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On differentiable area–preserving maps
of the plane

Roland Rabanal

Abstract. F : R2 → R2 is an almost–area–preserving map if: (a) F is a topological
embedding, not necessarily surjective; and (b) there exists a constant s > 0 such that
for every measurable set B, μ(F(B)) = sμ(B) where μ is the Lebesgue measure.
We study when a differentiable map whose Jacobian determinant is nonzero constant
to be an almost–area–preserving map. In particular, if for all z, the eigenvalues of the
Jacobian matrix DFz are constant, F is an almost–area–preserving map with convex
image.
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1 Introduction and statement of the results

We say that F : R2 → R2 is an almost–area–preserving map if it satisfies
the following two conditions:

(a) This F is a topological embedding; that is, a globally injective local
homeomorphism.

(b) There exists a constant s > 0 such that for every measurable set B ⊂ R2

we have
μ(F(B)) = sμ(B),

where μ is the Lebesgue measure.

This topological embedding does not have to be surjective, because its
image F(R2) might be a proper subset of R2 not necessarily convex.

The standard area–preserving diffeomorphisms of class C1 are examples of
almost–area–preserving maps, see [OU41, KH].
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A differentiable planar map F is called unipotent, if its spectrum Spc(F) =
{eigenvalues of DFz : z ∈ R2}1 is the one point set {1}. In [Ch00], Chamber-
land proves that a real–analytic map of R2 into itself has an inverse as long
as it is unipotent (see also [Che99] and [VH97]). So, real–analytic–unipotent
maps are almost–area–preserving. A proof for C1-maps of the plane appears
in [Ca00], where Campbell gives a normal form; this impressive result may be
paraphrased as follows: A C1-planar map F : R2 → R2 is unipotent, if and only
if, it has the form

F(x, y) =
(
x + bφ(ax + by) + c, y − aφ(ax + by) + d

)
∀x, y ∈ R, (1)

where a, b, c and d are real constants, and φ is a C1-function on a single vari-
able. Thus, any C1-unipotent map of the plane is bijective. Therefore, the C1-
unipotent maps of the plane are also almost–area–preserving.

In [Ch03], Chamberland research the C1-maps F : R2 → R2 with constant
eigenvalues; that is, its spectrum has at most two elements. These maps are
completely characterized in two cases: (a) F is a C1-unipotent map, then F has
the form (1) and (b) F is a polynomial map, then F takes the form

F(x, y) =
(
ax + by +βϕ(αx +βy)+ e, cx + dy −αϕ(αx +βy)+ f

)
(2)

for some real constant a, b, c, d, e, f, α and β, and some polynomial ϕ of one
variable. Furthermore, if F is a polynomial map on the plane and Spc(F) is
bounded, Lemma 2.1 of [CGM01] implies that Spc(F) has at most two ele-
ments. Therefore, polynomial planar maps whose bounded Spc(F) misses the
zero are almost–area–preserving.

Theorem 1. Let F : R2 → R2 be a differentiable map with det(DFz) 6= 0,
for all z ∈ R2. If Spc(F) has at most two elements then F is an almost–area–
preserving map with convex image.

The almost–area–preserving maps of Theorem 1 extends the last examples,
described in [Ca00] and [Ch03], to maps not necessarily C1.

A differentiable map F : R2 → R2 shall be called Jacobian map, if for all
z ∈ R2, its Jacobian determinant det(DFz) is nonzero constant; in this way, a
Jacobian planar map F = ( f, g) with f and g polynomials and det(DFz) = 1,
shall be refereed as a Keller map. In this context, the injective Jacobian maps
of class C1 are almost–area–preserving. However, it is well know that there
are Jacobian maps which are not injective as shown the map

F(x, y) =
√

2
(
e

x
2 cos(ye−x), e

x
2 sin(ye−x)

)

1The spectrum is also denoted by Spec(F), but we prefer Spc(F) in order to avoid some confusion
with the algebraic notation Spec(F) associated to a ring F.
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mentioned in [ChM98]. Consequently, the goal is to give sufficient conditions
on differentiable maps to insure that it is an almost–area–preserving map. To
this end, for each θ ∈ R we denote by Rθ the linear rotation

Rθ =
(

cos θ − sin θ

sin θ cos θ

)

and define the map Fθ = Rθ ◦ F ◦ R−θ .

Definition 1. We say that the differentiable map F : R2 → R2 satisfies the B-
condition if for each θ ∈ R, there does not exist a sequence (xk, yk) ∈ R2

with xk → +∞ such that Fθ ((xk, yk)) → p ∈ R2 and DFθ (xk, yk) has a real
eigenvalue λk satisfying xkλk → 0.

Definition 1 was motivated by the condition (*) of [GN07] which claims:
“For each θ ∈ R, there does not exist a sequence zk ∈ R2 with zk → ∞ such
that Fθ (zk) → p ∈ R2 and DFθ (zk) has a real eigenvalue λk → 0.”

If g(x, y) is a C1 function such that g(x, y) = y
x as long as x ≥ 3, and the

map F(x, y) = (e−x , g(x, y)) satisfies det(DFz) 6= 0, for all z ∈ R2. Then,
for any unbounded sequence 3 ≤ xk → +∞ there exist p = (0, 0) such that
F(xk, 0) → p and DF(xk, 0) has a real eigenvalue

1

xk
= λk → 0.

However, the limit of the product xkλk is different from zero.

Theorem 2. If the differentiable Jacobian map F : R2 → R2 satisfies the B-
condition then F is an almost–area–preserving map with convex image.

Theorem 2 improves the main result of [GN07] (see also [Ra02, R05]).
Moreover, if Theorem 2 is valid for maps F , it remains true for −F . In fact,
if in such theorem we change the pair {F, Spc(F)} by {−F, Spc(−F)} we may
see that its conclusion remains valid. Also, for each A : R2 → R2 any arbitrary
invertible linear map, we have that if F is as in Theorem 2 then A ◦ F ◦ A−1 is
also an almost–area–preserving map with convex image.

The maps in Theorem 2 are injective, so we obtain the following corollary
whose proof is presented at the end of Section 3.

Corollary 1. If F is as in Theorem 2 and Spc(F) ⊂ {z ∈ C : ||z|| < 1}, then
F has at most one fixed point.

Another interesting property of the Keller maps as in Corollary 1 (i.e with
Spc(F) ⊂ {z ∈ C : ||z|| < 1}) is obtained from Theorem B of [CGM99]. This
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theorem proves the existence of a unique fixed point of F which is a global
attractor for the discrete dynamical system generated by F (i.e for each p ∈ R2

the ω-limit set of the orbit (Fk(p))k≥0
2 is the one point set {z ∈ R2 : F(z) =

z}). This dynamical property is false for all the maps of class C1 as shown the
global diffeomorphisms given in Theorem E of [CGM99]. If a is small enough,
this map Ga given by

Ga(x, y) =
(

−
ky3

1 + x2 + y2
− ax,

ky3

1 + x2 + y2
− ay

)
, 1 < k <

2
√

3

satisfies Ga(0) = 0 and Spc(Ga) ⊂ {z ∈ C : ||z|| < 1}, but it has a periodic
orbit. However, the Jacobian determinant of Ga is not constant.

Problem 1. Let F : R2 → R2 be a Jacobian map of class C1 with F(0) = 0
and Spc(F) ⊂ {z ∈ C : ||z|| < 1}. Does it follow that 0 is a global attractor
for F?

Observe that Theorem 1 follows directly of Theorem 2.

This paper is organized as follows: In Section 2, we show that the maps of
Theorem 2 are injective maps whose image is convex. In Section 3, we conclude
the proof of Theorem 2.

2 A topological embedding on the plane

The present section is related to the Keller Jacobian Conjecture, more precisely
its real version which claims: Every polynomial map from Rn to Rn with a con-
stant nonzero Jacobian determinant is invertible. (See [ChM98, SX96, NX02,
FGR03]). This conjecture remains open even when n = 2 but one knows that
injectivity implies the surjectivity in this context, [BA62, Pa04]. There is quite
a lot literature in problem of finding sufficient conditions for a C1 map from R2

to R2 to be injective. For example, Campbell in [Ca00] proved in the C1-case
that the fact that 1 is the only eigenvalue of all the Jacobian matrices is a suffi-
cient condition. Then, Chamberland conjectured in [Ch00] that the fact that the
spectrum is bounded away from 0 is sufficient to get the injectivity.

In [FGR04], we gave a proof of Chamberland Conjecture in dimension 2
(without assuming the C1-hypothesis). More precisely, a differentiable map
F : R2 → R2 is invertible as long as its spectrum, Spc(F) misses a set [0, ε) for
some ε > 0. The idea of the proof is to study the foliation F( f ) given by the
level curves { f = constant} of the first coordinate f of F = ( f, g), [RR89].

2The orbit (Fk(p))k≥0 is the planar set given by the iterations of the map: {Fk(p) : k ∈ N∪ {0}},
where F0 denotes the identity map.
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The non–injectivity of F implies that the foliation admits a Reeb component as
in [HR57]. With a nice argument a sequence ((xk, yk))k≥0 is found such that
one of the eigenvalue λk of the Jacobian matrix DF(xk ,yk ) is positive and satis-
fies limk→∞λk = 0. A remark can be found in [GN07], where it is said that one
can suppose that the sequence (F(xk, yk))k≥0 has a limit in R2. This motives to
present Definition 1 and the following

Theorem 3. Suppose that the differentiable map F : R2 → R2 satisfies the B-
condition and det(DFz) 6= 0, for all z ∈ R2 then F is a topological embedding.

Proof. From [FGR04, Proposition 1.4], we shall have established that F =
( f, g) will be injective if we prove that F( f ) has no half–Reeb component. In
order to obtain this result we consider the map ( fθ , gθ ) = Rθ ◦ F ◦ R−θ .

Suppose by way of contradiction that F( f ) has a half–Reeb component.
From [FGR04, Proposition 1.5] we can select some θ ∈ R for whichF( fθ ) has a
half–Reeb component whose projection is an unbounded interval; thus there are
a0 > 0 and a half–Reeb component A of F( fθ ) such that [a0, +∞) ⊂ 5(A),
where 5(x, y) = x . Then, for some a > a0 large enough the line 5−1(a)

intersects the two non–compact edges of A but it is disjoint of the compact
edge. Since A is the union of an increasing sequence of compact sets bounded
by the compact edge and a compact segment of leaf. Then, from our selection
of a > a0 we have that for any x ≥ a, the line 5−1(x) intersects exactly one
trajectory αx ⊂ A of F( fθ )|A such that 5(αx) ∩ [x, +∞) = {x}. If x ≥ a,
the intersection αx ∩5−1(x) is a compact subset ofA. Therefore, we can define
two functions

H : (a, +∞) → R by H(x) = sup
{

y : (x, y) ∈ αx ∩ 5−1(x)
}
,

and
ϕ : (a, +∞) → A by ϕ(x) = fθ (x, H(x)).

For every interval [a, b) ⊂ R the function H is bounded, because the graph of
the restriction H |[a,b) is contained in the compact subset of A whose boundary
is 5−1(a) ∪ αb. Moreover, when x ≥ a is kept fixed, the point (x, H(x)) ∈
αx ∩5−1(x)} is a local extremal of the differentiable function (x, y) 7→ fθ (x, y).
Thus,

(a) if x ≥ a every partial derivative satisfies ( fθ )y(x, H(x)) = 0.

The function ϕ is bounded because its image is contained in fθ (0) where 0

is the compact edge of A. This ϕ is continuous because the leaves αx depends
continuously of x (i.e F( fθ ) is a C0-foliation). And, ϕ is strictly monotone
because F( fθ ) is topological transversal to 0 \ {some point}. Therefore:
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(b) This ϕ(x) = fθ (x, H(x)) is bounded, continuous and strictly monotone;
in particular ϕ is differentiable a.e.

(c) We claim that the image Fθ (A) is bounded, where Fθ = ( fθ , gθ ).

Consider 0 the compact edge of A which is homeomorphic to an interval,
and denote by I the compact interval fθ (0). From our construction of F( fθ ),
the compact continuous curve Fθ (0) is the union of exactly two graphs of contin-
uous functions I 7→ R. Moreover, the intersection of this two graphs is a point
in Fθ (0) where the vertical foliation has a topological tangency. Both functions
I 7→ R are bounded, and every vertical interval whose end points belong these
graphs is the image under Fθ of a compact segment of leaf contained inA. Since
the adherence of a bounded set is also bounded and A \ {non-compact edges} is
the union of such type of compact segment of leafs we obtain (c).

Since fθ is differentiable at (x, H(x)) and H is upper semicontinuous, we can
proceed as in [FGR04] and obtain that ϕ has the following property:

(d) For some full measure subset M ⊂ (a, +∞) such ϕ is differentiable on
M and for all x ∈ M the Jacobian matrix of Fθ at (x, H(x)) is

DFθ (x, H(x)) =
(

ϕ′(x) 0
(gθ )x(x, H(x)) (gθ )y(x, H(x))

)
.

In other words, if x ∈ M , then ϕ′(x) = ( fθ )x(x, H(x)) ∈ Spc(F).

To proceed we shall only consider the case in which ϕ′(x) ≥ 0, because in the
other case we can use lim supx→∞ xϕ′(x).

If lim inf x→∞ xϕ′(x) = 0, there is a sequence (xk, H(xk)) → ∞ such that
DFθ (xk, H(xk)) has a real eigenvalue λk = ϕ′(xk) for which lim xkλk = 0 and
Fθ (xk, H(xk)) tends to a finite value in the closure Fθ (A) (which is compact
by (c)). This contradicts the B-condition.

If lim inf x→∞ xϕ′(x) 6= 0, then lim inf x→∞ xϕ′(x) > 0. This implies that
there are constants α0 ≥ a and ` > 0 such that ` ≤ xϕ′(x) if x ≥ α0. From (b)
there is a constant K > 0 such that for all x > α0, 0 ≤ ϕ(x)−ϕ(α0) ≤ K . Take

c0 > α0 so that K <

∫ c0

α0

`
x dx . Then

K <

∫ c0

α0

`

x
dx ≤

∫ c0

α0

ϕ′(x)dx ≤ ϕ(c0) − ϕ(α0) ≤ K .

This contradiction proves the theorem. �
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Lemma 1. If some level curve { f = c} is disconnected, then F( f ) has a
half-Reeb component.

Proof. We refeer the reader to the proof of Theorem 2.1 of [GR06]. �

Corollary 2. If F : R2 → R2 is as in Theorem 2, then F is injective and F(R2)

is convex.

Proof. Let p, q ∈ F(R2) and let [p, q] = {(1 − t)p + tq : 0 ≤ t ≤ 1}. Take
θ ∈ R so that Rθ ([p, q]) is contained in the vertical line x = c. Lemma 1
implies that the level curve { fθ = c} is a connected subset of the straight line
x = c connecting Rθ (p) with Rθ (q); that is Rθ ([p, q]) ⊂ Fθ (R2) which im-
plies that [p, q] ⊂ F(R2) and concludes the proof. �

Let us finish with an example of a map F = ( f, g) whose image is not convex
and the foliation F( f ) has no Reeb component in the sense of [HR57].

Example. If we consider

f (x, y) = exp(y) cos
(

2 arctan(x) −
π

2

)

and
g(x, y) = exp(y) sin

(
2 arctan(x) −

π

2

)
,

the map F = ( f, g) is injective because of the foliation F( f ) has no half-Reeb
component ([FGR04, Proposition 1.4]). More precisely, for every c 6= 0 the
level curve { f = c} is the graph of a function and { f = 0} is the vertical
axis. Therefore, F is a smooth diffeomorphism between R2 and the open set
R2 \ ({0} × (−∞, 0]) which in particular is a non convex image.

3 Differentiable almost–area–preserving maps

In this section we conclude the proof of Theorem 2 which implies Theorem 1.
This proof shall be completed at the end of this section. By [RR89, Theorem 3.4]
if det(DFz) 6= 0 for all z ∈ R2, the non–connected function z 7→ det(DFz) has
constant sign, so in the rest of this section we may assume that det(DFz) > 0.

Lemma 2. Let G : R2 → R2 be an injective differentiable (not necessarily
C1) map and let s > 0 a constant such that for all z ∈ R2, |det(DGz)| = s. If
B ⊂ R2 is a measurable set and G(B) has finite Lebesgue measure then

μ(G(B)) = sμ(B)

where μ is the Lebesgue-measure in R2.
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Proof. If follows directly of applying [P, Corollary 10.6.10] (a change of
variables); because μ(G(B)) < ∞, G is a differentiable injective map and
the Jacobian determinant det(DGz) is constant. �

Proof of Theorem 2. By Corollary 2, F is an injective map with convex im-
age. Then, it is sufficient to prove that Statement (b) in the definition of almost–
area–preserving maps is true.

Let B ⊂ R2 be any measurable set.

(a.1) We claim that if μ(F(B)) < ∞ or μ(B) < ∞, then μ(F(B)) = sμ(B)

where s = |det(DFz)|.

By Lemma 2 (a.1) holds when μ(F(B)) < ∞. In the other case, μ(B) < ∞,
so we consider A = F(B) and G = F−1. As μ(G(A)) = μ(B) < ∞ we may
apply Lemma 2 and obtain that μ(G(A)) = 1

s μ(A) because |det(DGz)| = 1
s .

From this, (a.1) holds.

(a.2) We claim that if B is a measurable set of the plane μ(F(B)) = sμ(B).

If we does not have the condition of (a.1) μ(F(B)) and μ(B) have no finite
measure, so (a.2) is true.

Therefore, F is an almost–area–preserving map. �

Corollary 3. Let F : R2 → R2 be as in Theorem 2. If (Bn)n is an infinite
sequence of measurable sets for which there exist a constant δ > 0, such that
for all N ∈ N, μ(BN+1 \ ∪N

n=1 Bn) > δ. Then, F(∪n Bn) has no finite measure.

Proof. Suppose, by contradiction, that μ(F(∪n Bn)) < ∞. Consider, A1 =
B1, and for every N natural greater than one set AN+1 = BN+1 \∪N

n=1 Bn . Given
K ∈ N, by using the definition of almost–area–preserving, we have that

μ

(

F

(
⋃

n

Bn

))

> μ

(
K+1⋃

N=2

F(AN )

)

=
K+1∑

N=2

sμ(AN ) = sδK .

Then, the natural numbers N is bounded. This contradiction conclude the
proof. �

Remark 1. Corollary 3 remains true if take F as any almost–area–preserving
map whose image may be non–convex. For instance, take the map F(x, y) =
(exp(x), y exp(−x)) for which F(R2) 6= R2.
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Proof of Corollary 1. Consider G : R2 → R2 given by G(z) = F(z) − z for
all z ∈ R2. This map has no positive eigenvalue because Spc(G) is contained
in {z ∈ R2 : <(z) < 0}, so it satisfies Theorem 2 because Spc(G) avoid an
open real neighborhood of the origin. Since G is injective we conclude the
proof of Corollary 1.
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to professor Lê Dũng Tráng. We also express our gratitude to professors J. Lli-
bre, A. Gasull and F. Mañosas from the Universitat Autònoma de Barcelona for
several comments in the “Seminar of the Dynamical System Group”. We wish
to thank to the referee whose comments have appreciated and incorporated into
this work. I am particularly indebted to professor Carlos Gutiérrez for useful
comments to this work.

References

[BA62] A. Bialynicki-Birula and M. Rosenlicht. Injective morphisms of real alge-
braic varieties. Proc. Amer. Math. Soc. 13 (1962), 200–203.

[Ca00] L.A. Campbell. Unipotent Jacobian matrices and univalent maps. Contemp.
Math. 264 (2000), 157–177.

[CGM99] A. Cima, A. Gasull and F. Mañosas. The discrete Markus–Yamabe problem.
Nonlinear Anal., Ser. A: Theory Methods 35(3) (1999), 343–354.

[CGM01] A. Cima, A. Gasull and F. Mañosas. A note on LaSalle’s problems. Ann.
Polon. Math. 76(1–2) (2001), 33–46.

[ChM98] M. Chamberland and G. Meisters. A mountain pass to the Jacobian conjec-
ture. Canad. Math. Bull. 41(4) (1998), 442–451.

[Ch00] M. Chamberland. Diffeomorphic real–analytic maps and the Jacobian con-
jecture. Boundary value problems and related topics. Math. Comput. Mod-
elling 32(5–6) (2000), 727–732.

[Ch03] M. Chamberland. Characterizing two–dimensional maps whose jacobians
have constant eigenvalues. Canad. Math. Bull. 46(3) (2003), 323–331.

[Che99] Y.Q. Chen. A note on holomorphic maps with unipotent Jacobian matrices.
Proc. Amer. Math. Soc. 127(7) (1999), 2041–2044.

[FGR03] A. Fernandes, C. Gutiérrez and R. Rabanal. On local diffeomorphisms of
Rn that are injective. Qual. Theory Dyn. Syst. 4(2) (2003), 255–262.

[FGR04] A. Fernandes, C. Gutiérrez and R. Rabanal. Global asymptotic stability for
differentiable vector fields of R2. J. Differential Equations 206(2) (2004),
470–482.

Bull Braz Math Soc, Vol. 41, N. 1, 2010



“main” — 2010/3/17 — 23:23 — page 82 — #10

82 ROLAND RABANAL

[GN07] C. Gutiérrez and V.C. Nguyen. A remark on an eigenvalue condition for
the global injectivity of differentiable maps of R2. Discrete Contin. Dyn.
Syst. 17(2) (2007), 397–402.

[GR06] C. Gutiérrez and R. Rabanal. Injectivity of differentiable maps R2 → R2 at
infinity. Bull. Braz. Math. Soc. (N.S.) 37(2) (2006), 217–239.

[HR57] A. Haefliger and G. Reeb. Variétés (non séparés) à une dimension et struc-
tures feuilletées du plan (French). Enseignement Math. (2) 3 (1957), 107–
125.

[KH] A. Katok and B. Hasselblatt. Introduction to the modern theory of dynami-
cal systems. Cambridge. University Press, Cambridge (1995).

[NX02] S. Nollet and F. Xavier. Global inversion via the Palais-Smale condition.
Discrete Contin. Dyn. Syst. 8(1) (2002), 17–28.

[OU41] J.C. Oxtoby and S.M. Ulam. Measure-preserving homeomorphisms and
metrical transitivity. Ann. of Math. 42(2) (1941), 874–920.
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