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Totally dissipative measures for the shift
and conformal σ -finite measures
for the stable holonomies
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Abstract. In this paper we investigate some results of ergodic theory with infinite
measures for a subshift of finite type. We give an explicit way to construct σ -finite
measures which are quasi-invariant by the stable holonomy and equivalent to the con-
ditional measures of some σ -invariant measure. These σ -invariant measures are totally
dissipative, σ -finite but satisfy a Birkhoff Ergodic-like Theorem.
The constructions are done for the symbolic case, but can be extended for uniformly
hyperbolic flows or diffeomorphisms.
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1 Introduction and statements of results

We consider a mixing two sided subshift of finite type with finite alphabet
(6, σ) The set of vertices of the defining graph of (6, σ ) is {1, . . . , N } with
N ≥ 2. We denote by A = (ai j ) the N × N -transition (aperiodic) matrix of
0,1’s associated to 6; namely points in 6 are sequences x = (xn)n∈Z such that
for every n, xn belongs to {1, . . . , N } and

axn xn+1 = 1.

In 6, the cylinder [ik, . . . , ik+n] denotes the set of points y ∈ 6 such that
y j = i j (for every k ≤ j ≤ k + n). Such a cylinder is also called a word (of
length n + 1) or equivalently a (k, k + n)-cylinder.
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The letter R denotes one of the (0, 0)-cylinders of 6. Throughout we as-
sume that there exists a periodic orbit for σ in 6 which avoids R. Note that
unless 6 is a unique periodic orbit, there always exists such a periodic orbit as
soon as R is chosen small enough. Then, a higher-block representation allows
us to consider the cylinder R as a (0, 0)-cylinder.

Let φ be a α-Hölder continuous function from 6 to R. We assume that φ is
dependent only on the future. Let β be a real number. Let mβ be the unique
equilibrium state associated to the potential φ − β1IR . In [Lep05] we proved
that mβ converges to a measure m when β goes to +∞. Moreover m is a
maximizing measure for −1IR with maximal φ-pressure among these measures.
This means that

−m(R) = max
ν σ−inv

{−ν(R)},

and hm(σ ) +
∫
φ dm = max{hm′(σ ) +

∫
φ dm ′}, where the maximum is taken

over measures m ′ satisfying

−m ′(R) = max
ν σ−inv

{−ν(R)}.

Due to our assumption on R, we get here

max
ν σ−inv

{−ν(R)} = 0.

In [Lep00] we introduced a method to study the local structure of the Gibbs
measure for the system (6, σ) associated to the potential φ. The main points
are recalled in Section 2. Let g be the first return map into R by iterations of σ .
We prove here (see Lemma 2.1) that a direct consequence of the construction in
[Lep00] is that there exists a g-invariant measure μ̌β in R such that

μ̌β(.) =
mβ(. ∩ R)

mβ(R)
. (1)

The main motivation for this paper was then to investigate what happens when
the parameter β goes to +∞. Remember that limβ→+∞ mβ(R) = 0. Our goal
was to understand how the connection between μ̌β and mβ given by (1) breaks
off: does μ̌β also converges and/or if μ̂ is an accumulation point for μ̌β as β
tends to +∞ is there still a relation between m∞ and μ̂?

Our first result is:

Theorem 1. With these notations,

1. μ̌β converges to some probability measure μ̂ with support in R when β
goes to +∞.

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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2. The support of μ̂, satisfies supp μ̂ ∩ σ k(supp μ̂) = ∅ for every k 6= 0.

3. the opened-out measure

μ′ def
=

∑

k≥0

σ k
∗ μ̂

is a σ -finite measure with the same asymptotic as that of m: for μ′ almost
every x and for every continuous function ψ ,

lim
n→+∞

1

n
Sn(ψ)(x) =

∫
ψ dmx , (2)

where mx is one of the ergodic components of m.

Remark 1. The explanation to consider ǎ and â will appear soon. �

We emphasize that (2) says that there is still some memory of the connection
at the limit. We want to insist on this last point. Even if the measure μ′ is totally
dissipative it has some dynamical asymptotic given by (2). Note that usually,
dissipative measures are not studied because typical points are not recurrent
(from the measure point of view). Moreover we emphasize that the property (2)
is very different from the conservative case. Indeed, for the conservative case on
compact set, continuous functions are not in L1. It is also known (see [Aar97])
that there are no constants an > 0 such that almost everywhere and for every
function in L1

Sn( f )

an
→n→+∞

∫
f.

On the contrary, in our case, we deal with continuous functions and have con-
vergence or the usual Birkhoff average.

It turns out that our result is related to the question of the unique ergodicity for
horocycle foliations. This is the second motivation for this paper. This question
was studied by R. Bowen and B. Marcus in [BM77], by N. Haydn in [Hay94]
and by the author in [Lep00] (among others). We shall first introduce some
notations and vocabulary.

For x = (xn) in 6 we denote by W u
loc(x) the local unstable leaf at x :

y = (yn) ∈ W u
loc(x) ⇐⇒ ∀n ≤ 0, yn = xn.

The global unstable leaf W u(x) is defined by

W u(x) =
⋃

n≥0

σ n
(
W u

loc(σ
−n(x))

)
.

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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This corresponds to the set of points y whose past eventually equals the past of
x . Local and global stable leaves are defined similarly exchanging the forward
and the backward directions. The set of local unstable leaves is a measurable
partition (see [Roh62]).

Let x and y be two points in 6. Let Kx and Ky be two compact sets re-
spectively in W u

loc(x) and W u
loc(y). A stable holonomy from Kx onto Ky is an

invertible map hs : Kx → Ky such that for every z in Kx , hs(z) belongs to
Ky ∩ W s(z).

Let τφ denotes the Gibbs measure for the system (6, σ) associated to the
potential φ (i.e. τφ = m0). Let (τ u

φ,x) denotes the system of conditional measures
of τφ with respect to the partition in local unstable leaves. There exists a system
of measures (νu

φ,x) such that

(H1) νu
φ,x is a probability measure equivalent to τ u

φ,x ,

(H2) For every x and y in 6, for every stable holonomy hs : Kx → Ky and
for every z in Kx

dνu
φ,y ◦ h

dνu
φ,x

= eω(z,h(z)), (3)

where ω(z, h(z)) =
+∞∑

j=0

[
φ ◦ σ j (z)− φ ◦ σ j ◦ h(z)

]
.

For the rest of the paper, a system of measures (νu
x ) satisfying [H2] is referred

to as a φ-conformal systems of transversal measures (φ-cstm in abridged way).
In [BM77, Hay94, Lep00], for different cases or with different proofs, it is
proved that, up to a multiplicative constant, there exists a unique φ-cstm satisfy-
ing in addition

∀x, νu
x (W

u
loc(x)) < +∞. (4)

This system is the system (νu
φ,x) and is referred to as the equilibrium φ-conformal

systems of transversal measures (eφ-cstm in abridged way). Moreover if (νu
x )

is a φ-cstm and if for one x , νu
x (W

u
loc(x)) is finite, then the systems (νu

x ) is
proportional to the unique eφ-cstm. This is the so-called unique ergodicity of
the horocycle foliation. This is related to the unique ergodicity of the horo-
cycle flow in ergodic geometry for which there exists a large literature (see
e.g. [Fur73, Dan78, Bur90, Cou01]).

Our second motivation for the paper was to understand where/why this unique
ergodicity appears; more precisely, we want to understand where other natural
candidates (see below) to be finite φ-cstm effectively fail to be finite φ-cstm.

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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In the other hand, K. Schmidt proved in [Sch77] that there exist other φ-cstm.
His proof does however not furnish explicit example. As a by-product of our
study, our natural candidates to be finite φ-cstm (but fail to be, due to the unique
ergodicity) furnish such simple and explicit example of other φ-cstm than the
eφ-cstm.

We emphasize that we are here dealing with two different dynamics. The
dynamics of the holonomies, for which the φ-cstm are relevant, and the dynamics
of the shift σ for which σ -invariant measures (like Gibbs states) are relevant.

Definition 1.1. Let (νu
x ) be a φ-cstm and μ be a σ -invariant measure. Let

(μu
x) be the system of conditional measures with respect to the partition in local

unstable leaves.
We say that the φ-cstm is integrated by the measure μ, and/or that the measure

μ integrates the φ-cstm if

(H1’) for every x, νu
x is equivalent to μu

x .

We are interested in finding φ-cstm that are integrated by σ -invariant meas-
ures. For example, the unique eφ-cstm is integrated by the unique Gibbs meas-
ure τφ .

Our candidates to be finite φ-cstm are the following: considering a mixing
subshift of finite type 6′ ( 6 and the associated Gibbs measure for (6′, σ ),
say τ ′

φ , there exists in 6′ a unique eφ-cstm, say (ν ′
φ,x). Clearly this systems

(ν ′
φ,x) is a candidate to be a “global” finite φ-cstm. Why does this not hold?
Note that the measure m obtained as the limit of mβ is a barycenter of such ν ′

φ

(see [Lep05]). Our second result is

Theorem 2. Let m be the limit measure limβ→+∞ mβ . Let (mu
x) be its system

of conditional measure with respect to the partition in local unstable leaves.
Then, there exists a φ-cstm (νu

R,x) such that for every x, mu
x is equivalent

to νu
R,x . Moreover, there exists a σ -finite and σ -invariant measure τ which

integrates (νu
R,x). The measure τ is not locally finite and not ergodic.

In particular, Theorem 2 gives explicit examples of φ-cstm integrated by σ -
invariant measures. Moreover, we have:

Corollary 3. There are infinitely many non equivalent σ -finite measures which
integrate φ-conformal systems of transversal measures.

As far as we know, the question of infinite φ-cstm has not been investigated a
lot (at least for the compact case). For the non-compact case we mention works
of Ledrappier and Sarig (see e.g. [LS07]).

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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As we said above, K. Schmidt proved in [Sch77], that, when a general dy-
namical system (X, T ) is uniquely ergodic, then it necessarily admits uncount-
able many σ -finite invariant measures. Existence of φ-cstm different from the
uniqueeφ-cstm results from this. However the proof in [Sch77] deeply uses a
measurable correspondence between Z2-orbits and Z-orbits; this orbital corre-
spondence is not explicit at all.

In the same direction, L. Arnold gave a general condition for existence of
invariant measure in the case of non-singular transformations in [Arn68]. We
recall that a non-singular transformation is a dynamical system (X, T ) equipped
with a measure of reference, μ, such μ(T −1(B)) = 0 if and only if μ(B) = 0.
This result could be used for proving Theorem 2 and for the particular case
φ ≡ 0. For that, we should consider the system (mu

x) as the “measure of refer-
ence”. This would however not work for general case, φ 6≡ 0.

Moreover, these two arguments could produce invariant measures for the
holonomies, but it seems not clear that theses measures are integrable by σ -
invariant measures.

Our construction is done when the system is a subshift of finite type. It also
uses only one “rectangular hole” (see below). However, the same proof holds
for Axiom-A diffeomorphisms or flows which are special flows. It should also
work when we consider several “holes”, but in that case, the dotted system
would be more complicated.

Let us finish this introduction by mentioning a question related to our con-
struction:

Question. Does it exist some probability measure, different from the equilib-
rium stateμφ , invariant by the shift, which integrates a non-locally finite φ-cstm?

Outline of the paper. In the section 2 we precise the vocabulary used and
recall some key points of [Lep00] for the construction of the measures μ̌β . In
particular we introduce a new parameter, Z = Z(β). We emphasize that our
proofs use quite sophisticated estimates for the transfer operators. In this section
we thus also recall some facts on the Transfer Operator Theory.

Section 3 is technical; we prove the convergence for some other objects (also
depending on β and/or Z ). In Section 4 we prove Theorem 1 using results from
Section 3.

In Section 5 we prove Theorem 2. We first construct the φ-cstm defined by
the system (mu

x), and then, we construct one σ -finite measure which integrates
this system. We finish the section by proving that the construction leads to
infinitely many non-equivalent measures (Corollary 3).

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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2 Extra vocabulary, notations, recall on [Lep00]

In this section we give some more definitions and notations, make precise some
vocabulary and some points in the theory of equilibrium states and transfer op-
erator (see subsection 2.1). Then we define a subsystems and give properties of
a one-parameter family of transfer operators. This parameter is denoted by Z .
We explain the link between the two parameters β and Z . Then we prove that
mβ converges as β goes to +∞.

2.1 Vocabulary and notations

For a given point x = (xn) ∈ 6, the past (resp. future) of the point denotes the
backward (resp. forward) sequence (xn)n≤0 (resp. (xn)n≥0). For x and y in 6,

when x0 = y0, the point z
def
= [[y, x]] is the point (zn) defined by zn = yn if n ≤ 0

and zn = xn if n ≥ 0.
Let x = (xn) and y = (yn) be two points in 6. We set

N (x, y) := min n ≥ 0, xn 6= yn or x−n 6= y−n.

In 6 the metric d is given by d(x, y) =
1

2N (x,y)
.

We recall that any α-Hölder continuous function from 6 to R is cohomo-
logous to a α

2 -Hölder which is dependent only on the future (see [Bow75]
Lemma 1.6). This assumption on φ was thus “free”.

We also recall that the α-norm is defined by

||φ||α = sup
x 6=y

|φ(x)− φ(y)|

dα(x, y)
.

If x is in 6, Ck,k+n(x) denotes the cylinder [ik, . . . , ik+n] such that x j = i j

(for every k ≤ j ≤ k + n). By extension, C−∞,n(x) denotes the set of points
(yk) such that yk = xk for every k ≤ n; similarly Cn,+∞(x) denotes the set of
points (yk) such that yk = xk for every k ≥ n. By definition, the local unstable
leaf W u

loc(x) is C−∞,0(x), and the local stable leaf W s
loc(x) is C0,+∞(x).

2.2 Thermodynamical formalism

2.2.1 Gibbs measures and equilibrium states

The eφ-cstm is equivalent to the system of conditional measures with respect
to any measurable partition subordinate to the unstable leaves of the unique

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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φ-equilibrium state τφ . Recall that τφ , is the unique probability σ -invariant
measure such that

hτφ (σ )+
∫
φ dτφ = sup

τ

{
hτ (σ )+

∫
φ dτ

}
.

The eφ-cstm also satisfies

dνu
φ,x

dσ−1νu
φ,σ(x)

= eφ(x)−P(φ), (5)

where P(φ) = hτφ (σ )+
∫
φ dτφ is the pressure of φ.

Remark 2. This is a usual tool in that theory to replace a condition on the
holonomies like (3) by a condition on the shift like (5). �

For a given σ -invariant measure λ, the φ-pressure is the quantity Pλ(φ) :=
hλ(σ ) +

∫
φ dλ; Pλ(φ) will also be called the λ-pressure when there is no am-

biguity on φ.

2.2.2 Transfer operator

In a general way, for a two sided shift of finite type 6̃, 6̃+ will denote the
forward one sided shift. A word is admissible for a shift 6̃ if it defines a non-
empty cylinder in 6̃.

We now recall some element of the transfer operator theory. We refer to the
book [Bal00] (Section 1.3 p. 28) for complete proof in general statements. In
particular, the next facts are also valid for any uniformly expanding (or hyper-
bolic) dynamical system.

If ψ : 6̃+ → R is Hölder continuous, the transfer operator or equivalently
the Ruelle Perron Frobenius operator for (6̃+, σ, ψ) is defined by

L(T )(x) =
∑

σ(y)=x

eψ(y)T (y),

where T is a continuous function from 6̃+ to R, and x and y are in 6̃+. We
call conformal measure (for ψ) the eigenmeasure for the adjoint operator of
the transfer operator.

This measure νψ is characterized by

L∗(νψ) =
(∫

L(1I6̃+)dνψ

)
.νψ,

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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and it turns out that λ :=
∫
L(1I6̃+)dνψ is the spectral radius for L and L∗.

Moreover, λ is a dominating eigenvalue for L, with eigenvector the positive
Hölder continuous function

H := lim
n→+∞

1

n

∑

k

1

λk
Lk

(
1I6̃+

)
. (6)

Result 1. The function H has the same Hölder regularity than ψ .

Result 2. The function H is positive. Indeed, note that by construction it is
non-negative. Now, the equality

λ.H = L(H),

prove that if H(x) = 0, then H is null on a dense set, hence null everywhere by
continuity.

Result 3. The measure defined by dτψ := Hdνψ is the unique equilibrium
state for the potential ψ in 6̃+.

Remark 3. The system of measure (νu
φ,x) from above is defined using this

measure νψ with ψ = φ. �

Result 4. There is a spectral decomposition for Hölder continuous functions:

Lp(T )(x) = λp
∫
T dνψ H(x)+ ep(log λ−ε)Rp(T )(x), (7)

where ||Rp(T )||∞ ≤ C ||T ||α, ε and C are positive real numbers which do not
depend on T (ε is the spectral gap).

Result 5. The Dœblin-Fortet inequality holds: there exist 0 < a < 1 and
b > 0 and an integer n0 such that for every Hölder function T ,

∀ n ≥ n0, ||λ−nLn(T )||α ≤ an.||T ||α + b.||T ||∞. (8)

Now, if ψ is defined on 6̃, the unique equilibrium state for (6̃, σ, ψ) is the
natural extension in 6̃ of the unique equilibrium state for (6̃+, σ, ψ+), where
ψ+ is the unique Hölder function cohomologous to ψ and which does only
depend on the future (constant on local stable leaves).

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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2.3 Local thermodynamic formalism

In this section we define the local equilibrium states as in [Lep00].

Remember that the letter R denotes one of the (0, 0)-cylinders of 6. It corre-
sponds to the vertices iR in the alphabet of6. The letter F will denote some local
unstable leaf in R. Namely, F denotes all the points in R which have a same
given past. The natural projection from R onto F is defined by πF(z) = [[x, z]],
where x is any point in F .

For x in R, r(x) is the first return time in R by iterations of σ (if it exists)
and g is the first return map in R. We denote by gF the map πF ◦ g. Namely if
x = (xn) ∈ F is given by

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x1, . . . , xn−1︸ ︷︷ ︸

no iR

, iR, xn+1, . . . ,

where ↓ indicates the initial position x0, then g(x) = σ n(x) and is the infinite
word

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

iR, x1, . . . , xn−1︸ ︷︷ ︸
no iR

,
↓
iR, xn+1, . . . .

Then, gF(x) is the new infinite word

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, xn+1, . . . ,

These maps g and gF are not defined everywhere, because some points never
return into R. Note however, that, due to the Markov property, the inverse
branches of gF are well defined in the whole F : with the previous notations if

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, y1, . . .

is a point y in F , the point in F

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x1, . . . , xn−1︸ ︷︷ ︸

no iR

, iR, y1, . . .

is mapped by gF to y.

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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We can define the Ruelle-Perron-Frobenius operator for gF : for x in F , we
denote by Pre1(x) the set of preimages of x by gF . For y in Pre1(x), we have
x = gF(y) := πF ◦ σ r(y)(y) and we set

8(y) := Sr(y)(φ)(y) = φ(y)+ . . .+ φ ◦ σ r(y)−1(y).

Then we set
LZ (T )(x) =

∑

y∈Pre1(x)

e8(y)−r(y).ZT (y),

where T : F → R is a continuous function, and Z is a real parameter. Note
that due to the Markov property, LZ acts on continuous function defined on F ;
hence, the adjoint operator L∗

Z acts on the measures defined on F . This family
of operators was studied in [Lep00]. There, we proved that there exists some
critical Zc, such that LZ (1IF) exists only for every Z > Zc. Moreover, and
always for Z > Zc, LZ admits a unique and single dominating eigenvalue λZ

in the set of α-Hölder continuous functions. We also proved that the adjoint
operator L∗

Z has λZ for unique and single dominating eigenvalue.

Equilibrium state for (F, gF). Let us denote by νZ the unique probability
measure on F such that L∗

Z (νZ ) = λZ .νZ . We denote by HZ , the unique α-
Hölder continuous and positive function on F satisfying LZ (HZ ) = λZ .HZ and∫

HZ dνZ = 1. We also denote by μZ the measure HZ .νZ . In [Lep00], we
proved that μZ is a gF -invariant probability measure. As we explained above
at the end of Subsection 2.1, the measure μZ is an equilibrium state for the
system (F, gF) and for the potential 8− Z .r(.) (here we use that φ is constant
along local stable leaves).

Equilibrium state for (R, g). In [Lep00] we also proved that there exists a
unique g-invariant probability measure with support in R whose image by πF

is μZ . This measure is the measure μ̂Z and is the natural extension of μZ . It is
the unique equilibrium state for the system (R, g) and the potential 8− Zr(.).

2.4 Notations for measures

One of the difficulties here comes from the large number of measures involved.
We have thus adopted some fixed terminology and we shall explain it now. We
also refer to Figure 1 page 15 to an overview of all the measures.

The letter ν shall usually denote a conformal measure, that is an eigen-measure
for some transfer operator as it is explained above. Note that formally, such a
measure “leaves” in a one sided subshift of finite type.

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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The letter μ and in particular μ� shall designate a gF -invariant measure on
F . When the index in � is Z , then μZ is the unique equilibrium state for gF

and for the potential 8 − Z .r(.). Later we shall change of parameter and use
β = β(Z) instead of Z .

A measure μ̂ and/or μ̂� is a g-invariant measure in R. It is usually seen
as the natural extension of μ and/or μ�. We shall later use the other parame-
ter β and the measure μ̌β is the measure μ̂Z with β = β(Z), or equivalently
Z = Z(β).

A measure τ or m shall usually refer to a σ -invariant measure in the whole
subshift of finite type. The measure m� is usually seen as the opened-out for
μ̂�, that is μ̂� is the restriction of m� renormalized in R.

The equilibrium state for φ in 6 is denoted by τφ . More generally, every
λ�, where λ is a measure and � contains φ, denotes a measure related to the
equilibrium state for φ (see e.g. τφ).

Measures of the form λu
�,x shall refer to measures on the local unstable leaf

W u
loc(x). If the “associated” measure λ is σ -invariant (hence λ� = μ� or

m� ), then λu
�,x is the unique system of conditional measure. On the contrary

if λ = ν, then we refer to the invariance or absolutely continuity along for the
holonomies along unstable leaves (see e.g. τ u

φ,x and νu
φ,x in the introduction).

2.5 More about LZ , value for Zc, change of parameter

We now recall some properties of the family of operators LZ . Remember that
LZ is the transfer operator associated to the map gF . Hence, each x in F has
infinitely many preimages by gF , and one question is to check the convergence
in the series which defines LZ (T )(x).

Let us pick some x in the unstable leaf F ⊂ R; we consider some x ′ in
Pre1(x), and some y in F . The Markov property of σ yields

πF ◦ σ r(x ′)
(
C0,r(x ′)(x

′)
)

= F.

It implies that C0,r(x ′)(x ′) contains a unique y′ ∈ Pre1(y). Therefore, using the
Hölder regularity of φ, we get that there exists a constant Cφ , which depends
only on φ, such that

|Sr(x)(φ)(x
′)− Sr(y)(φ)(y

′)| ≤ Cφ.

This holds for every pair of preimages. By induction, this holds for pair of
preimages for the map gn

F . Then, we get for every n and for all x and y in F ,

e−CφLn
Z (1IF)(x) ≤ Ln

Z (1IF)(y) ≤ eCφLn
Z (1IF)(x). (9)
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Remember that F is compact, and thus every continuous function on F is
bounded; hence (9) used for n = 1 allows to prove that the series LZ (ψ)(x)
converges, for every point x and for any continuous function ψ , as soon as
LZ (1IF)(y) converges for one y. This defines Zc: for a given y we write

LZ (1IF)(y) =
+∞∑

n=1

an(y)e
−nZ ,

which is a power series in e−Z . Then we set Zc = lim supn→+∞
1
n log(an(y)).

Hence for every Z > Zc the power series LZ (1IF)(y) converges.
In [CL05] (Subsection 3.3), it is proved that the critical value Zc is the pres-

sure of the dotted system, with hole R, associated to φ. Namely we consider
in 6 the sub-system 6R of all the sequences x = (xn)n∈Z such that xn never
equals iR . Equivalently, 6R is the set of points whose orbit never intersects the
set R (under the action of the shift σ ). This subshift has for transition matrix
the matrixA′ obtained fromA by removing the line and the row corresponding
to the vertices iR . Up to the fact that this new system is mixing, it is proved in
[CL05] that its φ-pressure is the critical Zc.

We now claim that the mixing hypothesis in [CL05] can be omitted. In-
deed, any subshift of finite type can be decomposed in irreducible components,
which satisfy the mixing property, but for some iteration of the map σ (see
[Ale76]). As we are considering first returns in R, note that the word defined
by the cylinder C0,r(x)−1(x) contains no iR but at the first position. Hence, the
word defined by C1,r(x)−1(x) is an admissible word for 6R (if we assume that
r(x) > 1). By definition of the irreducible components, and by definition of
6R , it is an admissible word for a unique irreducible component of 6R .

Now, in a transitive subshift of finite type, the topological pressure associated
to φ is the limit in n of

1

n
log

(∑
eSn(φ)(ξ)

)
,

where the sum is done over every words of length n in the considered sub-
shift, and we choose one point in the associated cylinder for each such word.
It is however well-known, that the sum which defines the pressure, can be re-
stricted to words whose initial position is a vertices in one fixed basic set. It is
not necessary to consider all the words, but a sufficiently large number of them.
To check this, just use Result 4 (page 9) with the appropriate T .

If the system has several irreducible components, the pressure is defined as
the maximum of all the pressure in the irreducible components. But as there
are finitely many components, this is equivalent to consider the sum over all
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the words of length n. With these considerations, we point-out that the term
an(y) is exactly one such sum

∑
eSn(φ)(ξ). Therefore Zc is the topological pres-

sure of 6R associated to φ.
In [CL05] (proof of Lemma 3.4), it was also proved that λZ → +∞ as Z

goes to Zc. Moreover, the map Z 7→ log λZ is a decreasing convex map on
]Zc,+∞[. By definition of νZ we have λZ =

∫
LZ (1IF) dνZ . Therefore (9)

yields
0 ≤ λZ ≤ eCφLZ (1IF)(x).

The right hand side term is a power series in e−Z , with valuation at least 1.
Therefore λZ goes to 0 as Z goes to +∞.

Hence, the map Z 7→ log λZ is a decreasing bijection from ]Zc,+∞[ onto R.
From now until the end of the paper, we set

β = β(Z)
def
= log λZ .

As the map Z 7→ log λZ is a bijection, we can consider the inverse map, β 7→ Z
such that log λZ = β. Then, β → +∞ is equivalent to Z → Zc. For the rest of
the paper, we shall consider any of the two parameters, β or Z , considering that
when one is fixed, the other is also fixed.

2.6 Convergence for mβ

In [Lep00] it is proved that for every Z > Zc there exists a unique σ -invariant
probability measure m ′

β(z) such that

μ̂Z =
m ′
β(Z)(. ∩ R)

m ′
β(Z)(R)

.

Lemma 2.1. We have m ′
β = mβ , and for every Z > Zc,

hmβ
(σ )+

∫
φ dmβ = Z + mβ(R)β. (10)

Proof. We have to prove that the measure m ′
β = m Z is the unique equilibrium

state in (6, σ) associated to φ − β(Z).1IR .

Let us pick some σ -invariant probability measure τ . We first assume that
τ(R) > 0. Then, we have,

hτ (σ )+
∫
φ dτ − Z = τ(R)

(
hτ|R (g)+

∫
Sr(.)(φ) dτ|R − Z .

∫
r(.) dτ|R

)
,

≤ τ(R)β,
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where τ|R is the conditional measure τ(.|R), and where the last inequality is
obtained by the variational principe. This gives

hτ (σ )+
∫
φ dτ − β.

∫
1IR dτ ≤ Z ,

with equality if and only if τ|R = μ̂Z (i.e. m Z = m ′
β = τ ).

If we assume that τ(R) = 0, then τ is a σ -invariant probability measure with
support in 6R . Therefore it must satisfy

hτ (σ )+
∫
φ dτ − β.

∫
1IR dτ = hτ (σ )+

∫
φ dτ ≤ Zc < Z .

This proves that m ′
β is the unique equilibrium state for φ − β.1IR , namely that

we get m ′
β = mβ . �

Remark 4. Following our notations, μ̂Z = μ̌β with β = β(Z). �

As we said above, when Z goes to Zc, β goes to +∞; we thus use the the-
orem of convergence for equilibrium state a temperature zero (see [Lep05])
to get the convergence of mβ to some limit measure m. This measure m is
maximizing for −1IR , and we have seen that its supports is in 6R .

σ

m′β = mβ = τφ−β.1R, σ-invariant

νZ and μZ , gF -invariant

μ̂Z = μ̌β, g-invariant

R

πF

g

Figure 1: Local and global measures.

We now describe which irreducible components of the dotted systems 6R

have positive m-measure. It is well-known (see [CLT01]), that m is a measure
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in 6R with maximal φ-pressure. Therefore m weights only irreducible compo-
nents of 6R which have maximal φ-pressure (which must be Zc).

In [Lep05] we gave a way to identify the limit measure. For that, we intro-
duced the notion of isolation rate between two irreducible components (with
maximal φ-pressure).

ΣiR

σσ

σσ

iR

ΣlRΣkR

ΣjR

Figure 2: Irreducible components, dynamics and transition costs.

This isolation rate estimates the better way to join two irreducible components
(and seems related to the Peierls barrier in [GLT10]). In the general case its
calculation is relatively hard. In our case there is a unique way to join two
irreducible components of the dotted system going through iR . Then, every
contribution for any link of that kind is the same (namely it is equal to 1 =
1IR(x)). Therefore, all the irreducible components have the same isolation rate
and all the irreducible components of the dotted system 6R with maximal φ-
pressure have positive m-measure.

Remark 5. If we make several holes, i.e., if R is not a single (0, 0)-cylinder,
most of the previous results hold. However the irreducible components with
maximal φ-pressure would not necessarily all get the same isolation rate. This
would make the rest of the proof more difficult. �

3 Convergence for HZ , νZ and μZ

The main result in this section is Proposition 3.5 where we prove that HZ and
νZ converge as Z goes to Zc. In Subsection 3.1 we state and prove one technical
result which is the main tool to get the convergencies we mentioned above.
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3.1 Approximation of 1
λZ
LZ as Z goes to Zc

In this subsection we study the asymptotic for 1
λZ
LZ when Z goes to the critical

value Zc. In the first subsubsection we show how/why the dotted systems get
greater importance for Z close to Zc. In the second subsubsection, we study
the transfer operator for some relevant irreducible components of 6R . We also
extend the sets of definition for these operators, and prove that some useful
estimates are independent of Z . In the last subsubsection we give an explicit
result for the estimation of the asymptotic.

3.1.1 Influences of the dotted system when Z goes to Zc

Lemma 3.1. Let us consider any accumulation point μ for the family (μZ )

when Z goes to Zc. Then the set of point which return into R by iterations of
σ has zero μ-measure.

Proof. Let x be in F such that r(x) < +∞. Let us set n = r(x) and K1(x)
def
=

C0,n(x) ∩ F . Then we have gF(K1(x)) = F . Moreover (9) yields

e−Cφ .eSn(φ)(x)−Z .n−β ≤ μZ (K1(x)) ≤ eCφ .eSn(φ)(x)−Z .n−β.

Therefore, when Z goes to Zc, β goes to +∞, and μ(K1(x)) = 0.

Now the set of points which return into R by iterations of σ is the countable
union of K1(x), when x satisfies r(x) < +∞. As any such set has zero μ-
measure, the union has zero μ-measure. This finishes the proof. �

This lemma explains the situation: the closer Z is to Zc, the more LZ gives
greater importance to orbits with long return time. But orbits with long return
time in R look almost like orbits in one of the irreducible component of 6R .
Then, the closer Z is to Zc the more 1

λZ
LZ behaves like a transfer operator

of 6+
R .

3.1.2 Study of the dotted system and extensions of its
thermodynamic tools

In this subsubsection we define and study the transfer operator on 6R . We also
extend the domains of definition of the thermodynamic notions.

We denote by 6l
R , l = 1, . . . , P the irreducible components of 6R with

maximal φ-pressure. For each one we denote by νl the conformal measure
for φ. The normalized eigenfunctions for the transfer operator are denoted by
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Hl , l = 1, . . . , P . Remember that νl and Hl are in fact defined on the one
sided shift 6l+

R .

• Gibbs measures and their extension.

For x in F , with return time n ≤ +∞, we set

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x1, . . . , xn−1︸ ︷︷ ︸

no iR

, iR, . . . .

The word [x1, . . . , xn−1] is an admissible word for a unique irreducible com-
ponent of 6R . If this component is 6l

R , we then say that x belongs to Fl .
On Fl we can define the measure νl ◦ σ by

νl ◦ σ(A) = νl(σ (A)), (11)

where we only consider the future of σ(A) to compute νl(σ (A)). This measure
gives positive weight only for subsets of points in Fl with infinite return time.

• Eigen-functions and their extensions.

Let us now pick some point y = (yn)n≥0 on the form

y0, . . . , yn−1︸ ︷︷ ︸
admissible for 6l

R

, iR, . . . .

Clearly y does not belong to 6l+
R , and Hl(y) is a priori not defined. How-

ever, there is a canonical way to define it:
Remember that Hl satisfies

Hl = limn→+∞
1
n

∑
k e−k Zc Lk

l

(
1I6l+

R

)

(see (6) and note that the topological pressure is Zc), where Ll is the transfer
operator in 6l+

R for the potential φ. But for ξ in 6l+
R , σ k(ξ ′) = ξ simply means

that we add in front of the one sided infinite word associated to ξ an admissible
word, with length k, for 6l+

R (and it also has to satisfy some transition rules!).
If ξ starts with y0, and if ξ ′ is

ξ ′
0, . . . , ξ

′
k−1, y0, ξ1, . . .

then the point y′ := ξ ′
0, . . . , ξ

′
k−1, y0, y1, y2, . . . , satisfies σ k(y′) = y and it

belongs to the same (0, k)-cylinder than ξ ′ (in 6+). Thus, we can set

Lk
l

(
1I6l+

R

)
(y) :=

∑

y′

eSk (φ)(y′),
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where the sum is done over all the possibilities for y′, each one associated to one
admissible word of length k in 6l+

R . Then the definition of Hl(y) follows:

Hl(y) = lim
n→+∞

1

n

∑

k

e−k Zc Lk
l

(
1I6l+

R

)
(y).

We let the reader check that this extension of Hl has the same Hölder reg-
ularity than Hl on 6l+

R . For convenience we now denote by 6̃l+
R the set of

points ξ0, ξ1, . . ., where [ξ0] is an admissible word for 6l+
R . Hence, we have

extended the definition of Hl from 6l+
R to 6̃l+

R .

Lemma 3.2. The function Hl is positive on 6̃l+
R .

Proof. Note that we still have Ll(Hl ) = eZcHl . Moreover Hl is non-negative
on 6̃l+

R and positive on 6l+
R (see Result 2 page 9).

Let y be in 6̃l+
R \6l+

R . We assume that Hl(y) = 0. Let set

y′ := ξ ′
0, . . . , ξ

′
k−1, y0, y1, y2, . . . ,

such that σ k(y′) = y and [ξ ′
0, . . . , ξ

′
k−1] is admissible for 6l+

R . Then we get
Hl(y′) = 0. Doing k → +∞ and considering any accumulation point of the
y′’s, we get a point in 6l+

R where Hl vanishes. This is a contradiction with
positivity of Hl in 6l+

R . �

Now, let x in F be on the form

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x1, . . .

and let x ′ in F on the form

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, x ′

1, . . . , x ′
n−1︸ ︷︷ ︸

no iR

, iR, x1, x2, . . . .

We have gF(x ′) = x . Let us assume that x ′
1, . . . , x ′

n−1 is an admissible word for
6l+

R . Following what we have done above, we can defineHl([x ′
n−1, iR, x1, . . .]).

Then, we set

H̃l(x) =
∑
Hl

([
x ′

n−1, iR, x1, . . .
])
, (12)
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where the sum is only done over all the different possible letters x ′
n−1 in the

alphabet that defines 6l+
R . Namely if x ′′ in F is on the form

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past de f ined by F

↓
iR, x ′′

1 , . . . , x ′′
m−1︸ ︷︷ ︸

no iR

, iR, x1, x2, . . . ,

and x ′′
m−1 = x ′

n−1, only one term

Hl

([
x ′

n−1, iR, x1, . . .
])

= Hl

([
x ′′

m−1, iR, x1, . . .
])

appears in the sum.

Remark 6. From Lemma 3.2 we get H̃ l > 0. �

• Transfer operators and their extension.

As we have just explained, the function Hl can be defined on a larger set
than 6l+

R . The main reason for this, is that the transfer operator Ll itself can
be defined on continuous function from 6̃l+

R to R. For any point y in 6̃l+
R , we

only consider preimages in 6̃l+
R such that the added word (to the left of y) is

admissible for 6l+
R (just as above).

Lemma 3.3. The spectral radius of Ll defined on the set Cα(6̃l+
R ,R) of α-

Hölder function from 6̃l+
R to R is the same than the spectral radius of Ll on

Cα(6l+
R ,R). Moreover, we get

L p(T )(x) = ep.Zc

∫
T dνlHl(x)+ ep(Zc−ε)R

p
l (T )(x), (13)

where
||Rp

l (T )||∞ ≤ Cl ||T ||α, ε and Cl

are positive real numbers (ε is the spectral gap of the operator).

Proof. We just give the ideas of the proof. Indeed, these ideas are the same
than in the proof of Proposition 3.5 (see below) and we believe it seems better
to present a complete proof there.

The main ingredient to get the spectral decomposition is to use the Ionescu-
Tulcea and Marinescu theorem. There, the key point is to get the Dœblin-Fortet
inequality (see Result 5 page 9). We claim, and let the reader check that this
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inequality effectively holds for Ll on Cα(6̃l+
R ,R) (with the same proof than

for Ll on Cα(6l+
R ,R)).

Now, the second point in the proof is to check that the spectral radius is also
the eigenvalue for the adjoint operator (acting on measures). But the unique
eigen-measure is νl , considering the adjoint operator either acting on measures
defined on 6̃l+

R or on 6l+
R . This shows that the two operators have the same

spectral radius, eZc , and that the decomposition holds for Hölder continuous
functions. �

3.1.3 Asymptotic for 1
λZ
LZ

Proposition 3.4. With the previous notations, there exists a positive ε such that
for every T : F → R α-Hölder continuous and for every x in F,

1

λZ
LZ (T )(x) =

e−β

1 − eZc−Z

P∑

l=1

(∫

Fl
T (ξ)eφ(ξ)−Z dνl ◦ σ(ξ)

)

× H̃l(x)+
e−β

1 − eZc−Z−ε
.O(||T ||α),

(14)

Proof. Let us pick some x in F and some T . We have

1

λZ
LZ (T )(x) = e−β

∑

y∈Pre1(x)

e8(y)−Z .r(y)T (y).

For such y in Pre1(x) we set

. . . , ξ−2, ξ−1,︸ ︷︷ ︸
past defined by F

↓
iR, y1, . . . , yn−1︸ ︷︷ ︸

no iR

, iR, x1, x2, . . . .

We focus our attention on such y such that y1, . . . , yn−1 is admissible for some
6l+

R ; during the computation, it will appear why other points give a negligible
contribution.

In the rest of the proof we say that such a preimage visits the irreducible
component 6l

R .
Now, remember that φ does only depend on the future. Then, considering

all the preimages by gF of the point x which visit 6l
R , we pack away the pre-

images in function of the first letter y1 and the last letter before iR , yr(y)−1.
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The sum over these preimages satisfies
∑

y visiting

6l
R

e8(y)−Zr(y)T (y)

=
∑

possible
y1

∑

possible
x−1

eφ(y)T (y)eSr(y)−2(φ)(σ (y))eφ([x−1,iR ,x1,...])e−Zr(y)

=
∑

possible
x−1

+∞∑

p=0

e−(p+1)Z L p
l (e

φ◦σ−1
T ◦ σ−1)([x−1, iR, x1, . . .]),

(15)

where σ−1(ξ) means the concatenation in 6̃l+
R , [[iR, ξ ]]. Now (13) yields

L p
(
eφ◦σ−1

T ◦ σ−1
)(

[x−1, iR, x1, . . .]
)

= ep.Zc

(∫
eφ◦σ−1

T ◦ σ−1 dνl

)
×Hl

(
[x−1, iR, x1, . . .]

)

+ ep(Zc−ε)R
p
l

(
eφ◦σ−1

T ◦ σ−1
)(

[x−1, iR, x1, . . .]
)
.

(16)

Therefore, doing the sum over all the integers p and all the possible x−1 in (15),
(11), (12) and (16) yield

∑

y visiting

6l
R

e8(y)−Zr(y)T (y) =
1

1 − eZ−Zc

(∫

Fl
eφ−ZT dνl ◦ σ

)
× H̃l(x)

+
1

1 − eZ−Zc−ε
e||φ||∞−ZO(||T ||α).

(17)

Here appears why preimages visiting other components than the 6l
R give a

negligible contribution. These components have a φ-pressure strictly smaller
than Zc. Hence the spectral radius for their transfer operators are strictly smaller
than eZc . Doing the same computation than above, the first term in the right
hand size of (17) should be replaced by

1

1 − eZ−Zc−ε
,

where eZc−ε is the spectral radius of the operator for the visited component.
Note that a key point here is that6R has finitely many irreducible components:

this allows to find a uniform positive ε.
This finishes the proof of the proposition. �

Bull Braz Math Soc, Vol. 41, N. 1, 2010



“main” — 2010/3/16 — 11:59 — page 23 — #23

DISSIPATIVE MEASURES FOR THE SHIFT AND CONFORMAL σ -FINITE MEASURES 23

3.2 Convergencies

In this subsection, we are going to use Proposition 3.4 to prove the expected
convergencies.

Proposition 3.5. The function HZ , the measure νZ and the measure μZ con-
verge as Z goes to Zc

Proof. The main idea is to prove that the quantities we are studying have a
unique accumulation point when Z goes to Zc, or equivalently, as β goes to

+∞. During the proof the quantity
e−β

1 − eZ−Zc
and its possible accumulation

points are going to play a key role.

• First step: The HZ ’s are equi-continuous.

Remember that HZ is defined by

HZ = lim
n→+∞

1

n

∑

k<n

e−kβLk
Z (1IF) = lim

n→+∞

1

n

∑

n0≤k<n

e−kβLk
Z (1IF).

The equi-continuity shall follow from the Dœblin-Fortet inequality.
Let T be any Hölder function on F . Result 5 (see page 9)says that we get a

bound of the form

∀ n ≥ n0, ||e−nβLn
Z (T )||α ≤ an.||T ||α + b.||T ||∞.

The important point is that Cφ , n0, a and b do not depend on Z but only on φ.
Indeed, we already saw that Cφ is a bound for the variation of Sn(φ) on all the

(0, n)-cylinders. The integer n0 and the constants a and b are obtained comput-
ing the α-norm of e−nβLn

Z (T ). We get:

∣
∣e−nβLn

Z (T )(x)− e−nβLn
Z (T )(y)

∣
∣ ≤

||T ||α
enβ

dα(x, y)

2n
Ln

Z (1IF)(x)

+
||T ||∞

enβ

∣
∣
∣eCφ

dα(x,y)
2n − 1

∣
∣
∣Ln

Z (1IF)(x).

Then (9) yields

||e−nβLZ (T )||α ≤ 2−neCφ ||T ||α + C.Cφ2−n||T ||∞.

We pick n0 large enough that a := 2−n0eCφ < 1. Clearly neither a, nor n0

depend on Z . Then we get b using the standard argument of the euclidean
division of n by n0 when we compute ||e−nβLZ (T )||α for large n.
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Therefore, using the Dœblin-Fortet inequalities, the fact that the constants do
not depend on Z and the definition of HZ we get that all the functions HZ are
equi-continuous.

Using the Ascoli theorem, we can get some convergent subsequence from any
subfamily. Moreover, the set of function {HZ , Z ≥ Zc} is bounded from above
for the α-norm (by b). Then, even if the convergence occurs for the ∞-norm,
the limit is α-Hölder with α-norm lower than b.

• Second step:
e−β

1 − eZ−Zc
and νZ converge.

We first pick a subfamily of Z such that
e−β

1 − eZc−S
converges to A when Z

goes to Zc and Z belongs to the subfamily. For convenience we write limZ↓Zc ,

thinking limit for the selected subfamily.
Again, {νZ } is a pre-compact family, and we can extract some convergent

subfamily from the previous subfamily. Let us consider some accumulation
point for νZ , respecting the previous convergence.

The main idea to prove the uniqueness of ν is to prove that
∫
T dν is uniquely

determined for any Hölder T .
Let us pick some T .
By Proposition 3.4 we have for every x ,

1

λZ
LZ (T )(x) =

e−β

1 − eZc−Z

P∑

l=1

(∫

Fl
T eφ−Z dνl ◦ σ

)
× H̃l(x)

+
e−β

1 − eZc−Z−ε
.O(||T ||α),

(18)

Note that lim
Z↓Zc

e−β

1 − eZc−Z−ε
= 0 because ε is positive and β goes to +∞.

In the other hand we get

νZ (T ) =
1

λZ
L∗

Z (νZ )(T ) =
∫

1

λZ
LZ (T ) dνZ .

Now, (18) yields
∫
T dν = A.

∑

l

(∫

Fl
T eφ−Zc dνl ◦ σ

) ∫
H̃l dν. (19)
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We now use (19) for T = 1IF ; remember that for every Z we have νZ (F) = 1.
Therefore we get

1 = A
∑

l

(∫

Fl
eφ−Zc dνl ◦ σ

) ∫
H̃l dν. (20)

Note that all the numbers
∫
H̃l dν are positive (follows from Remark 6). There-

fore (20) implies that A belongs to ]0,+∞[.
Using (19) with T = H̃ j we get

1

A

∫
H̃ j dν =

∑

l

(∫

Fl
H̃ j e

φ−Zc dνl ◦ σ
) ∫

H̃l dν. (21)

This means that the vector 







∫
H̃1 dν

...∫
H̃P dν









is a positive eigenvector for the matrix M with entries
(∫

Fl
H̃ j e

φ−Zc dνl ◦ σ
)

j,l

.

This matrix has all its entries positive, and we can use the Perron-Frobenius
theorem. The matrix admits a unique (up to a multiplicative factor) eigenvector
with all positive entries and the associated eigenvalue is the spectral radius of

the matrix M. It equals
1

A
.

Note that the considered matrix does not depend on the accumulations points

we considered. This proves that A is uniquely determined, hence e−β

1−eZ−Zc con-

verges as Z goes to Zc. Now, all the
∫
H̃ j dν are uniquely determined up to

a multiplicative constant, and (20) fixes their respective value. They are thus
uniquely determined, and (19) implies that ν is uniquely determined; hence νZ

converges as Z goes to Zc.

• Step three: HZ converges.

Our strategy is (as before) to prove that the family {HZ } admits a unique
accumulation point, hence its convergence. Let us consider some accumulation
point H for HZ (for the norm of uniform convergence).
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Then

H = lim
Z↓Zc

HZ = lim
Z↓Zc

1

λZ
LZ (HZ ),

and (18) yields

H = A.
P∑

l=1

(∫

Fl
Heφ−Zc dνl ◦ σ

)

H̃l . (22)

This yields for every x in F

H(x) = A.
∑

l

(∫

Fl
Heφ−Zc dνl ◦ σ

)
H̃l(x)

= A2
∑

j,l

(∫

F j
Heφ−Zc dν j ◦ σ

) (∫

Fl
H̃ j e

φ−Zc dνl ◦ σ
)
H̃l(x).

(23)

where we obtain the second equation by replacing H in the term
∫

Heφ−Zc dνl ◦ σ

of the first equation by the right hand side term of (22).
Note that we can iterate this process, inserting (22) in (23) and so on. There-

fore we get a family of equation on the form
(
Ea|An Eb(x)

)
=

H(x)

A
, n ≥ 0, x ∈ F

where A is the matrix AM with positive entries
(

A

∫

Fl
H̃ j e

φ−Zc dνl ◦ σ
)

jl

,

and

Ea =
(∫

F1
Heφ−Zc dν1 ◦ σ, . . . ,

∫

F P
Heφ−Zc dνP ◦ σ

)
,

Eb(x) =






H̃1(x)
...

H̃P(x)




 .

The matrixA∗ has positive entries and spectral radius 1. Using Perron-Frobenius
theorem, we get that Ea.An converges as n goes to +∞ to (Ea|Eu), where Eu is the
unique normalized vector with positive entries such that Eu.A = Eu. This proves
that H is uniquely determined. Therefore HZ converges.

As the convergence occurs uniformly, we directly get convergence for μZ ;
indeed dμZ = HZ dνZ . This finishes the proof of the proposition. �
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Remark 7. Note that H is a positive function on F . �

Relations (19) and (20) yield an important result for the rest of the proof:

Proposition 3.6. There exist P positive constants al , l = 1, . . . , P such that
for every l and for every x in Fl ,

dν

dνl ◦ σ
= al .e

φ(x)−Zc .

4 Convergence for μ̂Z and asymptotic of the limit measure

In the section, we prove that μ̂Z converges as Z goes to Zc. We also prove that
the limit μ̂ satisfies the required properties. To prove convergence for μ̂Z it is
equivalent to prove convergence for μ̂Z (C−n,m(x)) for any non-negative integers
n, m, and for any x in R. Using the disintegration of the measure along the stable
leaves, we get

μ̂Z
(
C−n,m(x)

)
=

∫
μ̂s

Z ,y

(
C−n,0(x)

)
1IC0,m (x)(y) dμZ (y), (24)

where μ̂s
Z ,y is the disintegrated measure on the fiber C0,+∞(y). We already have

the convergence for μZ ; we only need the uniform convergence for the map
y 7→ μ̂s

Z ,y(C−n,0(x)). This will follow from the next two lemmas.
Let us pick some y. We use proposition 7.1 in [Lep00] to get

μ̂s
Z ,y

(
C−n,0(x)

)
=

∑

y′∈Pre1(y)

μ̂s
Z ,y

(
g(ηs(y′))

)
1IC−n,0(x)

(
g(y′)

)

=
∑

y′∈g−1
(

C−n,0(x)
)

HZ (y′)

HZ (y)
e8(y

′)−Z .r(y′)−β.
(25)

Remember that g is the map σ r(.)(.), and thus, the last sum is taken over the y′

in Pre1(y) such that g(y′) ∈ C−n,0(x).

Lemma 4.1. If there exists y′ in Pre1(y) such that r(y′) = n, then
μ̂s

Z ,ξ (C−n,0(x)) goes uniformly (in ξ ) to 0 as Z goes to Zc.

Proof. Remember we defined the 1-sets in the proof of Lemma 3.1. With
our notations, K1(y′) = F ∩ C0,n(y′). Moreover,

g
(
C0,n(y

′)
)

= σ n
(
C0,n(y

′)
)

= C−n,0(x).
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Therefore, (25) yields

μ̂s
Z ,ξ

(
C−n,0(x)

)
=

HZ (ξ
′)

HZ (ξ)
e8(ξ

′)−Zcn−β,

where ξ ′ is the unique element in Pre1(ξ) ∩ K1(y′). Now, when Z goes to Zc,
β goes to +∞, n is fixed, and thus μ̂s

Z ,ξ (C−n,0(x)) goes uniformly to 0. �

Let us set C−n,0(x) = [x−n, x−n+1, . . . , x−1, iR]. Lemma 4.1 implies that if
one x− j = iR with 0 < j ≤ n, then μ̂s

Z ,ξ (C−n,0(x)) goes uniformly (in ξ ) to
0 as Z goes to Zc. We now consider the case where no x− j equals iR (except
x0). Note that [x−n, . . . , x−1] is an admissible word for an unique irreducible
component of 6R .

Lemma 4.2. There exists some positive ε such that, if [x−n, . . . , x−1] is an
admissible word for 6l

R, then

μ̂s
Z ,y

(
C−n,0(x)

)
=

1

HZ (y)
eSn(φ)(σ−n(y))−nZ

(
O

(
e−β

1 − eZc−Z−ε

)
+

(∫

Fl
HZ eφ−Z dνl ◦ σ

)
Hl

(
σ−n(y)

) e−β

1 − eZc−Z

)
,

(26)

where σ−n(y) denotes [x−n, x−n+1, . . . , x−1, iR, y1, y2, . . .].

If [x−n, . . . , x−1] is not an admissible word for any 6l
R, then

μ̂s
Z ,y

(
C−n,0(x)

)
= O

(
e−β

1 − eZc−Z−ε

)

Proof. We copy the proof of Proposition 3.4. We first assume that [x−n, . . . ,

x−1] is an admissible word for 6l
R . The other case will follow from the same

computation. Equation (25) yields

∑

y′∈g−1(C−n,0(x))

HZ (y′)

HZ (y)
e8(y

′)−Z .r(y′)−β

=
1

HZ (y)
eSn(φ)(σ

−n(y))−nZ ×
∑

y′∈g−1(C−n,0(x))

HZ (y
′)eSr(y′)−n(y

′)−(r(′ y)−n)Z

Again,

∑

y′∈g−1(C−n,0(x))

HZ (y
′)eSr(y′)−n(y

′)−(r(′ y)−n)Z =
+∞∑

p=0

L p
l

(
HZ ◦ σ−1eφ◦σ−1−Z )(

σ−n(y)
)
,
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where σ−1([ξ0, ξ1, . . .]) means [iR, ξ0, ξ1, . . .]. We use (13) and conclude as
above. Note that the constant in O only depends on e||φ||∞ and ||HZ ||α and
||φ||α.

Now, if [x−n, . . . , x−1] is not an admissible word for any 6l
R , the same com-

putation holds, except that the pressure of the component is strictly smaller than
Zc. It can thus be written under the form Zc − ε for some positive ε.

As there are finitely many irreducible components, we can find some uniform
ε, independent of the components. �

Now, note that HZ converges uniformly as Z goes to Zc. Moreover
e−β

1−eZc−Z converges to A. Therefore, Lemma 4.1 and Lemma 4.2 yield that

μ̂s
Z ,y(C−n,0(x)) converges uniformly in y as Z goes to Zc. This finishes the

proof of the convergence of μ̂Z . Moreover, Lemma 3.1 and Lemma 4 prove that
the limit measure μ̂ only gives positive weight to the set of points whose orbit
intersects R only once. This set is totally dissipative with respect to σ .

Remark 8. Note that (24) yields that πF μ̂ = μ := limZ μZ . �

Remark 9. The measure μ̂Z is g-invariant, but g is not a continuous map.
Therefore, there are no reason why the limit measure should be g-invariant.
Nevertheless, we can consider it is the case, if we consider that for μ̂-almost
every point the return time (by iterations of σ or σ−1) is infinite. �

We set
μ′ def

=
∑

k≥0

σ k
∗ μ̂.

It is a σ -finite measure and we now want to study its asymptotic with respect
to σ .

Definition 4.3. Let x be in suppμ′. There exists a unique integer n such that
σ n(x) ∈ R. Then, there exists a unique l such that for every k ≥ 0, the cylinder
Cn+1,n+k+1(x) defines an admissible word for 6l

R. We say that 6l
R (eventually)

catches x.

Proposition 4.4. Let f be a continuous functions in 6. Then for μ′ almost
every x,

lim
n→+∞

1

n

n−1∑

j=0

f ◦ σ j (x) =
∫

f dml(x),

where ml(x) is equilibrium state with respect to φ of the irreducible component
of 6l(x)

R which catches x.
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Proof. Let us pick some irreducible component of 6R with maximal φ-pres-
sure, 6l

R; ml is its equilibrium state. For ml-almost every z in 6l
R ,

lim
n→+∞

1

n
Sn( f )(z) =

∫
f dml .

As f is continuous, if the limit occurs for some z, it also holds for every z′ in its
stable leaf. Moreover if the limit holds for z, it also holds for every σ n(z).

Now, remember that ml is defined on 6l
R , and its projection onto 6l+

R is
the measure defined by Hl .dνl(see Subsection 2.1). Moreover Hl is bounded
from below away to 0 and from above.

Therefore, for νl-almost every z in 6l
R

+
, and for every z′ in W s(z),

lim
n→+∞

1

n
Sn( f )(z′) =

∫
f dml .

We denote by �l this set of full νl-measure in 6R
l+.

Now, Remark 8 says that the projection of μ̂ onto F in R is μ, the limit meas-
ure for μZ . Remember that dμZ = HZ dνZ and HZ uniformly converges to H
and νZ converges to ν. Moreover, HZ (ξ) ∈ [e−Cφ , eCφ ] for every ξ in F , which
means that H is bounded from below away to 0 and from above. Hence, the
projection of μ̂ onto F is equivalent to ν.

For points which are caught by 6l
R , Proposition 3.6 yields that ν is equivalent

to νl ◦ σ−1. Therefore, for ν-almost every z in Fl , σ(z) belongs to W s(�l).
This means that for ν-a.e. point in F caught by 6l

R , the limit holds. Hence this
also holds for μ̂-a.e. point in R caught by 6l

R . This finishes the proof. �

5 Proof of Theorem 2 and Corollary 3

In this section, we construct a φ-cstm which is related to m. We then prove
that this system results from the disintegration of some σ -finite σ -invariant mea-
sure. Finally we prove that changing our choice for R, we have infinitely many
different such measures.

5.1 Construction of the φ-cstm

Following [BM77], the mixing property in 6 proves that it is sufficient to con-
struct one measure νF on F .

We want to prove that the measure we construct satisfies the property of being
φ-conformal, i.e., some strict property on the derivative of Radon-Nikodym
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for holonomies. It turns out that this property will be satisfied if we asked for
another property, in relation with σ and not the holonomy (see Remark 2).

We decompose F in a disjoint union of sets Fn , 0 ≤ n ≤ ∞. A point x in F
belongs to Fn if and only if it returns n times into R by iterations of σ . Clearly
F∞ is gF -invariant. Note that x belongs to Fn , if and only if gn

F(x) belongs to
F0. Therefore, if x belongs to F∞, no points in its stable leaf W s(x) can be in⋃

n<+∞ Fn .
On F0 we put the measure

ν
def
= lim

Z→Zc
νZ .

Note that by Lemma 3.1 μ(F0) = 1, and we have seen that μ and ν are two
equivalent probabilities. Points in F0 are points whose forward orbit never re-
turns into R, hence are points caught by some irreducible component. Therefore,
ν-almost very point belongs to some Fl , l = 1, . . . , P . Due to the density of
the leaves, the pair (F, ν) is going to fix all the system of transverse measure.
We however define νF everywhere on F and will check later that this is coherent
with the φ-conformal property.

We decompose Fn in disjoints Kn-sets, defined by the relation

gn
F

(
Kn(x)

)
= πF ◦ σ rn(x)

(
Kn(x)

)
= F.

Note that the map πF defines a bijection from σ rn(x)(Kn(x)) onto F . We push ν
on σ rn(x)(Kn(x)), following the φ-conformal rule. We then define the measure
νF on Kn(x) following the rule

dνF

dσ−rn(x)νF
(x) = eSrn (x)(φ)(x)−rn(x).Zc . (27)

By construction, this measure is infinite because νF(F1) = LZc(1I) = +∞.
We now have to check that this definition of νF allows us to construct a unique

φ-conformal system of transversal measures on the local unstable leaves in 6.
Let A be any set in Fn . We assume it is included in a unique Kn-set, say

Kn(x). For any other Kn-set, Kn(y), we can define the adjoint set A′, in the
following way:

Take the gn-images of Kn(x) and Kn(y), project on gn(Kn(y)) the set gn(A)
along the local stable leaves, and then take the preimage by gn of that set
in Kn(y).

Due to the definition of νF on the Kn-sets, the derivative of Radon-Nikodym
of the image by that holonomy of νF |Kn(x) with respect to νF |Kn(y) is eω.
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Let us now take two W s-conjugated sets A and A′ in different Fn’s. By
W s-conjugated sets we means sets A and A′ such that there exists some bi-
measurable holonomy hs from one to the other. Iterating by the map σ , we can
always assume that one (namely A) is taken in Fn , and A′ in F0. We can also
assume that A′ is included in a unique Fl and that A is included in a unique
Kn-set (otherwise we split each set in disjoints subsets with these properties).

Proposition 3.6 means that in F0 ∩ A′ the measure ν = νF is the measure
al .ν

l ◦ σ . Each νl is a conformal measure and satisfies in 6l+
R

dνl

dσ−1νl
(x) = eφ(x)−Zc . (28)

Note that this relation is equivalent to the one satisfied by νl ◦ σ in Fl , stated
in Proposition 3.6 and to (27). We can thus use the cocycle relation. Let p be
such that gn(A) = σ p(A). The W s-conjugacy between A and A′ is then equiv-
alent to the W s-conjugacy between σ p(A) and σ p(A′). Moreover σ p(A) be-
longs to R, and the future of σ p(A) belongs to 6l+

R .
Then, Proposition 3.6, equality (28) and the definition of νF on Fn imply that

the derivative of Radon-Nikodym between νF and hs
∗νF for any point x in A

is eω. This thus proves that the φ-conformal property holds for this choice of
W s-conjugated sets A and A′ in F . Following [BM77] we can extend νF using
the φ-conformal property to get some φ-cstm in 6.

Remark 10. Note that for every local unstable leaf in 6l
R , the restriction

of the measure defined by the system above is equivalent to νl . �

We also want to point-out that the system of measures we have just defined
satisfies the property:

dμx

dσ−1μσ(x)
(x) = eφ(x)−Zc . (29)

This follows from the definition of νF in F and of ν in F0.

5.2 Integration of the system of measures

Lemma 5.1. The measure μ̂ has a product structure: μ̂ ≡ ν ⊗ νs , for some
probability measure νs . The measure νs only weights points in R which never
return into R by iterations of σ−1.
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Proof. First, Lemma 4.1 proves that μ̂ gives positive weight only to sets of
points in R whose backward orbit never intersects R again. Let us pick such
a point x . Therefore its past [. . . , x−2, x−1] is an admissible word for a unique
irreducible component of 6R . Lemma 4.2 yields that μ̂ gives positive weight
only to sets of points x such that [. . . , x−2, x−1] is an admissible word for one
of the 6l

R . Let us assume in addition that this holds for x . Equalities (26) and
(24) yield

μ̂
(
C−n,m(x)

)
=

∫
H.eφ−Z dνl ◦ σ

×
∫
Hl

(
σ−n(y)

)
eSn(φ)(σ−n(y))−nZc 1IC0,m (x)

(
πF(y)

)
1IC−n,0(x)(y) dν

(
πF(y)

)
,

This gives

μ̂
(
C−n,m(x)

)

μ̂
(
C−n,0(x)

)

=

∫
Hl

(
σ−n(y)

)
eSn(φ)(σ−n(y))1IC−n,0(x)(y)1IC0,m (x)

(
πF(y)

)
dν

(
πF(y)

)

∫
Hl

(
σ−n(y)

)
eSn(φ)(σ−n(y))1IC−n,0(x)(y) dν

(
πF(y)

) .

(30)

We know (see [Roh62]) that for μ̂-a.e. point x , the limit in the left hand side
of (30) exists as n goes to +∞, and equals μ̂u

x(C0,m(x)). We also note that the
right hand term in (30) belongs to

[
ν
(
C0,m(x)

)
e−4Cφ , ν

(
C0,m(x)

)
e4Cφ

]
.

Indeed, each Hl(ξ) belongs to [e−Cφ , eCφ ], and each term eSn(φ)(σ
−n(y)) can be

replaced, up to e±Cφ by eSn(φ)(σ
−n(ξ)) for a fixed ξ in the same cylinder.

This means that for m and for every x ,

e−4Cφ ≤
μ̂u

x(C0,m(x))

ν(C0,m(x))
≤ e4Cφ .

Hence, the conditional measure μ̂u
x is equivalent to ν. This effectively proves

that μ̂-almost everywhere, the conditional measures are equivalent (up to the
stable holonomy which exactly is the horocycle flow). This proves that μ̂ has a
product structure.

We can thus set μ̂ ≡ ν ⊗ νs , for some probability measure νs . Note that νs

only weights points in R which never return into R by iterations of σ−1 because
μ̂ does. �
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Let us set
τ̃

def
= νF ⊗ νs .

Then τ̃ only weights points in R which never return into R by iterations of
σ−1 and which return only finitely many times in R (possibly 0) by iterations of
σ . This set is totally dissipative. Let us set

τ
def
=

∑

k∈Z

τ̃ ◦ σ k,

which is a σ -finite and σ -invariant measure. By construction it integrates the
φ-conformal system of measures defined by νF in 6. It is non ergodic, because
it weights points whose orbits intersects R only finitely many times; this set
can be decomposed in σ -invariant disjoints sets, defined as the set of points
whose orbit intersect R exactly n-times, n describing N∗. All these sets have
positive measure.

We now check that the measure τ is σ -finite. For that we only need to check
that τ̃ is σ -finite. We can decompose the support of τ̃ in sets of points in
π−1

F (Fn). Moreover, each π−1
F (Fn) can be decomposed in the disjoint and

countable union of π−1
F (Kn)-sets. Each such set has finite τ̃ -measure because

its image by gn is into π−1
F (F0). This finishes the construction and the proof

of Theorem 2.

5.3 Proof of Corollary 3: counting these measures

There are only finitely vertices’s in 6, but it is possible to use a higher block
representation (see [LM95]) to increase this number. Now, using the higher
block representation, we can chose R′ ⊂ R (and R′ 6= R). Obviously, points
which only return finitely many times in R by iterations of σ also only return
finitely many times in R′. However the new φ-cstm, {μ′

W u
loc

}, satisfies

dμ′
W u

loc(x)

dσ−1μ′
W u

loc(σ (x))

(x) = eφ(x)−Z ′
c , (31)

where Z ′
C is the pressure of the dotted system with hole R′. Note that in 6, R′

is a cylinder with some length n. Making this length n go to +∞, the pressure
of the dotted system has to increase to the pressure of 6 (but never equals it).
Therefore it attempts infinitely many different values. Hence (29) and (31) prove
that all these systems are different, thus all their integrated measures are differ-
ent. It effectively furnishes infinitely many different measures as announced.
Corollary 3 is proved.
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