6.1, has to
be N . �

Proposition 6.3. Suppose that X ∈ Xr
H (M) has the infinitesimal contraction

property at a non-trivial recurrent point p ∈ M. There exists an arbitrarily
small flow box B0 ending at p and an arbitrarily small neighborhood V0 of X
in Xr

H (M) such that either:

(i) some Z ∈ V0 with Z − X supported in B0 has a periodic trajectory
meeting B0 or,

(ii) every Z ∈ V0 with Z − X supported in B0 has a non-trivial recurrent
point in the interior of B0.

Proof. By Corollary 6.2, given a transversal segment 61 to X passing through
p, there exists a subsegment 6 of 61 passing through p such that for every
z ∈ 6, either α(z) = N or ω(z) = N , where N = γp. By taking a subsegment
of 6 if necessary, we may assume that the forward Poincaré Map P : 6 → 6

induced by X is an infinitesimal κ-contraction for some κ ∈ (0, 1).
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We claim that z ∈ 6 \ ∩∞
n=1 dom (Pn) if and only if ω(z) is a saddle-

point. Indeed, if z ∈ 6 \ ∩∞
n=1 dom (Pn) then there exists m ∈ N such that

z ∈ dom (Pm) but z 6∈ dom (Pm+1). Hence, Pm(z) 6∈ dom (P) and by
Lemma 4.9, either ω(z) is a saddle-point or Pm(z) belongs to the open set
6 \ dom (P). In this last case, there exists a subsegment I ⊂ 6 containing z
such that Pm(I ) ⊂ 6 \ dom (P) and I ⊂ ∩∞

n=1 dom (P−n) (by the first part of
this proof). Of course, this is impossible since P−1 has a uniformly expanding
behaviour and 6 has finite length. This proves the claim.

In particular, we have that dom (P) is the whole transversal segment 6 but
finitely many points. Let B0 = B(6, ε) be a flow box and let V0 ⊂ Xr

H (M) be
a neighborhood of X such that if Z ∈ V0 and Z − X is supported in B0 then
B0 is still a flow box of Z and so dom (PZ ) = dom (P), where PZ is the forward
Poincaré Map induced by Z on 6. Hence, for every Z ∈ V0 such that Z − X
is supported in B0, dom (PZ ) is the whole transversal segment but finitely
many points whose positive trajectories go directly to saddle-points. Since
there are only finitely many saddle-points, we have that for each Z ∈ V0 such
that Z − X is supported in B0, there exists a countable subset D of 6 such that
for every z ∈ 6 \ D the positive semitrajectory of Z starting at z intersects
6 infinitely many times. By Lemma 4.3, ω(z) is either a recurrent trajectory
intersecting B0 or an attracting graph intersecting B0. In the second case, an
arbitrarily small Cr -perturbation of Z supported in B0 yields a vector field
Z̃ ∈ V0 having a periodic trajectory meeting B0. �

Theorem 6.4 (Localized Cr -Closing Lemma). Suppose that X ∈ Xr
H (M),

r ≥ 2, has the contraction property at a non-trivial recurrent point p ∈ M
of X. Given neighborhoods V of p in M and V of X in Xr

H (M), there exists
Y ∈ V , with Y − X supported in V , such that Y has a periodic trajectory
meeting V .

Proof. Assume by contradiction that no vector field Y ∈ V with Z − X sup-
ported in V has a periodic trajectory meeting V . By Proposition 6.3 and by
Lemma 3.5, there exist a flow box B0 ⊂ V and a neighborhood V0 ⊂ V of X
such that every Z ∈ V0 with Z − X supported in B0 has the infinitesimal con-
traction property at B0 and a non-trivial recurrent point in int (B0), the interior
of B0. Note that every vector field Z ∈ V0 with Z − X supported in B0 has
at most 4Ns saddle-connections, where Ns is the number of saddle-points of X .
Therefore, the proof will be finished if we construct a sequence {Zn}

4Ns+1
n=0 of

vector fields in V0 such that for each n ∈ N, Zn − X is supported in B0 and
Zn+1 has one more saddle-connection than Zn . Let us proceed with such a
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construction. Let p0 ∈ int (B0) be a non-trivial recurrent point of Z0 = X .
By Theorem 5.5, there exist an open set V1 ⊂ B0 and Z1 ∈ V0 with Z1 − X
supported in V1 having a saddle-connection σ1 meeting V1. By the above, Z1

has also a non-trivial recurrent point p1 ∈ int (B0). Now we may repeat the
reasoning. By Theorem 5.5, there exist an open set V2 ⊂ B0 \ σ1 and Z2 ∈ V0

with Z2 − X supported in V2 having a saddle-connection σ2 meeting V2 (and
a saddle-connection σ1 meeting V1). Moreover, Z2 has a non-trivial recurrent
point p2 ∈ int (B0). By proceeding by induction, we shall obtain a vector field
Z4Ns+1 ∈ V0 with Z4Ns+1 − X supported in B0 having at least 4Ns + 1 saddle-
connections, which is a contradiction. �

Theorem A. Suppose that X ∈ Xr
H (M), r ≥ 2, has the contraction property

at a quasiminimal set N . For each p ∈ N, there exists Y ∈ Xr
H (M) arbitrarily

Cr -close to X having a periodic trajectory passing through p.

Proof. That localized Cr -closing (Theorem 6.4) implies Cr -closing (The-
orem A) is an elementary fact. �

7 Transverse measures

Let N be a quasiminimal set of X ∈ Xr
H (M), 6 be a transversal segment to X

such that 6 \ ∂6 intersects N and P : 6 → 6 be the forward Poincaré Map
induced by X . We may consider 6 as a Borel measurable space (6,B), where
B is the Borel σ -algebra on 6. We say that a Borel probability measure is non-
atomic if it assigns measure zero to every one-point-set. A transverse measure
on 6 is a non-atomic P-invariant Borel probability measure which is supported
in N ∩ 6. A transverse measure ν is called ergodic if whenever P−1(B) = B
for some Borel set B ∈ B then either ν(B) = 0 or ν(B) = 1. We let M (6)

denote the set of Borel probability measures on 6 and we let MP(6) denote
the subset of M (6) formed by the P-invariant Borel probability measures.
We say that P is uniquely ergodic if MP(6) is a unitary set. A set W ⊂ 6 is
called a a total measure set if ν(W ) = 1 for every ν ∈ MP(6). Concerning
the existence of transverse measures, we have the following result.

Theorem 7.1. Let N be a quasiminimal set of X ∈ Xr
H (M) and let 61 be a

compact transversal segment to X passing through a non-trivial recurrent point
p ∈ N. There exist a subsegment 6 ⊂ 61 passing through p and finitely many
ergodic transverse measures ν1, . . . , νs ∈ MP(6) such that every ν ∈ MP(6)

can be written in the form ν =
∑s

i=1 λiνi , where λi ≥ 0 for all 1 ≤ i ≤ s, and∑s
i=1 λi = 1.
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Proof. The proof may be split into two parts. The first part of the proof –
that every small subsegment of 61 passing through p can be endowed with a
transverse measure – can be found in Katok [15] and Gutierrez [11]. To prove
the second part, let C be a special transversal circle to X passing through γp

as in the Theorem 6.1. There exist subsegments 6 ⊂ 61 containing p and
0 ⊂ C such that the forward Poincaré Map T : 6 → 0 induced by X is a
diffeomorphism. We claim that MP(6) is made up of transverse measures,
where P : 6 → 6 is the forward Poincaré Map induced by X . Indeed, by (d)
of Theorem 6.1, 6 is free of periodic points. By Poincaré Recurrence Theo-
rem, the set of non-trivial recurrent points in 6 is a total measure set. By (b)
of Theorem 6.1, all these non-trivial recurrent points belong to the same quasi-
minimal set. This proves the claim. Now, every (ergodic) transverse measure
on 6 corresponds, via the diffeomorphism T , to a (ergodic) transverse mea-
sure on C . By (c) of Theorem 6.1, every (ergodic) transverse measure on C
corresponds to a (ergodic) Borel probability measure on R/Z invariant by a
minimal interval exchange transformation E : R/Z → R/Z. By a result of
Keane [16], which also holds for interval exchange transformations with flips
[6], there exist only finitely many ergodic Borel probability measures invari-
ant by E . Each of such E-invariant Borel probability measures on R/Z is
associated to exactly one ergodic transverse measure in MP(6). Now the
rest of the proof follows from the fact that MP(6) is the convex hull of its
ergodic measures. �

Let P : 6 → 6 be the forward Poincaré Map induced by X on a transver-
sal segment 6 to X ∈ Xr

H (M). By Lemma 4.9, the domain of P is the union
of finitely many open, pairwise disjoint subintervals of 6: dom (P) = ∪m

i=1 Ji .
We say that the lateral limits of |D P| exist if for every 1 ≤ i ≤ m and for
every p ∈ ∂ Ji , the lateral limit

` = lim
x→p
x∈Ji

|D P(x)|

exists as a point of [0,+∞].
Henceforth, till the end of this paper, we shall assume that N is a quasimin-

imal set, 6 is a transversal segment to X such that 6 \ ∂6 intersects N and
P : 6 → 6 is the forward Poincaré Map induced by X on 6. We shall assume
that 6 is so small that the forward Poincaré Map T : 6 → T (6) ⊂ C induced
by X is a diffeomorphism, where C is a special transversal circle for N , and that
P has the following properties:

(P1) |D P| is bounded from above;

(P2) The lateral limits of |D P| exist.
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Definition 7.2 (Almost-integrable function). We say that log |D P| is ν-almost-
integrable if

min
{ ∫

log+|D P| dν,
∫

log−|D P| dν
}
< ∞,

where

log+ |D P(x)| = max
{

log |D P(x)|, 0
}
,

log− |D P(x)| = max
{

− log |D P(x)|, 0
}
,

and ν ∈ M (6). In this case we define
∫

log |D P| dν =
∫

log+ |D P| dν −
∫

log− |D P| dν,

which is a well defined value of the subinterval [−∞,∞) of the extended real
line [−∞,∞].

Now we present four preparatory lemmas for the proof of Proposition 7.7.
We would like to point out that Proposition 7.7 in the case where P is a smooth
map defined on a compact interval was presented in [1, Lemma 2.1, p. 1305]
(see also [4, Lemma 2, p. 1475]), however the ideas used in that proof do not
generalize immediately to the case where P has discontinuities.

Lemma 7.3. Suppose that there exists K ∈ R such that
∫

log |D P| dν < K
for all ν ∈ MP(6). Then there exists a continuous function φ : 6 → R
everywhere defined, with log |D P(x)| < φ(x) for all x ∈ dom (P) \ P−1(∂6),
such that

∫
φ dν < K for all ν ∈ MP(6).

Proof. By reasoning as in Theorem 7.1, since 6 is disjoint of periodic trajec-
tories, we may show that MP(6) is the convex hull of finitely many ergodic
(non-atomic) transverse measures ν1, . . ., νs . It follows from (P1) and (P2)
that there exists a continuous function φ : dom (P) → R such that

∫
φ dνi <

K , for all 1 ≤ i ≤ s, and log |D P(x)| < φ(x) for all x ∈ dom (P) \ P−1(∂6).
Hence,

∫
φ dν < K for all ν ∈ MP(6). Now we may take φ to be any

continuous extension of φ to 6. Since every ν ∈ MP(6) is supported in
N ∩6 ⊂ dom (P), we have that

∫
φ dν =

∫
φ dν < K for all ν ∈ MP(6). �

Lemma 7.4. The following statements are equivalent:

(a) lim infn→∞
1
n log |D Pn(x)| < 0 for all x in a total measure set;
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(b)
∫

log |D P| dν < −c for some c > 0 and for all ν ∈ MP(6);

(c) lim infn→∞
1
n log |D Pn(x)| < −c for some c > 0 and for all x in a total

measure set;

Proof. Let us show that (a) implies (b). By (P1), log |D P| is ν-almost
integrable with respect to each ν ∈ M (6). Hence, there exists K ∈ R
such that

∫
log |D P| dνi < K , for all 1 ≤ i ≤ s, where {νi }s

i=1 are the er-
godic transverse measures in MP(6). So either

∫
log |D P| dνi = −∞ for all

i = 1, . . . , s (and we are done) or there exists a non-empty subset 3 of
{1, 2, . . . , m} such that log |D P| is νi -integrable for all i ∈ 3. In this case,
(a) and Birkhoff Ergodic Theorem yields that

∫
log |D P| dνi = lim

n→∞

1

n
log |D P(x)| = lim inf

n→∞

1

n
log |D P(x)| = −ci < 0

for all x in a νi -full measure set. Now take c = min {ci : i ∈ 3}. A similar
reasoning shows that (b) implies (c). This finishes the proof. �

Lemma 7.5. Let {μ j } j∈N be a sequence of Borel probability measures in
M (6) weakly∗ converging to μ ∈ M (6). The following hold:

(a) μ(B) = lim j→∞ μ j (B) for every Borel set B ∈ B such that μ(∂B) = 0,
where ∂B denotes the topological boundary of B;

(b) μ(J ) = lim j→∞ μ j (J ) for every open subinterval J of 6 such that
μ(∂ J \ ∂6) = 0.

Proof. The item (a) is a standard theorem from measure theory (see [22, The-
orem 6.1, p. 40]). Let us prove (b). Let J be an open subinteval of 6. If
∂ J ∩ ∂6 = ∅ then μ(∂ J ) = μ(∂ J \ ∂6) = 0 and the result follows from
(a). If J = 6 then the indicator function χJ is continuous and so the result
follows immediately from the weak∗ convergence of {μ j } j∈N to μ. Hence we
may assume that ∂ J ∩ ∂6 is a one-point set such that μ(∂ J \ ∂6) = 0. Un-
der these assumptions, there exist monotone sequences of continuous functions
{ϕK }K∈N and {ψK }K∈N such that ϕK < χJ < ψK and

∫
ψK − ϕK dμ < 1

K for

each K ∈ N. Since μ j
∗

→ μ (in the weak∗ topology) as j → ∞ and ψK − ϕK

is a continuous function, we have that for each K ∈ N there exists L K ∈ N
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such that
∫
ψK − ϕK dμ j <

2
K for all j > L K . It is easy to see that for each

K ∈ N and for all j > L K ,
∣
∣
∣
∣

∫
χJ dμ−

∫
χJ dμ j

∣
∣
∣
∣ <

3

K
+

∣
∣
∣
∣

∫
ϕK dμ−

∫
ϕK dμ j

∣
∣
∣
∣ .

This shows that μ(J ) = lim j→∞ μ j (J ). �

Lemma 7.6. Let {xn j }
∞
j=0 be a sequence in 6 such that n j ≥ 1 and xn j ∈

dom (Pn j −1) for all j ∈ N. Any accumulation point of the sequence of Borel
probability measures

μ j =
1

n j

n j −1∑

k=0

δ
Pk

(
xn j

), (3)

where δx is the Dirac probability measure on 6 concentrated at x, is a non-
atomic measure.

Proof. Let μ ∈ M (6) be an accumulation point of {μ j } j∈N. By taking a

subsequence if necessary and by renaming variables, we may assume that μ j
∗

→
μ as j → ∞. Since the set D = {z ∈ 6 | μ({z}) > 0} is at most countable,
for each p ∈ 6, there exists an open subinterval Ip of 6 containing p of length
`(Ip) arbitrarily small such that μ(∂ Ip \ ∂6) = 0. By (c) of Theorem 6.1 and
by Lemma 3.1 of Camelier-Gutierrez [3], for each ε > 0, there exist δ > 0 and
N ∈ N, such that if `(Ip) < δ then for each n ≥ N and x ∈ dom (Pn−1),

1

n

n−1∑

k=0

χIp

(
Pk(x)

)
< ε.

Hence, for each ε > 0, there exist δ > 0 and N ∈ N such that if `(Ip) < δ then
for all j ≥ N ,

μ j (Ip) =
1

n j

n j −1∑

k=0

χIp

(
Pk(xn j )

)
< ε.

By Lemma 7.5, for each ε > 0 there exists δ > 0 such that if `(Ip) < δ then

μ
(
Ip

)
= lim

j→∞
μ j

(
Ip

)
≤ ε.

Hence, μ({p}) = 0 and so μ is non-atomic, which finishes the proof. �
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Proposition 7.7. Suppose that there exist a constant c > 0 and a continuous
function φ : 6 → R such that

∫
φ dν < −c for all ν ∈ MP(6). Then there

exists N ∈ N such that for each n > N and for all x ∈ dom (Pn−1),

1

n

n−1∑

k=0

φ
(
Pk(x)

)
< −c.

Proof. Assume by contradiction that there exists a sequence {xn j }
∞
j=0 ⊂ 6

such that for each j ∈ N, xn j ∈ dom (Pn j −1) and

1

n j

n j −1∑

k=0

φ
(
Pk(xn j )

)
≥ −c.

The set M (6), endowed with the weak∗ topology, is a compact metric space.
Consequently, the sequence of Borel probability measures

μ j =
1

n j

n j −1∑

k=0

δ
Pk

(
xn j

),

has a subsequence that weakly∗ converges to a Borel probability measure
μ ∈ M (6). By renaming variables, we may assume that μ j

∗
→ μ as j → ∞.

By Lemma 7.5 and by Lemma 7.6, we have that μ(I ) = lim j→∞ μ j (I ) for all
set I which is union of finitely many intervals. On the other hand,

lim
j→∞

μ j
(
P−1(B)

)
= lim

j→∞
μ j (B)

for all Borel set B. Besides, for every interval J , P−1(J ) is union of finitely
many intervals. Therefore, by the above, we have that for every interval J

μ
(
P−1(J )

)
= lim

j→∞
μ j

(
P−1(J )

)
= lim

j→∞
μ j (J ) = μ(J ).

This implies that μ is P-invariant and so μ ∈ MP(6). Since the function φ is
continuous, we have

∫
φ dμ = lim

j→∞

∫
φ dμ j = lim

j→∞

1

n j

n j −1∑

k=0

φ
(
Pk(xn j )

)
≥ −c,

by the definition of μ and by the way we have chosen the sequence {n j }∞j=0,
which contradicts the initial assumption that

∫
φdν < −c for all ν ∈ MP(6). �
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Theorem B. Suppose that X has divergence less or equal to zero at its saddle-
points and that X has negative Lyapunov exponents at a quasiminimal set N .
Then X has the infinitesimal contraction property at N .

Proof. Let 61 be a transversal segment to X passing through a non-trivial
recurrent point p ∈ N so small that the forward Poincaré Map T : 61 →
T (61) ⊂ C is a diffeomorphism, where C is a special transversal circle for
N . By the hypothesis on the divergence of X at its saddle-points every for-
ward Poincaré Map P : 6 → 6 induced by X on a transversal segment 6
to X has properties (P1) and (P2) (see [19]). By the hypothesis of negative
Lyapunov exponents and by Lemma 7.4, there exist a subsegment 6 of 61

passing through p and a constant c > 0 such that the forward Poincaré Map
P : 6 → 6 induced by X satisfies

∫
log |D P| dν < −c for all ν ∈ MP(6). By

Lemma 7.3, there exists a continuous function φ : 6 → R everywhere de-
fined, with log |D P(x)| < φ(x) for all x ∈ dom (P) \ P−1(∂6), such that∫
φ dν < −c for all ν ∈ MP(6). By Proposition 7.7, there exists N ∈ N such

that for all n ≥ N and for all x ∈ dom (Pn) \ O−
n (x),

1

n
log |D Pn(x)| =

1

n

n−1∑

k=0

log |D P
(
Pk(x)

)
| <

1

n

n−1∑

k=0

φ
(
Pk(x)

)
< −c.

Thus Pn is an infinitesimal contraction. By Proposition 3.1, X has the infinites-
imal contraction property at N . �

To finish the paper, we now provide a sketch of the proof of Theorem C.

Theorem C. Suppose that X ∈ Xr
H (M), r ≥ 2, has the contraction property

at a quasiminimal set N . There exists Y ∈ Xr (M) arbitrarily Cr -close to X
having one more saddle-connection than X.

Sketch of the proof. In the smooth case, we may use the same proof as
Lemma 5.4 without any changes. In the case in which X ∈ Xr (M) we can-
not use that proof because in taking a Cr -flow box to make the perturbation,
the vector field so obtained is of class Cr−1. Thus we have to make the pertur-
bation directly on the surface (using bump functions defined on the surface and
using also the orthogonal vector field to X ) and to use the flow box coordinates
only for estimation purposes. �
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