Spherical Images of Continuous
Convex Surfaces of Hilbert Spaces*

RUBENS LEAO DE ANDRADE
1. Introduction and Statment of Results

A subset M < H of a Hilbert space H is a convex surfuce if M = 0K is the
(topological) boundary of a closed convex set K with non void interior K.
K is called the convex bodv of M. Given a point pe M we say that a hyper-
plane L containing p is a support plane of M at p if M lies in one of the closed
half-spaces determined by L. The unit vector perpendicular to L and that
points to the half-space where M lies is called an inner normal vector ar p.
We denote by y(p) the set of all inner normal vectors at p and define the sphe-
rical image of M by y(M) = U 7(p). A subset A < X of the unit sphere £ < H

peM
is geodesically convex if: 1) Given two points x, ve A, x # — v then the mini-

mal geodesic segments joining x and v lies in 4; 2) if x and — x lie in 4 then
at least one of the geodesic segments joining x and — x lies in A. In the case
that M is a convex surface of R" = H, Wu [4] proved that the closure y(M)
and the interior y°(M) are geodesically convex sets. A simple proof of the
fact that (M) is geodesically convex, in the case that M is-a C™ convex sur-
face of a Hilbert space, is given by M. do Carmo and B. Lawson [1]. In this
paper we extend Wu’s result to a convex surface of a Hilbert space, under the
hypothesis that y°(M) # &. We remark that in the finite dimensional case
this hypothesis is not restrictive, because every convex surface of R" is isome-
tric, by an isometry of R", to a product R™ x N, where N is a convex surface
of R"™™ and y(N) = y(M) (as a subset of the unit sphere of R"~™) has a non
void interior. In the case that M is a convex surface of a Hilbert space, the
above argument can not be applied, because, as we show in [3], we may have
7°(M) = & and (M) = £. We don’t know, except in the case that M is a
C* manifold, if Wu’s result remains true in the case that M is a convex surface
of a Hilbert space and y°(M) = @&.
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“We now state the theorem that we prove here:

THEOREM. Let M = H be a convex surface of a Hilbert space H. Suppose that
(M) # D. Then '

3) (M) and (M) are geodesicallv convex sets of the unit sphere ¥ = H.

2. Technical Lemmas

Given a subset 4 < X we say that a point ve X is a pole of A if A is contained
in the hemisphere E, = {xeZ; (x,v) > 0]. We will denote by .2(A4) the set
of poles of 4 and by h(M) the set of points v e X such that the height function
h,(x) = (v, x) is bounded below on M.

Lemma 1. 2(h(M)) = 2(3(M)) = {ve Z; {p + to, t = 0} = K for every pe K},
where K is the convex bodv of M.

PrROOF. Since (M) = h(M), we have that 2(y(M)) = P(h(M)). Set
A={veX; {p+tr,1>0 = K for every pekl.

We will prove that: 1) 4 = 2(h(M)); 2) 2((M)) = A.

1) Suppose that ve A and that there exists we h(M) such that (v, w) < 0.
Since the height function h,, is bounded below on M, we have that there
exists a hyperplane L perpendicular to w and such M is in the half-space
determined by L to where w points. Take peIo< and consider the 2-dimen-
sional plane containing p and parallel to {v, w}. Since w is perpendicular
to L we have thgt this plane P intersects L at a line {g + tu; t € R}, where
q is the intersecion {p + tw; t eR}n L.Consider the equation p + tv = g + su.
We assert that this equation has a (unique) solution (¢4, s,) with t, > 0.
Indeed, since {v, u} are linearly independent, because <w, u> = 0 and
(w,v) <0, and p—gq is in the plane generated by {v,u} there exists (a uni-
que) (to, So) such that p—q = sou—t,v. Moreover, —t, = (p—gq, w)/{v, w).
This implies that ¢, > 0 and our assertion in proved. Since M is convex we
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have that p + tv ¢ K fort > t, . This contradicts the fact that v 4 and we have
proved that A < 2(h(M)).

2) Suppose that ve 2(y(M)) and that for some peI% the half-line {p + tv;
t > 0} intersects M at a point g = p + tove M. Since pe K we have that
for every wey(p),

p<{p-gw)y = (~tov,w) = -t;{v,w) < 0.

This is a contradiction and the lemma is proved.
LEmMma 2. y°(M) = h°(M).

ProoFr. Since y(M) < h(M), we have only to prove that h°(M) < y(M). Take
ve h°(M) and let L be a hyperplane perpendicular to v.that intersects the
interior of the convex body K of M. First we will prove that S = K n L is
bounded. We may suppose, without loss of generality, that L is a (co-dimen-
sion one) subspace of H. Denote by X’ the unit sphere of L. Given weX/,
take ueh°(M) such that u =av + fw with a, f > 0. For every xeS, we
have that (u,x) = f{w, x). From this we conclude that the height function
h,, is bounded below on S for every we X'. Since h_,, = —h,,, we conclude
that the height function h,, is bounded on S for every we X'. It follows from
the Uniform Boundness Theorem [2], that S is bounded. Next we will prove
that the part of K below L is bounded, that is K; = {x eK; {(v,x) < 0}
is bounded. Suppose that K, is unbounded and take ae K- K, . For every
positive integer n, let x,e K, be such that | x,—al| > n. Denote by y,eS
the point of intersection of L and thé segment joining a and x,. Since S is
closed, convex and bounded we have that S is weakly compact. Let y, be
a limit point (with respect to the weak topology) of the sequence {),}. From
the fact that K is weakly closed (because K is closed and convex) it is not
difficult to prove that the half-line {a + tw; t > 0}, where w = y, —a/|| vo — a,
is contained in K. It follows from Lemma 1 that w is a pole of h(M) and, since
ve h°(M), we have that (v,w) > 0. On the other hand, since {v,y,) <0,
we have that <v, w> < 0. This-is a contradiction and we conclude that K,
is bounded. Since K, is closed and convex we have that K, is weakly compact
and the height function h,(x) assumes its minimum at point pe K, . It is
clear that pe M and hence v e (M). The lemma is proved.
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Lemma 3. (M) = h°(M).

Proor. Take v | (M) and let exp, : TZ, — T be the exponential map. Let
B,(-v) be a closed ball of ¥ with center —v and radius r such that y°(M)-
—B,(-v) # & and y°(M) N B,(-v). Set

A = {weS); exp,(n-rw)ey° (M)},

where S(v) is the unit sphere of TZ,. It is clear that A4 is an open non void
set of S(v). Since vep(M) we have that there exist 1, 0 < ¢ <r, and we A
such that exp,(—tw) = p(M). It follows that there exist o, f > 0 and w, u € (M)
such that v = aw + Bu and, hence, the height function h, is bounded below

on M. This proves that y(M) = h°(M), as was to be shown.

3. Proof of the Theorem

o

1) From Lemmas 2 and 3 we have that (M) c h°(M) = y°(M). It follows

then that y(M) = y°(M).

2) It is easy to prove that h(M) is a geodesically convex set of X. Indeed, suppo-
se that v, we h(M), v # —w and let u be a point on the minimal geodesic seg-
ment joining v and w. We have then that u = av + fw with o, § > 0. It follows
that ue h(M). If v = —w then at least one of the geodesic segment joining
v and w contains a point u # + v. By the above argument, this segment is
contained in h(M) and we have proved that h(M) is geodesically convex.
We will prove now that y°(M) =y(M). To prove this, we have only to show
that y(M) = y°(M). Take vey(M) and let U = y°(M) be an open set such
that —v¢ U. For each xe U denote by g, the minimal geodesic segments
joining v and x. Since h(M) is geodesically convex, we have that 4 = ( ) g, <

Xeu

h(M). Since A {v} is 0pén we have that ve h’(M) = y°(M).

3) First observe that if C = X is geodesically convex then ¢ and C are geode-
sically convex. By Lemma 2 we have that y’(M) = h'(M) and. from the fact
that h(M) is geodesically convex, we have that y'(M) and (M) = (M) arc
geodesically convex.
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