## A Property of the Chow-Robbins Procedure for Fixed Length Confidence Intervals\*

DJALMA G. C. PESSOA

## 1. Introduction

Let  $X_1$ ,  $X_2$ ,... be a sequence of independent identically distributed random variables with common distribution F. Let  $EX_i = \xi$  and  $Var X_i = \sigma^2 < \infty$ .

Suppose a confidence interval of given length 2d and coverage probability  $\alpha$  is required for  $\xi$ .

If F is normal with variance  $\sigma^2$  unknown it is a well known result that this cannot be accomplished by a non-sequential procedure.

Several authors, including Stein [1], Chow and Robbins [2], have contributed to the solution of this problem. A two-stage procedure was proposed by Stein in [1], to solve the problem in the normal case. In [2] Chow and Robbins introduced a truly sequential procedure to find confidence intervals for the mean of an arbitrary population.

The following simple considerations motivate the procedure proposed in [2]: If the variance  $\sigma^2$  of the population is known if d is small compared to  $\sigma^2$ , define

$$\bar{X}_n = \frac{1}{n} \sum_{i=0}^n X_i$$
 and  $S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ 

and choose a to satisfy

$$(2\pi)^{-1/2}\int_{-a}^{+a}e^{-u_2/2}\,du=\alpha.$$

<sup>\*</sup>Recebido pela SBM em 20 de março de 1973.

Let n= smallest integer  $\geq \frac{a^2\sigma^2}{d^2}$ . Then take n independent observations from the population and form the interval  $I_n=[\bar{X}_n-d,\,\bar{X}_n+d]$ . It is easy to show that  $\lim_{d\to 0}P(\xi\in I_n)=\alpha$ . Suppose now  $0<\sigma^2<\infty$  is unknown. In this case Chow and Robbins proposed the following C.R. procedure. Define  $N^*=$  smallest  $n\geq n_0$  such that  $n\geq \frac{a^2S_n^2}{d^2}$ , and form the interval  $I_{N^*}==[\bar{X}_{N^*}-d,\,\bar{X}_{N^*}+d]$ .

They investigated the asymptotic behavior of this procedure as  $d \longrightarrow 0$  and proved:

- (a)  $\lim_{d\to 0} EN^* = \infty$ ;
- (b)  $\lim_{d\to 0} P[\bar{X}_{N^*} d < \xi < \bar{X}_{N^*} + d] = \alpha$  (asymptotic consistency);
- (c)  $\lim_{d\to 0} \frac{d^2 E N^*}{a^2 \sigma^2} = 1$  (asymptotic efficiency).

We show that, in the class of procedures satisfying (b), the C.R. procedure is asymptotically minimax, as  $d \longrightarrow 0$ . For this, we compare expected sample sizes for d small.

## 2. A result on C.R. Procedure

We denote by S a procedure for obtaining a confidence interval of length 2d for  $\xi$ . Specifically, this is a pair  $(N, \{Y_n\}_{n>1})$  where N is a stopping time and  $Y_n = Y_n(X_1, \ldots, X_n)$  is an statistics based upon the first n observations. If N = n the procedure estimates  $\xi$  by  $(Y_n - d, Y_n + d)$ . Let's suppose F normal with mean  $\xi$  and variance  $\sigma^2 < \infty$  and consider  $\xi$  a random variable with prior distribution  $\mu$  having density  $N(0, \tau^2)$ . Next we present some results from [3], needed for the proof of theorem 1:

LEMMA 1. Let  $S = (N, \{Y_n\}_{n>1})$  be a procedure describe above. Then we have for each  $\sigma$ :

(i) 
$$\int P[Y_N - d < \xi < Y_N + d] d\mu(\xi) \le \sum_{1}^{\infty} \bar{p}_m(\tau, S) H(C_m)$$

where

$$\bar{p}_m(\tau, S) = \int P[N = m] d\mu(\xi),$$

$$H(C_m) = (2\pi)^{-1/2} \int_{-C_m}^{C_m} e^{-\frac{1}{2}u^2} du$$

and

$$C_m = \left(\frac{m\tau^2 + d^2}{\tau^2 \sigma^2}\right)^{\frac{1}{2}} d.$$

(ii) Let  $\bar{E}N = \int ENd\mu(\xi)$  and v be an integer, then

$$\bar{E}N \leq v \Rightarrow \sum_{1}^{\infty} \bar{p}_{m}(\tau, S) H(C_{m}) \leq H(C_{v}).$$

PROOF. Result (1) is inequality (21) in [3]. For (ii) see inequalites (31) and (32) in [3].

Theorem 1. Consider the class of all procedures  $S = (N, \{Y_n\}_{n>1})$  satisfying  $\lim_{d\to 0} P_{(\tau,\sigma^2)} \left[ Y_N - d < \xi < Y_N + d \right] = \alpha \qquad \forall (\xi,\sigma^2).$ 

In this class the C.R. procedure satisfies for each  $\sigma$ :

$$\liminf_{d\to 0} \frac{\sup_{\xi} EN}{EN^*} \ge 1.$$

PROOF. First, by property (b) the C.R. procedure  $S^* = (N^*, \{\bar{X}_n\})$  belongs to the class defined above. Let  $S = (N, \{Y_n\}_{n>1})$  be any procedure in this class. By the Dominated Convergence theorem,

$$\lim_{d\to 0} \int P_{(\xi,\sigma^2)} \left[ Y_N - d < \xi < Y_N + d \right] d\mu(\xi) = \alpha.$$

Given  $\varepsilon > 0$  choose  $\delta(\varepsilon) > 0$  such that for  $d < \delta(\varepsilon)$ , we have  $\Sigma \bar{p}_m(\tau, S) H(C_m) > \alpha - \varepsilon$  (part (i) of Lemma 1). Let  $a_{\varepsilon} = H^{-1}(\alpha - \varepsilon)$  and take  $\gamma =$  greatest integer  $\leq \frac{a_{\varepsilon}^2 \sigma^2}{d^2} - \frac{\sigma^2}{\tau^2}$ , then  $H(C_{\gamma}) \leq a_{\varepsilon}$ . Therefore, we have by part (ii) of Lemma 1:

$$\sup_{\xi} EN \geq EN > \gamma > \frac{d_{\varepsilon}^2 \sigma^2}{d^2} \frac{\sigma^2}{\tau^2} \quad 1.$$

Using properties (a) and (c) of the C.R. procedure, we get

$$\liminf_{d\to 0} \frac{\sup_{\xi} EN}{EN^*} \ge \frac{a_{\xi}^2}{a^2} \qquad \forall \varepsilon > 0,$$

which implies

$$\liminf_{d\to 0} \frac{\sup_{\xi} EN}{EN^*} \ge 1.$$

## REFERENCES

- [1] Stein, C., A two-sample test for linear hypotheses whose power is independent of the variance, Ann. Math. Statist., vol 16 (1945), 243-258.
- [2] CHOW, U. S. and ROBBINS, H., On asymptotic theory of fixed-width sequential confidence intervals for the mean, Ann. Math. Statist., vol. 36 (1965), 457-462.
- [3] STEIN, C., and WALD., A., Sequential Confidence Intervals for the mean of a normal distribution with known variance, Ann. Math. Statist., vol. 28 (1947), 427-433.

Instituto de Matemática Pura e Aplicada Rio de Janeiro - BRASIL