Asymptotic Integration of Nonlinear Systems of
Ordinary Differential Equations*

Dedicado a meméria de Avrton Badelucci

A. F. 1ZE**

1. The asymptotic behavior of the solutions of the nonlinear system of diffe-
rential equations

(1 X = A(t)x + f(t x) + h{1), A(t) = (a; 1)),
- d

=l D iy ('):E

will be considered, where x = (x,, x,,..., x,). We assume that h{t), a;/1),
i, j=15 2,..., n are complex continuous functions in [t,, w0), f;(t; x) are.
continuous in

Q= {lt,)e B |1, <t 1 w0,

xh <R ok

E = R or C where t, > 1 can be chosen sufficiently large. (The results stated
here are also true if we assume that hy(t) is L-measurable and f(t, x) is Lebes-
gue measurable for each x and continuous in x for each t.) We assume also

the unicity of the solutions of (1) in the points of Q.

We will show that all the solutions of (1) are “close” respectively to the solu-
tions of the linear homogeneous system associated to (1):

() z ='Alt)z.

In Section 3 we study the asymptotic behavior of the solutions of (1) and the
results obtained there generalize results of Hille [12], Haupt[11], and Walt-
man [19] on the existence of nonoscillating solutions of a second order diffe-
rential equation, Hallam [8] and [9], Faedo [5], Ghizzetti [6] (see also Sobol
[18]) for an n™ order linear system. Cesari [4, p. 42 and 83] and Hartman
[ 10, p. 321, Section 17] give a survey of early results on this sucject.
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The results of Wilkins [22], Bellman [2] and Waltman [20] from a different
point of view are also particular cases of the results of Section 3 (see also
Cesari [4, p. 42] for further references). Theorem 1 of Section 3 contains,
in particular, the Dini-Hukuhara theorem [14] and its extensions made by
Bellman [1], Caligo [3] and Weyl [21] and the results on boundedness and
asymptotic stability in the large of Golomb [7].

2. We will need the following lemmas:

Lemma 1. If

N

o) < p+ j p(s, v(s))
T
where f(t,v) is continuous and monotonic nondecreasing in v in the region
defined by |t—T| < a, | < b, where a and b are positive real numbers,

then V(t) < z(t) where z(t) is the maximal solution of the differential equation
z = f(t,z) through (T,p) for t < T.

For a proof of Lemma 1, see Hartman [Corollary 4.4, p. 29] and for a more
general form see Nohel [16, p. 326].

LEMMA 2. Let a; >0, b; >0, r; =20 and r = maxr;, i =1,2,....n. If b, > 1

for some i then
Z aib? S |: Z ai] |: bl} .
i=1 i=1 i

yavisSadysSa($n)
=1 | G =1 =

i=1

it

PROOF. .

LEMMA 3. Let Q c E" = R" or C" a measurable set of points and let f(t,s) be

summable in Q for values of t in [t,, ). Assume that there exists a summable

non-negative function ¢(s) such that | f(t,s)| < ¢(s) for almost all values of s
in Q and all values of t in [t,, o), Then if lim f(t,s) exists for all (or almost
t—*a

alllvalues of s in Q we have
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llmjf(t s)ds—f llmf(t s)ds

Jl

Lemma 3 was proved n {13, p.'322]
We need also the simple lemma on matrices [15].

LEMMA 4. Let A = (a;;) and B = (b;)) be real or complex square matrices n x n
with B non singular. If C = AB~! where C = (c;)) then
; ) _ det C};
‘%= Jer B

where C' is the matrix obtained by substitution of the i row of A in the j™ row
of B.

3 Let U(t) = (z;(1)), i,j = 1,2,...,n be a fundamental matrix of (2) and suppo- .
se that there exists a diagonal matrix p(t) = (p(t)), i = 1,2,....n satisfying
the condition z(t) = (g; +0(1)) pdt) ((aft) = q; +0 (1) means lim aft) = a;))

where p(t) are defined and continuous in [t,, o).

Assume with respect to system (1) the hypothesis
H,) lf;'(t’ x)l < Z Sij([)llerj
ji=1

where ¢;/(t) is continuous and

f &) [ p0)|" | det p(t)l[exp f Tk Als) ds:l dt < o

J . J T
r;p>0,j=12...,n

In hypothesis H,), Tr- A(t) = ) ay().

i=1
o0 A t .
H,) ( [hit) pe)| = |det py(d)] l:exp—f Tr - A(s) ds:l dt < .
) ’ : T
THEOREM 1. Let hvpotheses H,) and H,) be satisfied with respect to svstem

(1) and let r = maxr;. Then, for any r > 0, for everv solution 2(t) = (z,(2),
zy(t), .. -, z,(t) of (2) with |z(t,)| sufficiently small there exists a solution x(f)
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of (1) with x(to) = z(to) such that x(t) = z{t) + (a; + o(1)) p(t). In particular,
if there exists a solution z(t) = (z(t), z,(t), ..., z,(t)) of (2) such that z(t) =
(a; + o(1)) p(t) with (a,, a,,..., a,) # O then there exists at least a solution
x() = (x1(8), x5(2), ..., x,(t) of (1) with x(t,) = z(to) such that x{(t) = z,(t) +
(ai + o(1)) p(t) with (a;, a,,..., a,) #0.

If 0 <r <1, then every solution of (1) satisfies the Sollowing condition

H) For every solution z(t) = (z,(t), z,(t), ..., z,(t) of (2) there exists a solution
x(@) = (x1(1), ..., x, (1)) of (1) with x(to) = z(t,), such that x(t) = z;(0) + (a; +
0(1)) p{t) and conversely, for every solution x(t) of (1) there exists a solution
«t) of (2) such that x(t) = z(t) + (a; + o(1)) pyt).

PROOF. A general solution of (1) can be written in the form

t t

X(t) = 2(t)" F J U(t) U™ Y(s) f(s, x(s)) ds + J U(t) U~ Y(s) h(s) ds.

to
By Lemma 4, U(t) U™ (s) = C,(t,s) where
_ . Clt)s)
Cir(ti S) = detm

- and (C},(¢t, s)) is a matrix which we obtain by substitution of the row of order
i of matrix U(t) in the row of order r in the matrix U(s). Then

C;’r(t’ S) z ll(t) rl(s)

i 0 0 PO 9" TT pul5) Un)
= k=1

= pit) ps) ™" det pls) z D1, )

where D,(t,s) is a bounded function and lim D, (t, s) exists, since lim z,(t)

t—*o00

pit)” ! exists and is bounded by hypothesis.

By Jacobi-Liouville’s formula we have

S

det U(s) = Kf Tr - A(v) db, J Kl o

T
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and

Ciilt.8) = 711? [exp VJ\T Tr - A(v) (11):| pi(t) p,(s)~ ! det p(s) D, (t, s).

Then

x(t) o z{?) 4 1 Z Cylt, 5) p(s, x(s)) ds +

+ KL det p(s) [exp—j Tr - A(v) dvj' Zn: pit(s) Z": D,((t, s) fi(s, x(s)) ds +

G
+— detp )[exp f Tr
g
By hypothes1s H,) and H,) we have
|x0| _ |z

xio} o [0 Kleetp(s)'l[e_xp-ﬁTrA(u)dv]

i C] Z ' alt, s)| i &,(s) lxj(s)’”: |pfs)|"” ds +

j=1 | PAS) ‘”

t
+% |detp(s)||:exp—f Tr - A(v
to to

lzi(t)|
’Pi(t)l

t rt n n
_IIZE |det p(s)| l:exp—J T A®v)d :I Z Z |Di(t, )| | hs) | pas)™" | ds <
t i =1

0

= CJ [det p(s)] I:exp—f Tr- A(v) dv
to to

Then we have

’xi(t)’
; lpi(t)l

dU:| i i le,(t, s)’;_hé%ds

ji=11=1

<k

By hypothesis

i

J i (i b))t ds =G

t

1
<C;+ k + K, | |detp(s)| [expj
to

to

Tr - A(v) dv] :
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[ £ sl ol £ {20 s

If Y k+C)=M

i=1

| det P(S)l[exp—j Tr - A(v) dv] i &) |9 [pAS)|? = bls)

T r,j=1

o x| ETCT
i;1 | i) SM+nK1U b()z [pd9))'

and by Lemma 2

M:

1B < h e [0 (2 s

i

where r = maxr; and by Lemma 1,
i

and z(t) is the maximal solution of the equation
3) 2 = n2k,b(s) z(s)', S b(t)dt < .

The solutions of (3) are

t
z(t) = M exp n’k, j bis)ds if r

to

Il
—

t
z2(t)!' 7" =M + (1-r)n’k, J b(s)ds if r#l.
tg- )
If0 < r < 1 then z(t) is bounded independently of initial conditions because
the coefficients of z" in the right side of (3) has a convergent integral. If r > 1
any solution z(t) of (3) will be bounded provided

t

Mgt (rl)czj b(s)ds

o
Since z(t,) = M this corresponds to choosing the initial conditions of (1)
in such a way that M be sufficiently small. For such a choice of initial con-
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ditions any solution x(f) of (1) may be continued to all ¢t > t,. We observe
that when we use Lemma-2 we must have

lxl(t)|
oio] ~ !
f‘i(t)
pilt)

is bounded and this is what is ulti-

for some i but if this is not true )
i=1

mately desired.

x{t) = zi{(t)
pit)

Let us show that has a finite limit when t - c0. From the proof

of the theorem

| 3 e pis.xonas

< Cj |det p(s)| |:exp~j Tr - A(v) dv] i &8 | ps)| " | pAs) |

o r,j=1

where C does not depend on ¢, then by Lemma 3

Mp(z)f,zlc"” Sy

= 'lirruzo%j |det p(s)![expj Tr - A(v) dv] {: syt i £i(s, x(s)) ds
" T r=1 =
= Ail =00

Since lim D,(t,s) exists and is bounded, and in an analogous manner
t—> 00

t
lim S Y Cilt,s) hs)ds = A;; < 0.
£ % Jis r=l

It remains to show that if there exists a solution of (2) such that zy(1), = g +
o(1)) pi(t), with (a,, a,,..., a,) # 0 then there exists a least a solution x(t)
of (1) with x(to) = z(t,) for which x,(t) = z{(t) + (a; + o(1)). Then for some k,
a, # 0, if we take t, large enough, 4;, and A > can be made arbltrarlly small
in such a way that |a; | > |A; + A;|; then

ll xk( )

H”olo —,D,-(t) =gy, + Ay + By # 0.
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We have to prove now that if r < 1, for every solution x(t) of (1) there exists
a solution z(t) of (2) such that x(t) = z{t) + (a; +0 (1)) p(2).

For any x(t) choose Z(t) given by the integral equation

x(t) = zt) -+ J U@U~(s) [f (s, x(s)) + h(s)] ds.
to

z(¢) is a solution of (2) which satisfies Z(t,) = x(t,) and by the reasoning made

in the proof of the theorem we conclude that the solution x(f) can be written

in the form x(t) = Z(t) + (a; + o(1)) p{t) and the proof is complete.

Theorem 1 can be used to obtain results on the asymptotic behavior of a
large class of systems of differential equations. As a simple application con-
sider the singular system of differential equations

n

@) 5 Z Ciyt™ x4 Y fit. )+ kfD
i=1 j=1

=

and the associate linear system

(5) 2, =Y CitPvg; Joj =1
Jj=1

where p;; = a;—a; + 1 and

©6) X, = Y Cjewix; + gft,x) + h(t), ij,=1,2,...,n
j=1

) z, = Y Gtz i,
j=1

where q;; = o;— ;.
(5) or (7) has a solution of the form z(t) = a;t% (z(t) = a™") with (a , a, , ...,

a,) # 0 if and only if the column vector («,, a,,..., a,) satisfies the equation
- ®8) : det(C - Io) = 0.

It was shown in [15] that equation (8) admits n-vectors (a; , &, , . . ., &,) which
are solutions of (8). Let A;=f; +iy;,j=1, 2,...,n be the characteristic roots of

) det(C — Ia— AI) = 0.
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By (8) at least one of the roots of (9) is equal to zero, we put 4y =0.If gj(r) =
= cos(y;log t) + isen(y;log t), then a fundamental matrix of solutions U(t) =
= (2,(1),..., z,(t)) of (5) is given by

(10) U@ = (ot Pgft), iLi=12..,n

and z,(t) is the column vector (a,1*, a,t™,..., a,t™).

We consider equation (4) subjected to the following set of conditions

HY) | filt, ¥)] < Y gjfe) e Rediind B L =120
i=1

with &;; non-negative, r;>0,j=12,...,n and

[s o]
[ O D dr < o,

HY) j [ht)t=*|dt <
where (o, , «,,..., a,) is a vector solution of (8).

We are considering for convenience in this case
(@i —aj—1)rj _
git) £HTHTIN = g, (1),

As we know that

- = (Y

exp~f Tr~A(v)dv:expf ot (> Cjdv=Kt
j=1

13 T
From the fact the sums of the roots of equation (9) is equal to the sum of the
elements of the diagonal of matrix given in (8) we have

n

(Cpp i O‘p) i Z iyp

1 : p=1

n
2 B=
p=1

¥ x;

det p(t) =t~

NeE

then if 8, <0,

t
| det p(t) exp—f Te A(v) dv| < K

i
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if we take p(t) = t* hypotheses H}) and Hj) are the same as H,) and H,)
because

J ‘ det p(t) [expf Tr - A(s) ds:l ‘ \pi(t)]'_1 | oty e (t) de
| |

T
< Kf | e~ iemmsg (e £~ D% | dp < o0
by H,) and H)) is obiously verified.

The results bellow can be reformulated for system (4) (or (6)) even when the
characteristic roots of (9) are multiple, but to avoid complicated calculations
we consider only the case in which the characteristic roots of (9) are simple.
For system (4) we have then the following

COROLLARY 1. Let hvpotheses H) and H}) be satisfied with respect to svstem
(5) with p;; = aj—a; + 1 for everv Cii #0,i,j =1,2,...,n. where (o, , a5, ...,
a,) is a solution of (8), r = maxr; and B, <0 with B, <0, if y, # 0: then for
any r >0, for everv solution z(t) = (z,(t), z,(t),..., z,(t) of (5) with | z(to)|
sufficientlv small there exists a solution x(t) of (4) with x(t,) = 2(ty) such that
x{(t) = z{t) + (a; +o0(1)) t*% and there exists at least one solution x(t) = (x(1),.
x,(t)) which satisfies the condition ‘

.oy

x{(t) = (b; +o0(1)) t%
that is

Iimxi—(t): b,

g o= o] [J; !
constant with (b, , b,,..., b,) #0.
If0 <r <1, then every solution of (4) satisfies the following condition:
H'). For. every solution z(t) = (z,(¢), ..., z,() of (5) there exists a solution
x(1) = (xy(8), ..., x,(1) of (4) with x(t,) = z(t,) such that
x{t) = z{t) + (a; +0(1)) 1%

and conversely, for everv solution x(t) of (4) there exists a solution z(t) of (5)
such that

X{t) = z{t) + (a; +o0(1)) r

70

If for some i, §; =0 and y; # 0 we can guarantee onlv the boundedness of
ailih e LR

THEOREM 2. Let hvpotheses H') and H)) be satisfied with respect to svstem
(4) with p;; = %;— % +.1 and suppose that for every i there exists at least one
=) such that ¢;j # 0. Suppose also that Do) = 021 R nand B g 0
.\\'itlé B, <0 ify; # 0. Then for any ¥ > 0 a necessary and sufficient condition
for the solutions of (4) to satisfv the condition

x(t) = z{t) + (a; + o(1)) #*

where z(t) = (z,(t), 25(0), . .., z,(t)) is a solution of (5) with |z(ty)| sufficientlv
small with at least one solution x(t) = (x,(t),..., x,(t)) such that

xi{t) = (b; + o(1)t*
with (b, , by, ..., b,) # 0 is that (o, a5,...,a,) be a solution of (8).

If 0 <r <1 a necessarv and sufficient condition for the solutions of (4) to
satisfy condition H') is that (o, a,,..., o,) be a solution of (8).

Proor. The sufficient condition is a consequence of Corollary 1. To prove
the necessary condition suppose that there exists a solution x(t) of (4) satis-
fying the condition x,(t) = z{(t) + (a; + o(1)) t*. Integration of equation (4)
followed by multiplication by t*i gives

t n
(11) aft) = afty) 5t + t'“*f _Zcijs“*‘lajs“f‘“"""f ds +

th d 1

t n i
e Id‘j Y s Tl s)s T H I TR ds 4t J‘ fis, x(s)) ds.
to j=1 to

When t — o the first term of the right side of (11) goes to zero and by
L’Hospital’s rule the third term also goes to zero. By hypothesis H’ ) we have

t n
o t‘-ﬂ(ai)J\ Z
1

o4 =1

A e XS
Sij(S)Sa"(" L) ~ry Sja(j’{' P

ds <

‘ t- "f fi(s, x(s)) ds

|

|

e
st‘”‘“[ 3
1,

o Il

D50
<K t‘”‘"‘*’f >
j=1

To

8[,’(5) Sai(rj* 1)—r;j

g;(8) s~V ds
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|Zj(5)|

because &

is bounded and by Lemma 3,

t— o0

lim t“‘f fi(s, x(s)) ds = 0.
to .

As we have o; + 1 -p;; =0o; #0

1
limt=% | -1 simatl-pige — _ Sy .
i s cija;s ds_oc-+ e

1o J ij

Taking the limit as t — 0 of both sides of Equation (11) we have
ag; = ). ¢
j=1
which has a solution (a,, a,,..., a,) # 0 if and only if (8) is satisfied.
ReEMARK. In Theorem 1 we can not use a weaker hypothesis than H,) as is

shown by the simple example

L
ot t(logt)x

which has the solution x = c(log t) that does not satisfy the condition H').

1 ;
Here o = 1, f(t,x) = Wx, Eplt)i= W which goes to zero as t — ©
e 5 o ;
butj tlogi dt is divergent. On the other hand,” Moore and Nehari [17]

proved that the condition

al) "t dt < o
is necessary and sufficient for the equation

x" + a(t)x?"*! =0, a(t) > 0

to have a solution satisfying lim @ =a>0. This,etluation written in sys-
tem form is

Xp = X3

%y ==alt) x3" !
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and in the context of Corollary 1, we have «; = 1,0, = 0, f5(t, x) = — a(t)x3" "1

&

MR B2 () = alty o &) () 20 T Sl e,

4. We consider now Equation (6). We observe that Equation (7) can be redu-
ced to Equation (5) by the change of variable © = logt, then a fundamental
matrix of (7) is obtained from the fundamental matrix of (5) by the inverse
change of variables t =¢°. All results of Section 3 have their analogy for
Equation (6) and the proofs are essentially the same. Hypothesis H') and
H’) become '

n

H¥) 1fi(t, X)| < Z S;j(t) el —art lle"j

with ¢;(t) non-negative, r; > 0, j = 1,2,...,n and
o0
j g ) VN dr < o0

where a,, o, ,..., a, is a vector solution of (8).

H% j |hit) e~ | dt < o

where o, , ®,,..., o, is a vector solution of (8).

Condition H') becomes

H*). For every solution z(t) = (z,(t), z,(t), ..., z,(t) of (7) there exists a solu-
tion x(t) = (x,(t), x,(t),..., x,(t)) of (6) with x(t,) = z/(t,) such that

x{t) = z,(t) + (a; + o)) &'

and conversely for every solution x(t) of (6) there exists a solution z(t) of (7)
such that :

x{(t) = z(t) + (a; +0(1)) et
The analog of Corollary 1 is:
COROLLARY 1. Let hypotheses H¥) and H% be satisfied with respect to svstem

(6) with q;; = o;—o; for every c;; # 0, hj=12,...,nwhere (;,0,,...,a,)isa
solution of (8), r = max r; and f; < 0 with ; < 0 if y; # 0. Then for anv r > 0,
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for every solution z(t) = (z,(t), z,(t), ..., z,0)) of (7) with |z(to)| sufficiently
small there exists a solution x(t) of (6) with x(t,) = z(t,) such that

xi(t) = z{t) + (a; + o(1)) €.
Also, there exists at least one solution x(t) of (6) satisfving the condition
xi(t) = (b; + o(1)) **, R A RO
with (by, b,,..., b,) #0.

If 0 <r <1, then every solution of (6) satisfies condition H*).

If for some i, B; =0 and y; #0, we can guarantee only the boundedness of
ai(t);i:l,z,...,n. ;

The statement of a theorem analogous to Theorem 2 is obvious.

5. Consider now the n™-order equations

n—1
(12) W ¥ ot R i 6" Y) - hlD),
=0
n—1 :
(13) N e = f a0 )+ R
=0 -

Where p; = n— 1 and ¢; = n—i— 1, and the associated homogeneous equations

1
(14) PR i e )

i=0

(15) 29 N el =0,

n=1
i=0

The hypotheses H)) and H)) become (as we will see later) the hypotheses
HT*) If(t, x)| < % 8,-(t) t‘n+i|u(i)‘|,v.-

with ¢(t) non-negative, v; > 0,i=0,1,..., n—1 and

[ el e e oo i=01,...,n-1

o

i J {h(e) ¢ ot L dt < 00
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where o« satisfies the equation

Al e DY o T el

i=1

Condition H') becomes

H**). For every solution z(t) of (14) there exists a solution u(t) of (12) such that
ud(e) = z29() + (a; + o(D)tze!

and, conversely, for every solution u(t) of (12) there exists a solution z(t) of
(14) such that

u® () = 29 () + (a; + o(l)) 127"
In particular, there exists at least one solution u(t) of (12) such that

u® (t) = t*~(b; + o(1))

with b; #0, i =0,1,...,n—1.

The following corollaries of Theorem 2 generalize a theorem of Faedo [5]
and Ghizzetti [6] (Hartman [10, Theorem 17.1, p. 315] presents a sharper
formulation of the result of [5] and [6] which is not contained in Corollary 2).
The following theorems are also particular cases of Corollary 2: Theorems
2.1, 2.2 of [8], Theorem 2.1 of [9], Theorem 1 of [19], Theorem 1 of [20],
Theorem 1 of [22], a Theorem of Haupt [11] and Theorem 2 of Hille [12] who
gives a careful discussion of the non-oscillations of equation x” + a(t)x = 0.

COROLLARY 2. Let hvpotheses H¥*) and H%*) be satisfied with respect to Equa-
tion (12) withp, = n—iifc; # 0,i =0,1,...,n—1 and let o, be a root of Equa-
tion (16) such that B; < R(ao) with B; < R(a) if y; # 0 for everyj =2,...,n.
Then for any v > 0, for every solution z(t) of (14) with |z9(ty| sufficiently
small i =0,1,...,n—1 there exists a solution u(t) of (12) with z(t,) = u(t,)

such that ; g i
u? (@) =z20() + (a; +001) >
In particular, there exists at least a solution u(t) of (12) satisfving
u® (1) = (b; + o) £~
with b; # 0,i =0, 1,...,n—1. If 0 < v < 1 then the solutions of (12) satisfy

condition H**).
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X
if for some i, B; = R(wy) and y; 0 we can guarantee only the boundedness
of the aft), i =1,2,...,n

Proor. Writing Equation (12) in system form

o 0 _ 1  a,n—1
2p = e =B e — )
€0 = &n1 581 = &nase 581 = &y
cia=1¢3=1,...,¢,-1, =1

-0y +1=0,...,0,—0,_; +1=0.
Hence
o, =a;—lay =0,-1=a;-2,...;0, =0, -n+ L
As we have p,; = a;—a, + 1, it follows that
Pri =Po =7, © Py =P1 =H—L,eo, Pun = Puy = L.
Then with
oy =0...00, =0o—n+1

the hypotheses H}*) and H%*) become hypotheses H}) and H)).

Equation (8) can be written

{ Tg b
(16) det(C" —ITo) = afc — 1) ... (x—n + 1) — Y cofo—1)...@@a—i+ 1)—co =0
. i=0 -
which is Equation (8), but if 4] is a root of this equation this root corresponds
to a root 4; = 0 of Equation (9) which is

(17) det(C' —Ia— AI) = 0.

Let o, be a fixed root of (16) and let 4; be a root of (17) corresponding to o, .
Then A = ay + 4; is a root of (16) and the condition Z(4;) < %(«,) corres-
ponds to the condition %(4; < 0 and the hypotheses of Corollary 2 bellow
are the same as Theorem 2. The following corollary generalizes also Theo-
rem 2.3 of [9].

COROLLARY 3. Let hvpotheses H¥*) and H%*) be. satisfied with respect to Equa-

tion (12). Suppose that p; =i if ¢; # 0 with ¢;# 0 for some i,i =0, 1,...,n— L.

Suppose. also that #(ay) > n—1 and the elementary divisors of the minimal
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pol_vnomiai of matrix C'—Ia are linear and B; < R(og) with B; < R(xo) if
y; # 0. Then for any v > 0, a necessary and sufficient condition for the solution
of (12) to satisfv the condition

u®(t) = 20 + (a; + o(1) £

where z(t) is a solution of (14), |29 (to)], i =0,1,...,n—1, sufficiently small
with at least one solution u(t) such that

u® = (b, + o) 7
b;#0,i=1,2,...,n, is that oy be a root of (16).
If 0 <v <1 a necessary and sufficient condition for the solutions of (12) to

satisfv condition H*¥*) is that o, be a root of (16).
A similar result can be obtained for equation (13).

Finally, we observe that Theorem 1 is related to the theory of singularities
of differential equation. In fact, consider the system

(18) W=Ya@W, i=12...,n
j=1
where a;; are analytic in a punctured vicinity of the origin and have a pole
of order p; where p;; = a;—o; + 1 if a;{z) # O then
a; =z TR b{2)

with b;(z) analytic. Then the system above can be written in the form
W= 2 %1bW,, i=12...,n
ji=1
If we put W, = z%y; the system is transformed into the system

(19) V= Z_l(bii(z)—“i)yi 1 Z Z_lbij(z) Vi

j=1
which has a pole of order 1 and by Sauvage’s Theorem (see, Hartman, [10],
p. 73) this system has regular solutions and then system (18) also has regular
solutions.

The determination of the solutions of (18) can be carried out by well known
methods, where instead of the Euler indicial equation we have Equation (8).
Then we have a slight generalization of Sauvage’s theorem (see Hartman,
[10], Theorem 11, p. 73).
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THEOREM 4. If the system (18) has poles at most of order p;; at the origin where
pij = ®j—o; + 1 if a;{(z) # O then the origin is a regular singular point for (18).

These results can be extended to the non-analytic case in order to contain
the results of Faedo [5].
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