A Note on a Central Limit Theorem for Dependent Random Variables*

P. A. MORETTIN

1. Introduction. Let $\{\psi_n(x), n=0,1,\ldots,x\in\mathbb{R}_+\}$ be the set of Walsh functions, periodically extended to the non-negative real numbers. These functions are defined as products of Rademacher functions and form an orthonormal, complete set on [0,1]. They assume only the values -1 and +1 and may be identified with the full set of characters of the dyadic group. This is the set of all sequences $\bar{x}=\{x_n\}$, where $x_n=0$ or $x_n=1$ and the group operation is addition modulo 2,+, componentwise. For the necessary details and notation we refer to Fine [2] and Morettin [3].

Let $\{X_n, n=0, 1, 2, ...\}$ be a strictly stationary sequence with $E\{X_n\} = 0$, for all n, and covariance function, $R_{XX}(k) = E\{X_nX_{n+k}\}, k=0, 1, 2, ...$ If we assume that $\sum_{k} |R_{XX}(k)| < \infty$, then we define the (Fourier) spectrum of X_n as being

(1)
$$g_{XX}(\dot{x}) = (2\pi)^{-1} \sum_{k} R_{XX}(k) e^{-ixk},$$

 $-\infty < x < \infty$. This is bounded, uniformly continuous and of period 2π . Also

(2)
$$R_{XX}(k) = \int_{-\pi}^{\pi} e^{ik\alpha} g_{XX}(\alpha) d\alpha.$$

Let the cumulant of order r of X_n be denoted by

(3)
$$c_{X\cdots X}(n_1,\ldots,n_r) = cum\{X_{n_1},\ldots,X_{n_r}\},$$

 $n_1, \ldots, n_r = 0, 1, 2, \ldots$, assuming $E\{|X_n|^r\} < \infty$. By stationarity,

$$c_{X...X}(n_1,...,n_r) = c_{X...X}(n_1 + u,...,n_r + u),$$

and in asymmetric notation,

4)
$$c_{X\cdots X}(n_1,\ldots,n_{r-1})=c_{X\cdots X}(n_1,\ldots,n_{r-1},0).$$

^{*}Recebido pela SBM em 2 de julho de 1973.

Let X_0 , X_1 ,..., X_{N-1} be N observed values of $\{X_n\}$ and consider the *finite Walsh transform*

(5)
$$d^{(N)}(x) = \sum_{n=0}^{N-1} X_n \psi_n(x),$$

 $0 < x < \infty$.

2. THEOREM. Assume $E\{X_0^2\} < \infty$ and

$$\sum_{u_1,\dots,u_{r-1}} |c_{\chi\dots\chi}(u_1,\dots,u_{r-1})| < \infty$$

Suppose also that

(6)
$$\lim_{N \to \infty} N^{-1} \sum_{n=0}^{N-k} \sum_{k=0}^{N-1} \psi_{n+(n+k)}(x) R_{XX}(k) = A(x)$$

exists, for all $x \in \mathbb{R}_+$. Then $d^{(N)}(x)$ is asymptotically normal $\mathcal{N}(0, NB(x))$, where $B(x) = E\{X_0^2\} + 2A(x)$.

PROOF. We have that $E\{d^{(N)}(x)\}=0$ and

$$E\{d^{(N)}(x)^2\} = N E\{X_0^2\} + 2 \sum_{t=1}^{N} \sum_{s=1}^{N} \psi_{t+s}(x) E\{X_t X_s\};$$

by stationarity this equals to

$$N E\{X_0^2\} + 2 \sum_{k=1}^{N-1} \sum_{s=1}^{N-k} \psi_{s+(s+k)}(x) R_{XX}(k),$$

and therefore $N^{-1} \cdot E\{d^{(N)}(x)^2\} \longrightarrow B(x)$, by (6). For the higher order cumulant,

$$cum\{d^{(N)}(x_1),\ldots,d^{(N)}(x_r)\} = \sum_{n_1=0}^{N-1} \ldots \sum_{n_r=0}^{N-1} \psi_{n_1}(x_1) \ldots \psi_{n_r}(x_r).$$

$$cum\{X_{n_1},\ldots,X_{n_r}\} = O(N),$$

hence $N^{-r/2} \cdot cum\{d^{(N)}(x_1), \ldots, d^{(N)}(x_r)\} \longrightarrow 0$ as $N \longrightarrow \infty$, if r > 2, and the theorem is proved by a basic lemma of Chapter 4 of [1].

3. COMMENTS. The theorem holds true for an *m*-dependent stationary process. Here, $R_{XX}(k) = 0$, for |k| > m. For this case, and x = 0, we have that

$$d^{(N)}(0) = \sum_{n=0}^{N-1} X_n \longrightarrow \mathcal{N}(0, N \int_{-\pi}^{\pi} D_m(\alpha) g_{XX}(\alpha) d\alpha),$$

where $D_m(\alpha) = \sum_{|j| < m} e^{ij\alpha}$ is the Dirichlet kernel. Here, $B(0) = \sum_{u = -m}^m R_{XX}(u)$ and use (2). Note that the distribution of $d^{(N)}(0)$ may be approximated by $\mathcal{M}(0)$, $Ng_{XX}(0)$, since $D_m(\alpha)$ is concentrated near 0. In particular, for m = 0, that is, a 0-dependent stationary sequence, $d^{(N)}(x)$ is asymptotically

$$\mathcal{N} (0, N \int_{-\pi}^{\pi} g_{XX}(\alpha) d\alpha).$$

REFERENCES

- [1] BRILLINGER, D. R., The Frenquency Analysis of Vector-valued Time Series, 1973, Holt, Rinehart and Winston.
- [2] FINE, N. J., On the Walsh Functions, Trans. Amer. Math Soc. 65 (1949), 372-414.
- [3] MORETTIN, P.A., Walsh-Fourier Analysis of Time Series, Ph. D. Dissertation, University of California, Berkeley, 1972.

Instituto de Matemática e Estatística Universidade de S. Paulo S. Paulo - BRASIL