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Maximal divisible subgroups in modular group
rings of p-mixed abelian groups

Peter Danchev

Abstract. The isomorphism structure of the maximal divisible subgroup of the sub-
group Vp(R(G); H) Id R(G) of the normalized unit group V R(G) in a commutative
group ring R(G) is completely described only in terms of R, G and H whenever R is
a commutative unital ring of prime characteristic p and G is a p-mixed abelian group.
In particular, the maximal divisible subgroup of V R(G) is characterized. This extends
a result due to Nachev (Commun. Algebra, 1995) as well as a result due to the author
(Commun. Algebra, 2010).
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1 Introduction

Throughout the rest of the present paper, let it be agreed that R(G) is the
group ring of a multiplicative abelian group G over a commutative unital ring
R, with normalized unit group V R(G) and its p-component of torsion Vp R(G).
As usual, Gt denotes the maximal torsion subgroup of G with p-primary part
G p, G(p) denotes the maximal p-divisible subgroup of G and dG denotes the
maximal divisible subgroup of G; note that the inclusion dG ⊆ G(p) always
holds. Moreover, id(R) = {e ∈ R : e2 = e} designates the set of all idempotents
in R, N (R) designates the nil-radical of R, R(p) designates the maximal ( p)-
divisible subring of R when char(R) = p is a prime, and Id R(G) designates
the idempotent subgroup of V R(G) generated by (and hence consisting of) all
elements of the form

∑
g∈G egg, where the sum is finite, for which eg ∈ id(R),∑

g∈G eg = 1 and eg.eh = 0 whenever g 6= h are elements of the sum. Further-
more, for a subgroup H of G and a subring L of R containing the same identity,
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we let I (L(G); H) denote the relative augmentation ideal of L(G) with respect
to H , and let Ip(L(G); H) denote its nil-radical. To facilitate the exposition,
denote 1 + Ip(L(G); H) = Vp(L(G); H).

All other notions and notations are standard and follow essentially those
from [6], [8] and [9], respectively.

In [1] we have established the isomorphism classification of dV R(G) only in
terms associated with G and R where G is a p-mixed group (i.e., Gt = G p)
and R is a field of characteristic p (see also [2], [3] and [4] for related type
results). Note that this was slightly extended in [11] to an indecomposable ring
R of prime characteristic p; however notice that the used approach is the same
as that in [1]. Nevertheless, the results from [1] and [11] were superseded in
[5] to an arbitrary ring R of prime char(R) = p. Likewise, in ([4], Theorem
2.1) was described Vp(R(G); H) when 1 6= H ≤ G p, char(R) = p and either
|R(p)| ≥ ℵ0 or |G(p)| ≥ ℵ0 The purpose of this article is to generalize both
situations from [4] and [5] in the converse case when G p ⊆ H , H is isotype
in G and char(R) = p.

2 Main Results

Before stating and proving our chief theorem, we start with a series of prepara-
tory technicalities.

Lemma 1 ([5]). The commutative unital ring P is a direct sum of exactly n
indecomposable subrings if and only if id(P) has exactly 2n elements.

Proof. “⇒”. The set B of all idempotents in P is a Boolean algebra, with
infima given by e ∧ f = e f , suprema by e ∨ f = e + f − e f , and com-
plements by e′ = 1 − e. If B is finite, let e1, ∙ ∙ ∙ , en be its atoms (i.e., the
primitive idempotents of P). Then P = Pe1 ⊕ ∙ ∙ ∙ ⊕ Pen where the direct
summands Pei ’s are indecomposable rings for each 1 ≤ i ≤ n. On the other
hand, a minor manipulation shows that the elements of B are precisely the sums∑

i∈I ei for subsets I ⊆ {1, ∙ ∙ ∙ , n}, and these are all distinct. Thus, B has
exactly 2n elements as claimed.

“⇐”. Since id(P) is finite, P can be decomposed into a direct sum of
finitely many indecomposable rings, say m. By what we have just shown in
the necessity, | id(P)| = 2m . Thus, 2m = 2n and consequently m = n. �

Proposition 2 ([5]). Suppose that A is an abelian group and P is a commuta-
tive unital ring. Then

Id P(A) ∼=
∐

μ

A
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where μ = log2 | id(P)| if | id(P)| < ℵ0 or μ = | id(P)| ≥ ℵ0.

Proof. Utilizing [10], the isomorphism

Id P(A) ∼=
∐

μ

A

holds. If id(P) = {0, 1}, it is well known that Id P(A) = A and hence μ =
1. Let us now id(P) contain a non-trivial idempotent, say e. Consider the
elements ea+(1−e)where 1 6= a ∈ A. Observe that ea+(1−e) = f b+(1− f )
for some f ∈ id(P) \ {0, 1} and 1 6= b ∈ A only when f − e + ea − f b = 0,
i.e., when e = f and a = b. Therefore, μ = | id(P)| if id(P) is infinite. Other-
wise, if id(P) is finite, say with 2n elements for some natural n, the number
of primitive orthogonal idempotents is precisely n owing to Lemma 1. Since
all elements of Id P(A) are finite sums of members of A with coefficients from
id(P) which are orthogonal with sum 1, we elementarily observe that μ = n =
log2 | id(P)|. �

Proposition 3 ([5]). Suppose Gt = G p and char(R) = p. Then the follow-
ing decomposition holds:

V R(G) = Vp R(G) Id R(G).

Proof. Since the left hand-side obviously contains the right one, it suffices to
show only the converse. To this aim, letting x = r1g1 + ∙ ∙ ∙ + rt gt ∈ V R(G),
and consider the natural map ψ : G → G/G p. It can be linearly extended
to the surjective homomorphism 9 : R(G) → R(G/G p), which restriction
on V R(G) gives an epimorphism from V R(G) to V R(G/G p) with kernel
ker(9) = 1 + I (R(G); G p). But 9(x) ∈ V R(G/G p) and since (G/G p)t =
Gt/G p = 1, by virtue of [10] we have that

9(x) =
[
G p+v1(g1G p−G p)+∙ ∙ ∙+vt(gt G p−G p)

]
∙
[
e1g1G p+∙ ∙ ∙+es gs G p

]
,

where v1, ∙ ∙ ∙ , vt ∈ N (R) and e1, ∙ ∙ ∙ , es are orthogonal idempotents from R
with sum 1. Set

y =
[
1 + v1(g1 − 1)+ ∙ ∙ ∙ + vt(gt − 1)

]
∙
[
e1g1 + ∙ ∙ ∙ + es gs

]
.

Clearly, y ∈ Vp R(G) Id(R(G)) ⊆ V R(G) because 1 + v1(g1 − 1) + ∙ ∙ ∙ +
vt(gt − 1) ∈ Vp R(G) and e1g1 + ∙ ∙ ∙ + es gs ∈ Id(R(G)) ≤ V R(G) with the
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inverse e1g−1
1 + ∙ ∙ ∙ + es g−1

s . But we observe that 9(x) = 9(y) and hence
9(x)9(y)−1 = 9(x)9(y−1) = 9(xy−1) = 1 that is xy−1 ∈ ker(9) = 1 +
I (R(G); G p) ⊆ Vp R(G), i.e., x ∈ yVp R(G) and x ∈ Vp R(G) Id(R(G)),
as required. �

The importance of the above special decomposition of V R(G) stems from
the truthfulness of the following statement, which is pivotal.

Lemma 4. Let char(R) = p be a prime. Then

Idp R(G) = Id R(G p).

Proof. Given x ∈ Idp R(G), hence x = e1g1+∙ ∙ ∙+es gs with e1+∙ ∙ ∙+es = 1,
x pn

= 1 = e1g pn

1 + ∙ ∙ ∙ + es g pn

s for some natural n. Thus we write

1 = g pn

1 = ∙ ∙ ∙ = g pn

k 6= g pn

k+1 = ∙ ∙ ∙ = g pn

m 6= g pn

m+1 6= ∙ ∙ ∙ 6= g pn

s

with

e1 + ∙ ∙ ∙ + ek = 1, ek+1 + ∙ ∙ ∙ + em = 0, em+1 = ∙ ∙ ∙ = es = 0.

Since {ek+1, ∙ ∙ ∙ , em} is a system of orthogonal idempotents, we easily obtain
that ek+1 = ∙ ∙ ∙ = em = 0. Finally, we write x = e1g1 + ∙ ∙ ∙ + ek gk , where
g1, ∙ ∙ ∙ , gk ∈ G p, and we are done.

The converse is obvious. �

Lemma 5. Suppose 1 ∈ L ≤ R and A, H ≤ G. Then

Vp(R(G); H) ∩ Vp L(A) = Vp(L(A); H ∩ A).

Proof. The inclusion “⊇” is evident.

As for the inclusion “⊆”, take x to belong in the left hand-side. Write x =∑
g∈G rgg where rg ∈ G and for each element b ∈ G of this sum we have∑
g∈bH rg = 0 if b 6∈ H and

∑
g∈bH rg = 1 if b ∈ H , and x =

∑
a∈A faa

where fa ∈ L . Thus the canonical records
∑

g∈G rgg =
∑

a∈A faa imply
that rg = fa and g = a. Furthermore,

x =
∑

a∈bH∩A

fa =
∑

a∈b(H∩A)

fa = 0

when b 6∈ H ∩ A and x =
∑

a∈bH∩A fa =
∑

a∈b(H∩A) fa = 1 when b ∈ H ∩ A,
because b ∈ A, as required. �
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Proposition 6. Suppose Gt = G p ⊆ H where H is isotype in G and char(R)
= p is a prime. Then

[
Vp(R(G); H) Id R(G)

]pα
= V pα

p

(
R(G); H

)
Idpα R(G)

= Vp
(
R pα (G pα ); H pα

)
Id R(G pα ).

Proof. Clearly the inclusion “⊇” is true.

Conversely, in view of Proposition 3, A = [Vp(R(G); H) Id R(G)]pα ⊆
V pα R(G) = V R pα (G pα ) = Vp R pα (G pα ) Id R(G pα ), whence by the modular
law we have

A ⊆
(
Vp R pα (G pα ) Id R(G pα )

)
∩ (Vp(R(G); H) Id R(G))

= Id R(G pα )
[
Vp R pα (G pα ) ∩ (Vp(R(G); H) Id R(G))

]

= Id R(G pα )
[
Vp R pα (G pα ) ∩ (Vp(R(G); H) Idp R(G))

]
.

Using Lemma 4 we write Id p R(G) = Id R(G p). On the other hand, it fol-
lows that Id R(G p) ⊆ Vp(R(G p); G p) ⊆ Vp(R(G); H); in fact, each element
of Id R(G p) can be written as x = e1g1p + ∙ ∙ ∙ + es gsp where e1, ∙ ∙ ∙ , es are
orthogonal idempotents of R with e1 + ∙ ∙ ∙ + es = 1. Thus x = 1 + e1(g1p −
1)+ ∙ ∙ ∙ + es(gsp − 1) ∈ 1 + I (R(G p); G p) = Vp(R(G p); G p), and the wanted
relation holds as claimed.

Furthermore, employing Lemma 5,

A ⊆ Id R(G pα )[Vp R pα (G pα ) ∩ Vp(R(G); H)]

= Id R(G pα )Vp(R
pα (G pα ); G pα ∩ H)

= Id R(G pα )Vp(R
pα (G pα ); H pα )

= Idpα R(G)V pα
p (R(G); H),

as required. �

We now have all the machinery needed to prove the following chief statement.

Theorem 7. Suppose Gt = G p, H is an isotype subgroup of G such that
H ⊇ G p and suppose char(R) = p is a prime. Then

d[Vp(R(G); H) Id R(G)] = dVp(R(G); H)d Id R(G)

= Vp
(
R(p)(G(p)); H (p)

)
Id R(G(p)).
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Proof. Appealing to [6], for an arbitrary multiplicative group A we may write
that

d A = ∩p Apωτ = Aτ = Aτ+1

where τ is the minimal (i.e., the first) ordinal with this property.

We now pause to note that the following five formulas are true for any ordinal
number α.

(a) V pα R(G) = V R pα (G pα );

(b) V pα
p R(G) = Vp R pα (G pα );

(c) Idpα R(G) = Id R(G pα );

(d) Idqα R(G) = Id R(Gqα );

(e) V pα
p (R(G); H) = Vp(R pα (G pα ); H pα ).

Point (a) is well-known, and (b) is its direct consequence.
As for (c), it is obviously true for α = 0 and suppose it is valid for all

ordinals strictly less than α. Observe that if x ∈ Id R(G), then x = e1g1 +
∙ ∙ ∙ + ek gk for some orthogonal idempotents e1, ∙ ∙ ∙ , ek with sum 1 and some
g1, ∙ ∙ ∙ , gk ∈ G. Thus x p = e1g p

1 + ∙ ∙ ∙ + ek g p
k ∈ Id R(G p), so that the formula

follows for α = 1. If α is isolated, then in view of the induction hypothesis

Idpα R(G) = (Idpα−1
R(G))p = (Id R(G pα−1

))p

= Idp R(G pα−1
) = Id R((G pα−1

)p) = Id R(G pα ).

If now α is limit, then by the induction hypothesis we have

Idpα R(G) = ∩β<α Idpβ R(G) = ∩β<α Id R(G pβ )

= Id R
(
∩β<α G pβ

)
= Id R(G pα ),

where the identity ∩β<α Id R(G pβ ) = Id R(∩β<αG pβ ) follows easily by com-
parison of the canonical records of elements from the left hand-side. The ob-
tained sequence of equalities is tantamount to the expected equality.

Point (d) follows in the same manner because referring to the Newton’s
binomial formula and to the orthogonality of the system {e1, ∙ ∙ ∙ , ek} we de-
rive that (e1g1 + ∙ ∙ ∙ + ek gk)

q = e1gq
1 + ∙ ∙ ∙ + ek gq

k .
Point (e) follows in the same manner as ([4], Lemma 1.1) even when H is

not isotype in G.
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Next, in accordance with Proposition 6 we write

[
Vp(R(G); H) Id R(G)

]pα
= V pα

p (R(G); H) Idpα R(G). (1)

Further, we shall show that for every prime q 6= p the following holds:

[
Vp(R(G); H) Id R(G)

]qα
= Vp(R(G); H) Idqα R(G). (2)

For α = 0 and α = 1 we are done. As above the case when α is isolated is
plain. If α is limit, we have by induction that

[
Vp(R(G); H) Id R(G)

]qα
= ∩β<α[Vp(R(G); H) Id R(G)]qβ

= ∩β<α
[
Vp(R(G); H) Idqβ R(G)

]

= ∩β<α
[
Vp(R(G); H) Id R(Gqβ )

]
,

where the last equality follows from (d). We claim that the last intersec-
tion is equal to Vp(R(G); H)[∩β<α Id R(Gqβ )] = Vp(R(G); H) Id R(Gqα ).
In fact, letting x ∈ ∩β<α[Vp(R(G); H) Id R(Gqβ )] whence x = (r1g1 + ∙ ∙ ∙ +
rk gk)(e1a1β + ∙ ∙ ∙ + esasβ) ∈ Vp(R(G); H) Id R(Gqγ ) for each γ with β <

γ < α, where

r1g1 + ∙ ∙ ∙ + rk gk ∈ Vp(R(G); H) and e1a1β + ∙ ∙ ∙ + esasβ ∈ Id R(Gqβ ).

Thus, e1a1β + ∙ ∙ ∙ + esasβ ∈ Vp(R(G); H) Id R(Gqγ ) and hence there exists

a natural t with the property a pt

1β ∈ (Gqγ )pt
, ∙ ∙ ∙ , a pt

sβ ∈ (Gqγ )pt
; note that

ei + ∙ ∙ ∙ + e j 6= 0 for all 1 ≤ i, j ≤ s since otherwise by multiplying with
ei , ∙ ∙ ∙ , e j both sides of ei + ∙ ∙ ∙ + e j = 0 we deduce ei = ∙ ∙ ∙ = e j = 0 which
is false. Therefore, a1β ∈ G pGqγ ⊆ Gqγ , ∙ ∙ ∙ , asβ ∈ G pGqγ ⊆ Gqγ because
G p = Gq

p. Finally, we conclude that e1a1β + ∙ ∙ ∙ + esasβ ∈ Id R(Gqγ ), that is,
e1a1β + ∙ ∙ ∙ + esasβ ∈ ∩β<α Id R(Gqβ ) = Id R(Gqα ) as promised.

As a final third step, with the aid of (1) and (2) plus (c), (d) and (e), we shall
prove in addition that

∩l[Vp(R(G); H) Id R(G)]lα = ∩l
[
V lα

p (R(G); H) Idlα R(G)
]

=
[
∩l V lα

p (R(G); H)
][

∩l Idlα R(G)
]

= V pα
p (R(G); H)

[
∩l Id R(Glα )

]

= V pα
p (R(G); H) Id R(∩l G

lα ),

(3)

where the intersection is taken over all primes l.
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Indeed, we shall use the idea as in the above second step. Writing x ∈
Vp R pα ((G pα ); H pα ) Id R(G pα ) and x ∈ Vp(R(G); H) Id R(Gqα ) as

x =
(
r1g1 + ∙ ∙ ∙ + rk gk

)(
e1a1p + ∙ ∙ ∙ + esasp

)

=
(

f1h1 + ∙ ∙ ∙ + fkhk
)(

e′
1b1q + ∙ ∙ ∙ + e′

sbsq
)

= . . . ,

where it is apparent in what algebraic structure the symbols belong, we find
that there is a positive integer t such that a pt

1p ∈ (Gqα )pt
, ∙ ∙ ∙ , a pt

sp ∈ (Gqα )pt
;

notice that ei + ∙ ∙ ∙ + e j 6= 0 for all 1 ≤ i, j ≤ s since otherwise by multiplying
with ei , ∙ ∙ ∙ , e j both sides of ei + ∙ ∙ ∙ + e j = 0 we get ei = ∙ ∙ ∙ = e j = 0
which is impossible. Consequently, a1p ∈ G pGqα ⊆ Gqα , i.e., a1p ∈ G pα ∩ Gqα

etc. asp ∈ G pα ∩ Gqα for each prime q 6= p. Finally, e1a1p + ∙ ∙ ∙ + esasp ∈
Id R(∩pG pα ), as required.

With all of these three main equalities at hand, we immediately infer by
substituting α = ωτ that the wanted formula for d(Vp(R(G); H) Id R(G))
holds. �

As a direct consequence, we yield the following.

Corollary 8 ([5]). Let Gt = G p and let char(R) = p be a prime. Then

dV R(G) = dVp R(G)d Id R(G) = Vp R(p)(G(p)) Id R(G(p)).

Proof. Choose H = G and so Vp(R(G); H) = Vp(R(G); G) = Vp R(G).
Henceforth, we apply Proposition 3 and Theorem 7 to infer the desired equali-
ties. �

Remark. However, Theorem 7 gives a more general strategy than Corollary 8
via the various choices of H ; in fact we may also take H = G p which leads us
to another interesting situations.

So, we are now in a position to deduce the isomorphism classification of
dV R(G).

Theorem 9 ([5]). Let G be a p-mixed abelian group and R a commutative
unital ring of prime characteristic p. Then the following isomorphism holds:

dV R(G) ∼=
∐

λ

Z(p∞)×
∐

μ

(
dG

dG p

)

where λ = max(|R(p)|, |G(p)|) if dG p 6= 1, or λ = max(|N (R(p))|, |G(p)|) if
dG p = 1, G(p) 6= 1 and N (R(p)) 6= 0, or λ = 0 if G(p) = 1 and N (R(p)) = 0,
and μ = | id(R)| ≥ ℵ0 or μ = log2 | id(R)| if | id(R)| < ℵ0.
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Proof. According to Corollary 8, we write dV R(G) = dVp R(G)d Id R(G),
and so with the help of [5] we deduce that

dV R(G) ∼= dVp R(G)×
(
dV R(G)/dVp R(G)

)

∼= dVp R(G)×
(
d Id R(G)/d Idp R(G)

)
.

For the classification of the first factor, dVp R(G), we apply either [12] or [13].
As for the second one, we employ Proposition 2 to infer that d Id R(G) ∼=∐
μ dG, where μ is calculated in the same manner as above and thus, under

the validity of this isomorphism, we obtain that d Idp R(G) ∼=
∐
μ(dG)p =∐

μ dG p. Finally, via the canonical isomorphism, we conclude that

d Id R(G)

d Idp R(G)
∼=

∐
μ dG

∐
μ dG p

∼=
∐

μ

(
dG

dG p

)
.

So, the isomorphism relation for dV R(G) is really true, as desired. �

3 Left-open problems

There are a few questions that remain unanswered. The first of them asks
whether the main formula used in the proof of Theorem 7 is valid for an ar-
bitrary subgroup H .

Problem 1. Let H ≤ G where Gt = G p and char(R) = p. Does it follow
that [

Vp(R(G); H) Id R(G)
]pα

= V pα
p (R(G); H) Idpα R(G)?

Let supp(G) = {p|G p 6= 1}, inv(R) = {p|p ∙ 1R ∈ R∗} where R∗ is the
multiplicative group (i.e., the group of units) of R, and zd(R) = {p|∃r ∈ R \
{0} : pr = 0}.

Problem 2. If supp(G) ∩ (inv(R) ∪ zd(R)) = ∅, does it follow that

V R(G) = Id R(G)V (R(Gt)+ N (R(G)))?

In order dV R(G) to be comprehensively described up to isomorphism only
in terms associated with R and G, we also state the following

Problem 3. Suppose supp(G) ∩ (inv(R) ∪ zd(R)) = ∅. Is the following
equality true

dV R(G) = d Id R(G)dV (R(Gt)+ N (R(G)))?

The solution of these three questions will be the theme of a later research
paper.
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