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Singularities of Anti de Sitter torus Gauss maps

Liang Chen∗† and Shyuichi Izumiya‡

Abstract. We study timelike surfaces in Anti de Sitter 3-space as an application
of singularity theory. We define two mappings associated to a timelike surface which
are called Anti de Sitter nullcone Gauss image and Anti de Sitter torus Gauss map.
We also define a family of functions named Anti de Sitter null height function on the
timelike surface. We use this family of functions as a basic tool to investigate the
geometric meanings of singularities of the Anti de Sitter nullcone Gauss image and
the Anti de Sitter torus Gauss map.
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1 Introduction

This paper is written as one of the research projects on differential geometry
of submanifolds in Anti de Sitter 3-space from the viewpoint of singularity
theory. There are several articles for the study of submanifolds in Minkowski
space, which is a flat Lorentzian space, and also in de Sitter space, which is a
Lorentzian space with positive curvature [9, 11, 13, 14, 15]. The Lorentzian
space form with negative curvature is called Anti de Sitter space which is one
of the vacuum solutions of the Einstein equation in the theory of relativity. Sin-
gularity theory tools, as illustrated by several papers which appeared so far
([2, 4, 5, 6, 7, 10, 11, 12, 16, 20, 21, 22, 23, 25, 28, 29, 30]), have proven
to be useful in the description of geometrical properties of submanifolds im-
mersed in different ambient spaces, from both the local and global viewpoint.
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The natural connection between Geometry and Singularities relies on the basic
fact that the contacts of a submanifold with the models (invariant under the ac-
tion of a suitable transformation group) of the ambient space can be described
by means of the analysis of the singularities of appropriate families of con-
tact functions, or equivalently, of their associated Lagrangian and/or Legendrian
maps ([1, 24, 26]). However, there are not many results on submanifolds im-
mersed in the Anti de Sitter space, in particular from the view point of singularity
theory. In [8] we have studied the spacelike surfaces in Anti de Sitter 3-space as
an application of Legendrian singularity theory. We construct a basic framework
for the study of timelike surfaces in Anti de Sitter 3-space here. As it was to
be expected, the situation presents certain peculiarities when compared with the
Minkowski case and the de Sitter case. For instance, in our case it is always
possible to choose two lightlike normal directions along the timelike surface in
the frame of its normal bundle. This is similar to the de Sitter case, but the
normalized image is located in the Lorentzian torus T 2

1 . For the de Sitter case,
the normalized image of the lightlike normal is located in the spacelike sphere
S2

+. Moreover, there are no closed timelike surfaces in de Sitter space but there
are such surfaces in Anti de Sitter space.

In §2 we prepare the basic notions on timelike surfaces in Anti de Sitter 3-
space. We define the Anti de Sitter nullcone Gauss image (briefly, AdS-nullcone
Gauss image) and the Anti de Sitter torus Gauss map (briefly, AdS-torus Gauss
map). We will find the AdS-nullcone Gauss image is more computable than the
AdS-torus Gauss map. We also define the Anti de Sitter null Gauss-Kronecker
curvature and the Anti de Sitter torus Gauss-Kronecker curvature. We inves-
tigate their relations. We can prove that Anti de Sitter torus Gauss-Kronecker
curvature is not a Lorentz invariant but it is an SO(2)× SO(2)-invariant. More-
over, these two Gauss-Kronecker curvature functions have the same zero sets.
In §3 we introduce the notion of height functions on timelike surfaces, named
the AdS-null height function, which is useful to show that the AdS-nullcone
Gauss image has a singular point if and only if the Anti de Sitter null Gauss-
Kronecker curvature vanished at such point. we also apply the Legendrian sin-
gularity theory to interpret the AdS-nullcone Gauss image as a Legendrian map.
In §4 we define a surface, named Anti de Sitter torus cylindrical pedal, as a
tool to study the relationship between the AdS-nullcone Gauss image and the
AdS-torus Gauss map. We also study the contact of timelike surfaces with some
model surfaces (i.e., AdS-horospheres) in §5. In §6 we give a generic classifi-
cation of singularities of AdS-nullcone Gauss image and AdS-torus Gauss map.
In the last part, §7, we introduce the notion of the AdS-null Monge form of a
timelike surface in Anti de Sitter 3-space and as an application of this notion
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we give two examples.
We shall assume throughout the whole paper that all maps and manifolds

are C∞ unless the contrary is explicitly stated.

2 The local differential geometry of timelike surfaces

In this section we introduce the local differential geometry of timelike surfaces
in Anti de Sitter 3-space. For details of Lorentzian geometry, see [27].

Let R4 = {(x1, ∙ ∙ ∙ , x4)|xi ∈ R (i = 1, ∙ ∙ ∙ , 4)} be a 4-dimensional vector
space. For any vectors x = (x1, ∙ ∙ ∙ , x4) and y = (y1, ∙ ∙ ∙ , y4) in R4, the
pseudo scalar product of x and y is defined to be 〈x, y〉 = −x1 y1 − x2 y2 +
x3 y3 + x4 y4. We call (R4, 〈, 〉) a semi-Euclidean 4-space with index 2 and
write R4

2 instead of (R4, 〈, 〉).
We say that a non-zero vector x in R4

2 is spacelike, null or timelike if
〈x, x〉 > 0, 〈x, x〉 = 0 or 〈x, x〉 < 0 respectively. The norm of the vector
x ∈ R4

2 is defined by ‖x‖ =
√

|〈x, x〉|. We denote the signature of a vector x by

sign(x) =






1 x is spacelike
0 x is null

−1 x is timelike

For a vector n ∈ R4
2 and a real number c, we define the hyperplane with pseudo-

normal n by
H P(n, c) =

{
x ∈ R4

2|〈x, n〉 = c
}
.

We call H P(n, c) a Lorentz hyperplane, a semi-Euclidean hyperplane with in-
dex 2 or a null hyperplane if n is timelike, spacelike or null respectively.

We now define Anti de Sitter 3-space (briefly, AdS 3-space) by

H 3
1 =

{
x ∈ R4

2 | 〈x, x〉 = −1
}
,

a unit pseudo 3-sphere with index 2 by

S3
2 =

{
x ∈ R4

2 | 〈x, x〉 = 1
}
,

and a closed nullcone with vertex a by

3a =
{

x ∈ R4
2|〈x − a, x − a〉 = 0

}
.

In particular we call 30 the nullcone at the origin. We also define the Lorentz
torus by

T 2
1 =

{
x = (x1, x2, x3, x4) ∈ 30|x

2
1 + x2

2 = x2
3 + x2

4 = 1
}
.
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If a non-zero vector x = (x1, x2, x3, x4) ∈ 30, we have

x̃ = ±
1

√
x2

1 + x2
2

(x1, x2, x3, x4) = ±
1

√
x2

1 + x2
2

x ∈ T 2
1 .

For any X1, X2, X3 ∈ R4
2, we define a vector X1 ∧ X2 ∧ X3 by

X1 ∧ X2 ∧ X3 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

−e1 −e2 e3 e4

x1
1 x2

1 x3
1 x4

1

x1
2 x2

2 x3
2 x4

2

x1
3 x2

3 x3
3 x4

3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where {e1, e2, e3, e4} is the canonical basis of R4
2 and X i =

(
x1

i , x2
i , x3

i , x4
i

)
.

We can easily check that 〈X, X1 ∧ X2 ∧ X3〉 = det(X, X1, X2, X3), so that
X1 ∧ X2 ∧ X3 is pseudo-orthogonal to any X i (for i = 1, 2, 3).

We now study the extrinsic differential geometry of timelike surfaces in Anti
de Sitter 3-space. Let X : U −→ H 3

1 be a regular surface (i.e., an embedding),
where U ⊂ R2 is an open subset. We denote M = X(U ) and identify M with
U through the embedding X . The embedding X is said to be timelike if the
induced metric I of M is Lorentzian. Throughout the remainder in this paper
we assume that M is a timelike surface in H 3

1 . We define a vector N(u) by

N(u) =
X(u) ∧ Xu1(u) ∧ Xu2(u)

‖X(u) ∧ Xu1(u) ∧ Xu2(u)‖
.

By definition, we have

〈N(u), X(u)〉 ≡ 〈N(u), Xui (u)〉 ≡ 0 and 〈X(u), Xui (u)〉 ≡ 0 (for i = 1, 2).

This means that X(u), N(u) ∈ Np M , where u = (u1, u2) ∈ U and p = X(u) ∈
M . Since the embedding is timelike and X(u) ∈ H 3

1 , N is spacelike. Therefore
〈N(u), N(u)〉 ≡ 1. It follows that

X(u) ± N(u) ∈ 30 ∩ Np M and ˜X(u) ± N(u) ∈ T 2
1 ∩ Np M.

Thus we can define a map G±
n : U −→ 30 by G±

n (u) = X(u) ± N(u).
This map is analogous to the hyperbolic Gauss indicatrix of hypersurfaces in
H n

+(−1) which was defined in [12]. Here, we call it the Anti de Sitter nullcone
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Gauss image (briefly, AdS-nullcone Gauss image) of X(or M). We also define
a map

G̃±
n : U −→ T 2

1 by G̃±
n (u) = ˜X(u) ± N(u) =

1

ξ(u)
G±

n (u),

where
ξ(u) = ±

√
(x1(u) ± n1(u))2 + (x2(u) ± n2(u))2 .

We call it the Anti de Sitter torus Gauss map (or, AdS-torus Gauss map) of X .
We remak that the map G±

n (u) was used by S. Lee [17] to study the timelike
sufaces of constant mean curvature ±1 in Anti de Sitter 3-space. He called
G±

n (u) the hyperbolic Gauss map. By a direct calculation we know that G±
n is

constant if and only if G̃±
n is constant.

It is easy to show that Nui (i = 1, 2) are tangent vectors of M . Therefore we
have a linear transformation S±

p = −dG±
n (u) = −(d X(u)±d N(u)) : Tp M −→

Tp M which is called the Anti de Sitter null shape operator (briefly, AdS-null
shape operator) of M = X(U ) at p = X(u). Under the identification of U
and M , the derivation d X(u) can be identified with the identity mapping idTp M ,
this means that S±

p = −dG±
n (u) = −(idTp M ± d N(u)). We have another linear

mapping
dG̃±

n (u) : Tp M −→ TpR
4
2 = Tp M ⊕ Np M.

If we consider the orthogonal projection π T : Tp M ⊕ Np M −→ Tp M , then
we have

S̃±
p = −(dG̃±

n (u))T = −π T ◦ dG̃±
n (u) : Tp M −→ Tp M

and call it the Anti de Sitter torus shape operator (briefly, AdS-torus shape
operator) of M = X(U ) at p = X(u). We remark that S±

p (resp., S̃±
p ) does not

always have real eigenvalues. If the eigenvalues are real numbers, we denote it
by k±

i (resp., k̃±
i ) (for i = 1, 2).

We define

K ±
Ad Sn(u) = detS±

p = k±
1 ∙ k±

2 and K̃ ±
AdSt(u) = det S̃±

p = k̃±
1 ∙ k̃±

2 .

We respectively call K ±
AdSn(u) the Anti de Sitter null Gauss-Kronecker curva-

ture (briefly, AdS-null G-K curvature) and K̃ ±
AdSt(u) the Anti de Sitter torus

Gauss-Kronecker curvature (briefly, AdS-torus G-K curvature) of M = X(U ) at
p = X(u). We say that a point p = X(u) is a ( positive or negative) Anti de Sitter
horospherical parabolic point (briefly, AdSh±-parabolic point) (resp. positive
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or negative Anti de Sitter torus parabolic point, briefly, AdSt±-parabolic point)

of M = X(U ) if K ±
AdSn(u) = 0(resp. K̃ ±

AdSt(u) = 0). By a straightforward cal-

culation we have the relation S±
p = ξ(u)S̃±

p , so that we have k±
i (p) = ξ(u)k̃±

i (p)

and K ±
Ad Sn(u) = ξ 2(u)K̃ ±

AdSt(u). Then we have the following relations:





k±
i (p) = 0 ⇐⇒ k̃±

i (u) = 0

K ±
Ad Sn(u) = 0 ⇐⇒ K̃ ±

AdSt (u) = 0.

We say that a point u ∈ U or p = X(u) is an umbilic point if S±
p =

k±(p)idTp M . We also say that M = X(U ) is totally umbilic if all points on
M are umbilic.

We now consider the geometric meaning of the AdS-nullcone Gauss image
of a timelike surface. First, we consider a surface given by the intersection
of H 3

1 with the hyperplane H P(n, c). We denote it by AH(n, c) = H 3
1 ∩

H P(n, c) and call it a Anti de Sitter pseudohyperboloid with index 1 (briefly,
AdS-pseudohyperboloid), a Anti de Sitter pseudosphere with index 1 (briefly,
AdS-pseudosphere) or a Anti de Sitter horosphere (briefly, AdS-horosphere) if
n is spacelike, timelike and ‖n‖ < |c| or null respectively. Especially, we
call AH(n, 0) the Anti de Sitter small pseudohyperboloid with index 1 (briefly,
AdS-small pseudohyperboloid) if n is spacelike and c = 0. Then we have the
following proposition.

Proposition 2.1. Let X : U −→ H 3
1 be a timelike surface in Anti de Sitter

3-space. If the AdS-nullcone Gauss image G±
n is constant, then the timelike

surface X(U ) = M is a part of a AdS-horosphere.

Proof. We consider the set V = { y ∈ R4
2|〈 y, X ± N〉 = −1}. Since G±

n =
X ± N is constant, the set V = H P(G±

n , −1) is a null hyperplane. We also have
〈X,G±

n 〉 ≡ −1, so X(U ) = M ⊂ V ∩ H 3
1 . �

We also have the following classification theorem on umbilic points.

Proposition 2.2. Suppose that M = X(U ) is totally umbilic. Then k±(p) is
constant k±. Under this condition, we have the following classification.

(1) Suppose k± 6= 0.

(a) If 0 < |k± +1| < 1, then M is a part of an AdS-pseudohyperboloid;
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“main” — 2010/3/16 — 12:26 — page 43 — #7

ANTI DE SITTER TORUS GAUSS MAPS 43

(b) If |k± + 1| > 1, then M is a part of an AdS-pseudosphere;

(c) If k± = −1, then M is a part of an AdS-small pseudohyperboloid.

(2) Suppose k± = 0 then M is a part of an AdS-horosphere.

The proof is almost the same as that of Proposition 2.3 in [12], so that we
omit it. We also call a point p ∈ M the Anti de Sitter horospherical point
(briefly, AdS-horospherical point) if k±

i (p) = 0 (i = 1, 2).
We now introduce the pseudo-Riemannian metric ds2 =

∑2
i, j=1 gi j dui du j on

M = X(U ), where gi j (u) = 〈Xui (u), Xu j (u)〉 for any u ∈ U . We also define
the Anti de Sitter null second fundamental invariant by h±

i j (u) = 〈−(G±
n )ui (u),

Xu j (u)〉, the Anti de Sitter torus second fundamental invariant by

h̃±
i j (u) = 〈−(G̃±

n )ui
(u), Xu j (u)〉 =

1

ξ(u)
h±

i j (u)

for any u ∈ U . We can also show the following Weingarten formulas by exactly
the same arguments as those of [8, 12, 15].

Proposition 2.3. With the above notations the following hold

(1) The Anti de Sitter null Weingarten formula:

(
G±

n

)
ui

= −
2∑

j=1

(h±)
j
i Xu j ,

where
(
(h±)

j
i

)
=

(
h±

ik

)(
gkj

)
and

(
gkj

)
=

(
gkj

)−1
.

(2) The Anti de Sitter torus Weingarten formula:

(
(G̃±

n )ui

)T
= π T ◦

(
G̃±

n

)
ui

= −
2∑

j=1

(h̃±)
j
i Xu j = −

1

ξ(u)

2∑

j=1

(h±)
j
i Xu j ,

where
(
(h̃±)

j
i

)
=

(
h̃±

ik

)(
gkj

)
and

(
gkj

)
=

(
gkj

)−1
. �

As a corollary of the above proposition, we have the following expression of
the AdS-null G-K curvature and AdS-torus G-K curvature.

Corollary 2.4. With the same notations as in the above Proposition, we have:

K ±
Ad Sn =

det(h±
i j )

det(gi j )
= ξ 2

det(h̃±
i j )

det(gi j )
= ξ 2 K̃ ±

AdSt . �
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3 Height functions on timelike surfaces

In this section we define two families of functions on a timelike surface in Anti de
Sitter 3-space which are useful for the study of singularities of the AdS-nullcone
Gauss image and the AdS-torus Gauss map.

Let X : U −→ H 3
1 be a timelike surface. We define a family of functions

H : U × 30 −→ R by H(u, v) = 〈X(u), v〉 + 1. We call H an Anti de Sitter
null height function (or, AdS-null height function) on M = X(U ). We denote
the Hessian matrix of the AdS-null height function hv0(u) = H(u, v0) at u0 by
Hess(hv0)(u0). Then we have the following proposition.

Proposition 3.1. Let M = X(U ) be a timelike surface in H 3
1 and H : U ×

30 −→ R be an AdS-null height function. Then we have the following:

(1) H(u0, v) = ∂ H
∂ui

(u0, v) = 0 (for i = 1, 2) if and only if v = X(u0) ±
N(u0) = G±

n (u0);

(2) Let v±
0 = X(u0) ± N(u0), then p = X(u0) is an AdSh±−parabolic point

if and only if det Hess(hv±
0
)(u0) = 0;

(3) Let v±
0 = X(u0) ± N(u0), then p = X(u0) is an AdS-horospherical point

if and only if rank Hess(hv±
0
)(u0) = 0.

Proof.

(1) Since {X, N, Xu1, Xu2} is a basis of the vector space TpR4
2 where p =

X(u), there exist real numbers λ, η, α1, α2 such that v = λX + ηN +
α1 Xu1 + α2 Xu2 . Therefore H(u, v) = 0 if and only if λ = −〈X(u), v〉 =
1. Since 0 = ∂ H

∂ui
(u, v) = 〈Xui , v〉 =

∑2
j=1 gi jαi and (gi j ) is non-

degenerate, we have αi = 0 (for i = 1, 2). Therefore, v = X + ηN .
From the fact that 〈v, v〉 = 0, we have η = ±1.

(2) By definition, we have

Hess(hv±
0
)(u0) = (〈Xui u j (u0),G

±
n (u0)〉) = (−〈Xui (u0),G

±
n u j

(u0)〉).

From the AdS-null Weingarten formula, we have

−〈Xui , (G
±
n )u j 〉 =

2∑

α=1

(h±)α
i 〈Xuα

, Xu j 〉 =
2∑

α=1

(h±)α
i gα j = h±

i j .
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Therefore we have

K ±
Ad Sn(u0) =

det(h±
i, j (u0))

det(gi j (u0))
=

det Hess(hv±
0
)(u0)

det(gi j (u0))
.

Then assertion (2) is satisfied.

(3) By the AdS-null Weingarten formula, p is an umbilic point if and only if
there exists an orthogonal matrix A such that At((h±)l

i )A = k± I . There-
fore, we have ((h±)l

i ) = Ak± I At = k± I . Then we have

Hess(hv±
0
)(u0) = (h±

i j (u0)) = ((h±)l
i (u0))(gl j (u0)) = k±(gi j (u0)).

Thus, p = X(u0) is a AdS-horospherical point if and only if
rank Hess(hv±

0
)(u0) = 0. �

As an application of the above proposition, we have the following direct
corollary.

Corollary 3.2. Let H : U × 30 −→ R, with H(u, v) = hv(u) be an AdS-null
height function on a timelike surface M = X(U ) and G±

n be the AdS-nullcone
Gauss image, p = X(u). Suppose v± = G±

n (u), then the following conditions
are equivalent:

(1) p ∈ M is a degenerate singular point of the AdS-null height function hv±

(2) p ∈ M is a singular point of the AdS-nullcone Gauss image G±
n ;

(3) K ±
Ad Sn(u) = 0. �

We can also define another family of functions H̃ : U × T 2
1 −→ R by

H̃(u, v) = 〈X(u), v〉. We call H̃ an Anti de Sitter torus height function (briefly,
AdS-torus height function) on X . We denote the Hessian matrix of the AdS-
torus height function h̃v0(u) = H̃(u, v0) at u0 by Hess(h̃v0)(u0). We remark that
this family satisfies the same properties as those stated in Proposition 3.1 and
Corollary 3.2.

On the other hand, we can naturally interpret the AdS-nullcone Gauss image
G±

n of M as a Legendrian map from the viewpoint of generating family. For
notations and some basic results on generating family, please refer to Arnold
and Zakalyukin [1, 32]. Then, we have the following fundamental property with
respect to the AdS-null height function H .
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Proposition 3.3. The AdS-null height function H : U × 30 −→ R is a Morse
family of hypersurfaces h−1

v (0)v∈30 .

Proof. For any v = (v1, v2, v3, v4) ∈ 30, we have v 6= 0. Without loss of

generality, we might assume that v1 > 0, then v1 =
√

v2
3 + v2

4 − v2
2 . So that

H(u, v) = −x1(u)

√
1 + v2

3 + v2
4 − v2

2 − x2(u)v2 + x3(u)v3 + x4(u)v4 + 1,

where X(u) = (x1(u), x2(u), x3(u), x4(u)). We have to prove the mapping

1∗ H =
(

H,
∂ H

∂u1
,
∂ H

∂u2

)

is non-singular at any point. The Jacobian matrix of 1∗ H is given as follows:







〈Xu1, v〉 〈Xu2, v〉 x1
v2
v1

− x2 −x1
v3
v1

+ x3 −x1
v4
v1

+ x4

〈Xu1u1, v〉 〈Xu1u2, v〉 x1u1
v2
v1

− x2u1 −x1u1
v3
v1

+ x3u1 −x1u1
v4
v1

+ x4u1

〈Xu2u1, v〉 〈Xu2u2, v〉 x1u2
v2
v1

− x2u2 −x1u2
v3
v1

+ x3u2 −x1u2
v4
v1

+ x4u2








.

We claim that it will suffice to show that the determinant of the matrix

A =








x1
v2
v1

− x2 −x1
v3
v1

+ x3 −x1
v4
v1

+ x4

x1u1
v2
v1

− x2u1 −x1u1
v3
v1

+ x3u1 −x1u1
v4
v1

+ x4u1

x1u2
v2
v1

− x2u2 −x1u2
v3
v1

+ x3u2 −x1u2
v4
v1

+ x4u2








,

does not vanish at (u, v) ∈ 1∗ H−1(0). In this case, v = G±
n (u) and we denote

b1 =




x1

x1u1

x1u2



 , b2 =




x2

x2u1

x2u2



 , b3 =




x3

x3u1

x3u2



 , b4 =




x4

x4u1

x4u2



 .

Then we have

det A = −
v1

v1
det(b2, b3, b4) +

v2

v1
det(b1, b3, b4)

−
v3

v1
det(b1, b2, b4) +

v4

v1
det(b1, b2, b3).

On the other hand, we have

X ∧ Xu1 ∧ Xu2 =
(
− det(b2, b3, b4), det(b1, b3, b4),

det(b1, b2, b4), −det(b1, b2, b3)
)
.
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Therefore we have

det A =
〈(

−
v1

v1
, −

v2

v1
, −

v3

v1
, −

v4

v1

)
, X ∧ Xu1 ∧ Xu2

〉

= −
1

v1
〈G±

n , ‖ X ∧ Xu1 ∧ Xu2 ‖ N〉

= ∓
‖ X ∧ Xu1 ∧ Xu2 ‖

v1
6= 0. �

Let X : U −→ H 3
1 be a timelike surface in H 3

1 and G±
n be the AdS-nullcone

Gauss image on M = X(U ). We denote X(u) = (x1(u), x2(u), x3(u), x4(u))

and G±
n (u) = (v1(u), v2(u), v3(u), v4(u)) as coordinate representations. We

define a smooth mapping

G± : U −→ PT ∗(30)

by G±(u) = (G±
n (u), [(x1v2 − x2v1) : (−x1v3 + x3v1) : (−x1v4 + x4v1)]). Then

by the above proposition we have the following corollary.

Corollary 3.4. For any timelike surface X : U −→ H 3
1 , the AdS-null height

function H : U × 30 −→ R on X is a generating family of the Legendrian
embedding G±. �

Therefore we conclude that the AdS-nullcone Gauss image G±
n can be re-

garded as a Legendrian map and G±
n (U ) can be regarded as a wave front set

of G±.

4 The AdS-torus cylindrical pedals of timelike surfaces

In this section we consider a surface associated to M = X(U ), whose singular
set is diffeomorphic to that of the AdS-nullcone Gauss image. We can use this
surface to investigate the relationship between the AdS-nullcone Gauss image
G±

n and the AdS-torus Gauss map G̃±
n of a timelike surface in the Anti de Sit-

ter 3−space. For any timelike surface X : U −→ H 3
1 , we define a smooth

mapping AC PM : U −→ T 2
1 × R∗ by

AC PM(u) =
(
G̃±

n (u), −〈X(u), G̃±
n (u)〉

)
=

(
G̃±

n (u),
1

ξ(u)

)
.

We call it the AdS-torus cylindrical pedal of M = X(U ), where R∗ = R\{0}.
We define a diffeomorphism φ : T 2

1 ×R∗ −→ 30 by φ(v, λ) = λ−1v. It is easy
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to check that φ(AC PM(u)) = G±
n (u), this means that the singular sets of G±

n
and AC PM are diffeomorphic.

We now consider a family functions H : U × T 2
1 × R∗ −→ R defined by

H(u, v, λ) = 〈X(u), v〉 + λ = H̃(u, v) + λ,

we call it the extended AdS-torus height function on M = X(U ). By similar
calculations to the proof of Proposition 3.1(1), we have

DH =
{(
G̃±

n (u),
1

ξ(u)

)
|u ∈ U

}
= {AC PM(u)|u ∈ U }.

On the other hand, we consider the canonical projection π1 : T 2
1 × R∗ −→

T 2
1 . Then we have π1|DH can be identified with the AdS-torus Gauss map G̃±

n
of X . Since

G±
n (u) = −

1

〈X(u), G̃±
n (u)〉

G̃±
n (u) = ξ(u)G̃±

n (u),

we have φ(DH ) = {G±
n (u)|u ∈ U } = DH . Therefore, we may say that the

AdS-nullcone Gauss imageG±
n is a lift of the AdS-torus Gauss map G̃±

n . In fact,
we also have

6∗(H) =
{
(u, G̃±

n (u), −〈X(u), G̃±
n (u)〉)|u ∈ U

}
.

We remark that similar discussions apply to the extended AdS-torus height
function H and AdS-torus height function H̃ , and it follows that H and H̃
are Morse families.

On the other hand, for any v = (v1, v2, v3, v4) ∈ T 2
1 , we consider a coordinate

neighborhood U+
24 = {v = (v1, v2, v3, v4) ∈ T 2

1 |v2 > 0 and v4 > 0}, then

H(u, v, λ) = H̃(u, v) + λ = −x1v1 − x2

√
1 − v2

1 + x3v3 + x4

√
1 − v2

3 + λ.

We now consider smooth mappings LH : G̃±
n

−1
(U+

24) −→ T ∗(T 2
1 ) × R∗ de-

fined by

LH (u) =
(
G̃±

n (u),

[
∂ H

∂v1
:
∂ H

∂v3
:
∂ H

∂λ

]
,

1

ξ(u)

)

=
(
G̃±

n (u),
∂ H

∂v1
,

∂ H

∂v3
,

1

ξ(u)

)
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and L H̃ : G̃±
n

−1
(U+

24) −→ T ∗(T 2
1 ) defined by

L H̃ (u) =
(
G̃±

n (u),
∂ H̃

∂v1
,

∂ H̃

∂v3

)
=

(
G̃±

n (u),
∂ H

∂v1
,

∂ H

∂v3

)
.

According to these definitions, LH is a Legendrian embedding whose generating
family is the extended AdS-torus height function H and L H̃ is a Lagrangian
embedding whose generating family is the AdS-torus height function H̃ . The
details on Lagrangian singularities can be found in [1, 32]. We now consider the
canonical projection

π : T ∗(T 2
1 ) × R∗ −→ T ∗(T 2

1 ), π(v, λ) = v,

then π(LH ) = L H̃ . We remark that if we adopt other local coordinates on T 2
1 ,

exactly the same results hold. Therefore we have the following proposition.

Proposition 4.1. Under the same assumptions as in the above arguments, we
have the following:

(1) The AdS-torus Gauss map G̃±
n is a Lagrangian map. The corresponding

Lagrangian embedding L H̃ is called the Lagrangian lift of the AdS-torus
Gauss map G̃±

n ;

(2) The Legendrian lift G± of the AdS-nullcone Gauss imageG±
n is a covering

of the Lagrangian lift L H̃ of the AdS-torus Gauss map G̃±
n .

Proof. The assertion (1) follows from the above arguments.

On the other hand, for any v ∈ T 2
1 , without loss of the generality, we can

assume that v2 > 0 and v4 > 0. Then we have

v2 =
√

1 − v2
1, v4 =

√
1 − v2

3,

so we can regard (v1, v3) as the coordinate system of T 2
1 . Therefore, the homoge-

neous coordinates of PT ∗(T 2
1 ×R∗) can be expressed as (v1, v3, λ, [ς1 : ς2 : ς ]).

Moreover, if ς 6= 0, we have
(
v1, v3, λ, [ς1 : ς2 : ς ]

)
=

(
v1, v3, λ,

[ς1

ς
:
ς2

ς
: 1

])
,

so that we can adopt the corresponding affine coordinates (v1, v3, λ, ρ1, ρ2),
where ρi = ςi/ς . By the above argument we can naturally regard T ∗(T 2

1 ) ×R∗

as the affine part of PT ∗(T 2
1 × R∗). We also have the following relation:

H ◦ (idU × φ)(u, v, λ) = H(u, λ−1v) = λ−1 H(u, v, λ).
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This means that H ◦ (idU × φ) and H are C-equivalent in the sense of
Mather [18]. So that these generating families correspond to the same Legen-
drian submanifold (cf., [1, 32]. Then we have a unique contact diffeomorphism
8 : PT ∗(T 2

1 × R∗) −→ PT ∗30 covering φ : T 2
1 × R∗ −→ 30 such that

8 ◦ LH = G±. Therefore, G± is a covering of L H̃ . �

5 Contact with AdS-horospheres

In this section we consider the geometric meaning of the singularities of the
AdS-nullcone Gauss image of a timelike surface M = X(U ) in H 3

1 . We consider
the contact of timelike surfaces with AdS-horospheres in the sense of Montaldi
[24]. Let Xi , Yi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2

and dimY1 = dimY2. We say that the contact of X1 and Y1 at y1 is the same
type as the contact of X2 and Y2 at y2 if there is a diffeomorphism germ 8 :
(Rn, y1) −→ (Rn, y2) such that 8(X1) = X2 and 8(Y1) = Y2. In this case we
write K (X1, Y1; y1) = K (X2, Y2; y2). It is clear that in the definition Rn could
be replaced by any manifold. In his paper [24], Montaldi gives a characterization
of the notion of contact by using the terminology of singularity theory.

Theorem 5.1. Let Xi , Yi (i = 1, 2) be submanifolds of Rn with

dim X1 = dim X2 and dim Y1 = dim Y2.

Let gi : (Xi , xi ) −→ (Rn, yi ) be immersion germs and fi : (Rn, yi ) −→ (Rp, 0)

be submersion germs with (Yi , yi ) = ( f −1
i (0), yi ). Then K (X1, Y1; y1) =

K (X2, Y2; y2) if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

For the definition of the K-equivalence, see Martinet [19]. We now consider
a function H : H 3

1 × 30 −→ R defined by H (u, v) = 〈u, v〉 + 1. For any
v0 ∈ 30, we denote hv0(u) = H (u, v0) and we define the AdS-horosphere by
h−1

v0
(0) = H 3

1 ∩ H P(v0, −1). We write AH(v0, −1) = H 3
1 ∩ H P(v0, −1). For

any u0 ∈ U , we consider the null vector v±
0 = G±

n (u0). Then we have

hv±
0

◦ X(u0) = H ◦ (X × id30)(u0, v0) = H(u0,G
±
n (u0)) = 0.

We also have relations

∂hv±
0

◦ X

∂ui
(u0) =

∂ H

∂ui
(u0,G

±
n (u0)) = 0,

for i = 1, 2. This means that the AdS-horosphere AH(v±
0 , −1) is tangent

to M = X(U ) at p = X(u0). In this case, we call AH(v±
0 , −1) the tan-

gent AdS-horosphere of M = X(U ) at p = X(u0) (or, u0), which we write
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AH±(X, u0). Let v1, v2 be null vectors. If v1 and v2 are linearly dependent,
then H P(v1, −1) and H P(v2, −1) are parallel. Therefore, we say that AdS-
horospheres AH(v1, −1) and AH(v2, −1) are parallel, if v1 and v2 are linearly
dependent. Then we have the following lemma.

Lemma 5.2. Let X : U −→ H 3
1 be a timelike surface. Consider two points

u1, u2 ∈ U. Then we have the following assertions:

(1) G±
n (u1) = G±

n (u2) if and only if AH±(X, u1) = AH±(X, u2).

(2) G̃±
n (u1) = G̃±

n (u2) if and only if AH±(X, u1) and AH±(X, u2) are paral-
lel. �

We now consider the contact of M with the tangent AdS-horosphere at
p ∈ M as an application of Legendrian singularity theory. The main result
in the theory of Legendrian singularities [1, 32] is the following:

Theorem 5.3. Let F, G : (Rk × Rn, 0) −→ (R, 0) be Morse families. Then

(1) LF and LG are Legendrian equivalent if and only if F and G are P-K-
equivalent;

(2) LF is Legendrian stable if and only if F is a K-versal deformation of
f = F |Rk× {0}.

For definitions of the Legendrian equivalence, Legendrian stability, P-K-
equivalence and K-versal deformation, see [1, 19, 32].

Let
G±

n i : (U, ui ) −→ (30, v
±
i ) (for i = 1, 2)

be AdS-nullcone Gauss image germs of timelike surface germs X i : (U, ui ) −→
(H 3

1 , X i (ui )). We say that G±
n 1 and G±

n 2 are A-equivalent if there exist diffeo-
morphism germs φ : (U, u1) −→ (U, u2) and 8 : (H 3

1 , v±
1 ) −→ (H 3

1 , v±
2 ) such

that 8◦G±
n 1 = G±

n 2◦φ. Suppose the regular set ofG±
n i is dense in (U, ui ) for each

i = 1, 2. It follows from Proposition A.2 in the appendix of [12] (See also [33])
thatG±

n 1 andG±
n 2 areA-equivalent if and only if the corresponding Legendrian

embedding germs G±
1 : (U, u1) −→ (11, z1) and G±

2 : (U, u2) −→ (11, z2)

are Legendrian equivalent. This condition is also equivalent to the condition
that two generating families H1 and H2 are P-K-equivalent by Theorem 5.3.
Here, Hi : (U × 30, (ui , v

±
i )) −→ R is the corresponding AdS-null height

function germ of X i .
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On the other hand, we denote hi,v±
i

= Hi (u, v±
i ); then we have hi,v±

i
(u) =

hv±
i

◦ X i (u). By Theorem 5.1,

K
(
X1(U ), AH±(X1, u1), v±

1

)
= K

(
X2(U ), AH±(X2, u2), v±

2

)

if and only if h1,v±
1

and h2,v±
2

are K-equivalent. Therefore, we can apply the
above arguments to our situation. We denote by Q±(X, u0) the local ring of the
function germ hv±

0
: (U, u0) −→ R, where v±

0 = G±
n (u0). We remark that we

can write the local ring explicitly as follows:

Q±(X, u0) =
C∞

u0
(U )

〈〈X(u),G±
n (u0)〉 + 1〉C∞

u0
(U )

,

where C∞
u0

(U ) is the local ring of function germs at u0 with the unique maxi-
mal ideal Mu0(U ).

Theorem 5.4. Let X i : (U, ui ) −→ (H 3
1 , X i (ui )) (for i = 1, 2) be timelike

surface germs such that the corresponding Legendrian embedding germs G±
i :

(U, ui ) −→ (11, zi ) are Legendrian stable. Then the following conditions are
equivalent:

(1) AdS-nullcone Gauss image germs G±
n 1 and G±

n 2 are A-equivalent;

(2) H1 and H2 are P-K-equivalent;

(3) h1,v±
1

and h2,v±
2

are K-equivalent;

(4) K (X1(U ), AH±(X1, u1), v±
1 ) = K (X2(U ), AH±(X2, u2), v±

2 );

(5) Q±(X1, u1) and Q±(X2, u2) are isomorphic as R-algebras. �

For a timelike surface germ X : (U, u0) −→ (H 3
1 , X(u0)), we call

(
X−1(AH( G±

n (u0), −1)), u0
)

the tangent Anti de Sitter horospherical indicatrix germ (briefly, tangent AdS-
horospherical indicatrix germ) of X . In general we have the following proposi-
tion:

Proposition 5.5. Let X i : (U, ui ) −→ (H 3
1 , X i (ui )) (for i = 1, 2) be timelike

surface germs such that their AdSh±-parabolic sets have no interior points as
subspaces of U. If the AdS-nullcone Gauss image germs G±

n 1 and G±
n 2 are

A-equivalent, then

K
(
X1(U ), AH±(X1, u1), v±

1

)
= K

(
X2(U ), AH±(X2, u2), v±

2

)
.
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In this case, (X−1
1 (AH(G±

n 1(u1), −1)), u1) and (X−1
2 (AH(G±

n 2(u2), −1)), u2)

are diffeomorphic as set germs. �

From the above proposition, the diffeomorphism type of the tangent AdS-
horospherical indicatrix germ is an invariant of A-classification of the AdS-
nullcone Gauss image germ of X . Moreover, we need some numerical K-
invariants for a function germ. We denote

Ah± − ord(X, u0) = dim
C∞

u0
(U )

〈hv±
0
(u0), ∂hv±

0
(u0)/∂ui 〉C∞

u0
(U )

,

where v±
0 = G±

n (u0). Usually Ah±-ord(X, u0) is called the K-codimension of
hv±

0
. However, We call it the order of contact with tangent AdS-horosphere at

X(u0). We also have the notion of corank of function germs:

Ah± − corank(X, u0) = 2 − rank Hess(hv±
0
)(u0),

By Proposition 3.1, X(u0) is an AdSh±-parabolic point if and only if
Ah±-corank (X, u0) ≥ 1 and X(u0) is an AdS-horospherical point if and
only if Ah±-corank (X, u0) = 2. On the other hand, a function germ
f : (Rn−1, a) −→ R has the Ak−singularity if f is K-equivalent to the germ
±u2

1 ± ∙ ∙ ∙ ± u2
n−2 + uk+1

n−1. If Ah±-corank(X, u0) = 1, the AdS-null height
function hv±

0
has the Ak−singularity at u0 and is generic. In this case we have

Ah±-ord(X, u0) = k. This number is equal to the order of contact in the classi-
cal sense (cf. [3]). This is the reason why we call Ah±-ord(X, u0) the order of
contact with the AdS-horosphere at X(u0).

6 Classification of singularities of AdS-nullcone Gauss images

In this section we give the generic classification of singularities of the AdS-
nullcone Gauss images. The arguments are almost the same as those of [12],
so that we omit the details. We consider the space of timelike embeddings
EmbT (U, H 3

1 ) with the Whitney C∞-topology. By the classification of sta-
ble Legendrian singularities of n = 3 and the transversality theorem of [12]
(Proposition 7.1), we have the following theorem.

Theorem 6.1. There exists an open dense subset O ⊂ EmbT (U, H 3
1 ) such that

for any X ∈ O the following conditions hold.

(1) The AdSh±-parabolic set K ±
AdSn

−1
(0) is a regular curve. We call such a

curve the AdSh±-parabolic curve.
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(2) The AdS-nullcone Gauss image G±
n along the AdSh±-parabolic curve is

a cuspidal edge except at isolated points. At such the point G±
n is the

swallowtail.

(3) The cuspidal edge points (swallowtail points) of the AdS-nullcone Gauss
image G±

n correspond to fold points (cusp points) of the AdS-torus Gauss
map. (cf., Figure 1).

Cuspital edge Swallowtail

Figure 1

Following the terminology of Whitney [31], we say that a timelike surface
X : U −→ H 3

1 has an excellent AdS-nullcone Gauss image G±
n , the AdS-

nullcone Gauss image G±
n has only cuspidal edges and swallowtails as singular-

ities.
We now consider the geometric meanings of cuspidal edges and swallowtails

of the AdS-nullcone Gauss image. We have the following results analogous to
the results of [12].

Theorem 6.2. Let G±
n : (U, u0) −→ (30, v

±
0 ) be the excellent AdS-nullcone

Gauss image germ of a timelike surface X and hv0 : (U, u0) −→ R the
AdS-null height function germ at u0, where v±

0 = G±
n (u0). Then we have the

following.

(1) The point u0 is an AdSh±-parabolic point of X if and only if Ah±-
corank(X, u0) = 1.

(2) If u0 is an AdSh±-parabolic point of X , then hv±
0

has an Ak-singularity
for k = 2, 3.
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(3) Suppose that u0 is an AdSh±-parabolic point of X . Then the following
conditions are equivalent:

(a) G±
n has a cuspidal edge at u0;

(b) hv±
0

has an A2−singularity;

(c) Ah±-order (X, u0) = 2;

(d) the tangent AdS-horospherical indicatrix germ is an ordinary cusp,
where a curve C ⊂ R2 is called an ordinary cusp if it is diffeomor-
phic to the curve given by {(u1, u2)|u2

1 − u3
2 = 0}.

(e) for each ε > 0, there exist two points u1, u2 ∈ U such that
|u0 − ui | < ε for i = 1, 2, neither u1 nor u2 is an AdSh±-parabolic
point and the tangent AdS-horospheres to M = X(U ) at u1 and
u2 are parallel.

(4) Suppose that u0 is an AdSh±-parabolic point of X . Then the following
conditions are equivalent:

(a) G±
n has a swallowtail at u0;

(b) hv±
0

an the A3-singularity;

(c) Ah±-order (X, u0) = 3;

(d) the tangent AdS-horospherical indicatrix germ is a point or a tac-
nodal, where a curve C ⊂ R2 is called a tacnodal if it is diffeomor-
phic to the curve given by {(u1, u2)|u2

1 − u4
2 = 0}.

(e) for each ε > 0, there exist three points u1, u2, u3 ∈ U such that
|u0 − ui | < ε for i = 1, 2, 3, none of which is an AdSh±-parabolic
point and the tangent AdS-horospheres to M = X(U ) at u1, u2 and
u3 are parallel.

(f) for each ε > 0, there exist two points u1, u2 ∈ U such that
|u0 − ui | < ε for i = 1, 2, neither u1 nor u2 is an AdS-parabolic
point and the tangent AdS-horospheres to M = X(U ) at u1 and
u2 are equal.

Proof. By the Proposition 3.1, we have shown that u0 is an AdSh±-parabolic
point if and only if Ah±-corank(X, u0) ≥ 1. Since n = 3, we have Ah±-
corank(X, u0) ≤ 2. Since the AdS-null height function germ H : (U × 30,

(u0, v
±
0 )) −→ R can be considered as a generating family of the Legendrian
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embedding germ G±, hv±
0

has only Ak-singularities (k = 1, 2, 3). This means
that the corank of the Hessian matrix of hv±

0
at an AdSh±-parabolic point is 1.

The assertion (2) also follows. For the same reason, the conditions (3){(a), (b),

(c)} (respectively, (4){(a), (b), (c)}) are equivalent.

On the other hand, if the AdS-null height function germ hv±
0

has an A2-

singularity, it is K-equivalent to the germ ±u2
1 + u3

2. Since K-equivalence
preserves the zero level sets, the tangent AdS-horospherical indicatrix germ
is diffeomorphic to the curve given by ±u2

1 + u3
2 = 0. This is the ordinary

cusp. The normal form for the A3-singularity is given by ±u2
1 + u4

2, so the tan-
gent AdS-horospherical indicatrix germ is diffeomorphic to the curve given by
±u2

1 + u4
2 = 0. This means that the condition (3){(d)} (respectively, (4){(d)})

is also equivalent to the other conditions.
Suppose that u0 is an AdSh±-parabolic point, by Proposition 4.1, the AdS-

torus Gauss map has only folds or cusps. If the point u0 is a fold point, there
is a neighborhood of u0 on which the AdS-torus Gauss map is 2 to 1 except
at the AdSh±-parabolic line (i.e, fold curve). By Lemma 5.2, the condition
(3)(e) holds. If the point u0 is a cusp, the critical value set is an ordinary cusp.
By the normal form, we can understand that the AdS-torus Gauss map is 3 to
1 inside region of the critical value. Moreover, the point u0 is in the closure
of the region. This means that the condition (4)(e) is satisfied. We can also
observe that nearby the cusp point, there are 2 to 1 points which approach to
u0. However, one of those points is always AdSh±-parabolic point. Since other
singularities do not appear in this case, so that the condition (3)(e) (respectively,
(4)(e)) characterizes a fold (respectively, a cusp).

For the swallowtail point u0, there is a self-intersection curve approaching
u0. On this curve, there are two distinct points u1 and u2 such that G±

n (u1) =
G±

n (u2). By Lemma 5.2, this means that the tangent AdS-horospheres to M =
X(U ) at u1 and u2 are equal. Since there are no other singularities in this case,
the condition (4){( f )} characterizes a swallowtail point of G±

n . This completes
the proof. �

7 AdS-null Monge form

The notion of the Monge form of a surface in Euclidean 3-space is one of the
powerful tools for the study of local properties of the surface from the view point
of differential geometry. In this section we consider the analogous notion for a
timelike surface in H 3

1 .
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We now consider a function f (u1, u2) with f (0) = fui (0) = 0, i = 1, 2.
Then we have a timelike surface in H 3

1 defined by

X f (u1, u2) =
(√

1 + ε1u2
1 + ε2u2

2 + f 2(u1, u2),
(1 − ε1)u1 + (1 − ε2)u2

2
,

f (u1, u2),
(1 + ε1)u1 + (1 + ε2)u2

2

)
,

where εi = sign(X i ) (i = 1, 2). We can easily calculate

N(0) =
(

0, 0,
ε2 − ε1

2
, 0

)
,

therefore G±
n (0) = (1, 0, ±1, 0). We call X f an Anti de Sitter null Monge form

(briefly, AdS-null Monge form). Then we have the following proposition.

Proposition 7.1. Any timelike surface in H 3
1 is locally given by the AdS-null

Monge form.

Proof. Let X : U −→ H 3
1 be a timelike surface. We consider a Lorentzian

motion of H 3
1 which is a transitive action. Therefore, without loss of the gen-

erality, we assume that p = X(0) = (1, 0, 0, 0). We denote M = X(U ), we
have a basis {X(0), N(0), Xu1(0), Xu2(0)} of TpR4

2 such that Tp M = 〈Xu1(0),
Xu2(0)〉R. Applying the Gram-Schmidt procedure we have a pseudo-ortho-
normal basis {X(0), N(0), e1, e2} of TpR4

2 such that Tp M = 〈e1, e2〉R. In par-
ticular, {e1, e2} is an pseudo-orthonormal basis of Tp M . Since p = (1, 0, 0, 0),
Tp M is considered to be a subspace of 0R3

1 = {(0, x1, x2, x3)|xi ∈ R}. By a
rotation of the space 0R3

1, we might assume that

Tp M =
{(

0,
(1 − ε1)u1 + (1 − ε2)u2

2
, 0,

(1 + ε1)u1 + (1 + ε2)u2

2

)
|ui ∈ R

}
⊂ R4

2.

Then the germ (M, p) might be written in the form
(

f0(u1, u2),
(1 − ε1)u1 + (1 − ε2)u2

2
, f (u1, u2),

(1 + ε1)u1 + (1 + ε2)u2

2

)

with function germs f0(u1, u2), f (u1, u2). Since M ⊂ H 3
1 , we have the relation

f0(u1, u2) =
√

1 + ε1u2
1 + ε2u2

2 + f 2(u1, u2).

Since we have

Tp M =
{(

0,
(1 − ε1)u1 + (1 − ε2)u2

2
, 0,

(1 + ε1)u1 + (1 + ε2)u2

2

)
|ui ∈ R

}
,

the condition f (0) = 0, fui (0) = 0 are automatically satisfied. �
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For the null vector v±
0 = (1, 0, ±1, 0), we consider the AdS-horosphere

AH(v±
0 , −1). Then we have the AdS-null Monge form of AH(v±

0 , −1):

a±(u1, u2) =
(ε1u2

1 + ε2u2
2

2
+ 1,

(1 − ε1)u1 + (1 − ε2)u2

2
,

±
ε1u2

1 + ε2u2
2

2
,

(1 + ε1)u1 + (1 + ε2)u2

2

)
.

Here, we can easily check the relation 〈a(u), v±
0 〉 = −1.

On the other hand, a±(0) = (1, 0, 0, 0) = p and a±
ui

(0) is equal to the
x3+εi -axis for i = 1, 2. This means that Tp M = Tp(a±(U )). Therefore
a±(U ) = AH(v±

0 , −1) is the tangent AdS-horosphere of M = X f (U ) at
p = X f (0). It follows from this fact that the tangent AdS-horospherical in-
dicatrix of the AdS-null Monge form germ (X f , 0) is given as follows:

X−1
f

(
AH(v±

0 , 0)
)

=
{
(u1, u2)| ± 2 f (u1, u2) = ε1u2

1 + ε2u2
2

}
.

On the other hand, since f (0) = fui (0) = 0, we may write

f (u1, u2) =
1

2
k̄1u2

1 +
1

2
k̄2u2

2 + g(u1, u2)

where g ∈ M3
2 and k̄1, k̄2 are eigenvalues of ( fui u j (0)). Under this representa-

tion, we can easily calculate (X f )ui u j (0) = (εiδi j , 0, k̄i , δi j , 0). It follows from
this fact that

h±
i j (0) = 〈G±

n (0), (X f )ui u j (0)〉 = εiδi j (−1 ± k̄i ),

and
gi j (0) = 〈(X f )ui (0), (X f )u j (0)〉 = εiδi j .

Therefore, we have k±
i (0) = −1 ± εi k̄i and

K ±
Ad Sn(0) = k±

1 (0)k±
2 (0) = (−1 ± ε1k̄1)(−1 ± ε2k̄2).

The tangent AdS-horospherical indicatrix is given by

X−1
f (AH(v±

0 , −1)) =
{
(u1, u2)| ± k̄1u2

1 ± k̄2u2
2 ± 2g(u1, u2) − ε1u2

1 − ε2u2
2 = 0

}

=
{
(u1, u2)|ε1k±

1 (0)u2
1 + ε2k±

2 (0)u2
2 ± 2g(u1, u2) = 0

}
.

If we try to draw the picture of the AdS-nullcone Gauss image, it might
be very hard to give a parameterization. However, by the AdS-null Monge
form of the tangent AdS-horospherical indicatrix, we can easily detect the type
of singularities of the AdS-nullcone Gauss image G±

n (or, AdS-torus Gauss
map G̃±

n ).

Bull Braz Math Soc, Vol. 41, N. 1, 2010



“main” — 2010/3/16 — 12:26 — page 59 — #23

ANTI DE SITTER TORUS GAUSS MAPS 59

Example 7.1. Consider the function given by

f (u1, u2) =
1

2
u2

1 + u2
2 +

1

2
u3

1.

Suppose that ε1 = −1, ε2 = 1 Then k̄1 = 1, k̄2 = 2. We have k+
1 (0) =

−2, k+
2 (0) = 1, k−

1 (0) = 0, k−
2 (0) = −3. So that the origin is an AdSh−-

parabolic point. The tangent AdS-horospherical indicatrix germ at the origin is
the ordinary cusp u2

2 = − 1
3 u3

1. By Theorem 6.2, G−
n (G̃−

n ) is the cuspidal edge
(fold) at the origin.

Example 7.2. Consider the function given by

f (u1, u2) =
1

2
u2

1 +
1

4
u2

2 +
3

2
u4

1.

Suppose that ε1 = 1, ε2 = −1 Then k̄1 = 1, k̄2 = 1/2. We have k+
1 (0) =

0, k+
2 (0) = −3/2, k−

1 (0) = −2, k−
2 (0) = −1/2. So that the origin is an

AdSh+- parabolic point. The tangent AdS-horospherical indicatrix germ at the
origin is the tacnodal u2

2 = u4
1. By Theorem 6.2, G−

n G̃−
n ) is the swallowtail

(cusp) at the origin.
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