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Symmetries of quadratic form classes
and of quadratic surd continued fractions.
Part II: Classification of the periods’ palindromes

Francesca Aicardi

Abstract. According to a theorem by Lagrange, the continued fractions of quadratic
surds are periodic. Their periods may have different types of symmetries. This work
relates these types of symmetries to the symmetries of the classes of the correspond-
ing indefinite quadratic forms. This allows classifying the periods of quadratic surds
and simultaneously finding the symmetry type of the class of an arbitrary indefinite
quadratic form and the number of its integer points contained in each domain of the
Poincaré tiling of the de Sitter world, introduced in Part I of this paper. Moreover, we
obtain the same result for every class of forms representing zero, i.e., when the quadratic
surds are replaced by rational, using the finite continued fraction obtained from a spe-
cial representative of that class. Finally, we show the relation between the reduction
procedure for indefinite quadratic forms defined by continued fractions and the classical
reduction theory, which acquires a geometric description by the results in Part I.
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1 Definition of the palindromes

Definition 1. A finite sequence [α0, α1, . . . , αN ] is said to be palindromic1

iff

αi = αN−i , i = 0, . . . ,N.

Received 20 February 2008.
1The word palindrome means exactly “that which reads the same backwards and forwards,” e.g.,
the word RADAR or entire phrases like the Latin riddle IN GIRUM IMUS NOCTE ET CONSUMIMUR

IGNI (we go around at night and are consumed by fire).
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Definition 2. A period of length P is a finite sequence of P natural numbers
that cannot be written as a sequence of identical subsequences. A period is said
to be even if P is even and odd otherwise.

Example. The sequence [1, 2, 3, 1, 2, 3] is not a period.

Definition 3. An infinite continued fraction [α0, α1, α2, . . . ] is said to be peri-
odic if for some nonnegative integer N and some natural number P

αN+ j = αN+ j+k P ∀ j, k ∈ N. (1)

Definition 4. A periodic continued fraction [α0, α1, α2, . . . ] is denoted by
[
α0, α1, . . . , αN−1, [αN , αN+1, . . . , αN+P−1]

]

if N is the minimal nonnegative integer satisfying (1). The sequence [a1, a2, . . . ,
aP ] := [αN , αN+1, . . . αN+P−1] is called the period of the periodic continued
fraction, and the natural number P is called its length.

Definition 5. The inverse of the period of a periodic continued fraction is the
period obtained by writing the period backwards.

Example. The period [a, b, c, d] is the inverse of the period [d, c, b, a].

Definition 6. The period of a periodic continued fraction is said to be

– palindromic if there exists a cyclic permutation2 of it such that the per-
muted period is equal to its inverse period,

– bipalindromic if there is a cyclic permutation of it such that the permuted
period can be subdivided into two palindromic odd sequences, and

– nonpalindromic if it is neither palindromic nor bipalindromic.

Examples. The periods (different letters denote different naturals)

[a, a, b, b], [a, a, b, a, a] and [a, b, a, c, c]

are palindromic. The periods

01 = [a, b, c, b, a, d] and 02 = [a, a, a, b]

are bipalindromic because 01 can be written as [(b, c, b)(a, d, a)] (or [(b, a, d,

a, b)(c)], etc.) and 02 can be written as [(a)(a, b, a)] (or [(b)(a, a, a)]). The
periods [a, b, c] and [a, b, b, c] are nonpalindromic.

2A cyclic permutation transforms the ordered finite sequence [a1, a2, . . . , aP ] into one of the P
sequences [ak , ak+1, . . . , aP , a1, a2, . . . , ak−1], where k = 1, 2, . . . , P .

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Remarks. 1. Any period of length 1 is palindromic.

2. Any period of length 2 is bipalindromic according to the definition above.
Hence, a nonpalindromic period contains at least three different elements.

3. If a palindromic period is even, then there exist at least two different cyclic
permutations of it such that the permuted periods are equal to their inverses.
Example. [abccba] and [cbaabc].

4. The palindromicity of a period of P elements (natural numbers) can be
seen as an axial symmetry of a regular plane polygon whose vertices are
labeled by these natural numbers. If P is odd, then a vertex must belong to
the symmetry axis; if P is even, then either no vertex belongs to the sym-
metry axis (and every element hence has its symmetric element), or two
vertices belong to the symmetry axis (and these two vertices hence have no
symmetric element). The latter case corresponds to the bipalindromicity.

2 The symmetry types of the classes of quadratic forms

Let f denote the triple of integer coefficients of the binary quadratic form f =
mx2 +ny2 +kxy. As in Part I [1], T denotes the group isomorphic to P SL(2,Z)

that acts on the space of the form coefficients (m, n, k) and whose action is
induced by that of SL(2,Z) on the xy plane. The class of the form f = (m, n, k)

under T is denoted by C(f) or C(m, n, k).
We recall the classification of the symmetry types of the classes of indefinite

binary quadratic forms (i.e., with a discriminant 1 = k2 − 4mn < 0), already
introduced in Part I. We considered three commuting involutions acting in the
space of forms and, with f , defining eight forms (see Fig. 1-III). In particular, for
a given f = (m, n, k),

1. the form fc = (n, m, −k) is the complementary of the form f ,

2. the form f = (m, n, −k) is the conjugate of the form f ,

3. the form f∗ = (−n, −m, k) is the adjoint of the form f ,

4. the form f
∗

= (−n, −m, −k) is the antipodal of the form f and is the
adjoint of the conjugate (or the conjugate of the adjoint) of the form f , and

5. the form −f = (−m, −n, −k) is the opposite of the form f and is the
complementary of the adjoint of the form f .

Moreover, a form f is said to be self-conjugate if f = f and self-adjoint if
f∗ = f .

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Remarks. Any form (m, n, 0) is self-conjugate. Any form (m, −m, k) is self-
adjoint.

The complementary of a form f = (m, n, k) belongs to the class of f ,
C(m, n, k), while the conjugate and/or the adjoint of f may or may not belong
to the class of f .

But if a class contains a pair of forms related by some involution or a form
that is invariant under some involution, then the entire class is invariant under
that involution (see Proposition 1.2 of Part I).

Hence, there are exactly five types of symmetries of the classes, according to
the different symmetries considered for the forms.

Definition 8. A class of forms is said to be

1. asymmetric if it contains only pairs of complementary forms,

2. k-symmetric if, in addition to the pairs of complementary forms, it contains
only pairs of conjugate or isolated self-conjugate forms,

3. (m+n)-symmetric if, in addition to the pairs of complementary forms, it
contains only pairs of adjoint and isolated self-adjoint forms,

4. antisymmetric if, in addition to the pairs of complementary forms, it con-
tains only pairs of antipodal forms, and

5. supersymmetric if it contains all pairs of complementary forms, conju-
gates, and adjoints (and hence antipodal) forms.

3 Results

In this section, we state our results. The proofs are provided in the following
sections, mainly using the results of Part I [1].

3.1 Basic Theorems

Let f := (m, n, k) be a triple of integers such that k2 − 4mn > 0. The ordered
pair (ξ+(f), ξ−(f)) denotes the roots of the quadratic equation mξ 2+kξ +n = 0:

ξ±(f) =
−k ±

√
k2 − 4mn

2m
, (2)

the first with the plus sign and the second with the minus sign.
We assume that ξ±(f) are irrational.

Notation. We denote 0(m, n, k) the period of the continued fraction of
ξ+(m, n, k) considered up to cyclic permutations.

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Remark. In the sequel the word period will be used for the period of a contin-
ued fraction considered up to cyclic permutations of its elements.

Theorem 3.1. The continued fractions of the roots ξ+(f) and ξ−(f) are pe-
riodic, and their periods are mutually inverse.3 The ordered pair of periods
of the continued fractions of (ξ+(f), ξ−(f)) is an invariant of the class
C(m, n, k).

By Theorem 3.1, the periods of ξ+ and ξ− have the same palindromic type.

Definition. A form f is said to be primitive if cannot be written as af ′ for
another integer form f ′ and a > 0.

Remark. All forms in the same class are either primitive or nonprimitive.

A class consisting of primitive forms is said to be primitive.

Theorem 3.2. For every period s there are two and only two primitive classes
C(m, n, k) such that 0(m, n, k) = s. These classes, which may coincide, are
sent one to the other by the antipodal involution.

3.2 The palindromic type of the period from the symmetry type of
the class

In this section we state the correspondence between the five symmetry types
(in Definition 8) of the classes of forms and the five palindromic types of their
corresponding periods 0(m, n, k).

Theorem 3.3. Let 0(m, n, k) be the period of the class C(m, n, k). Then

a. 0(m, n, k) is palindromic and even iff C(m, n, k) is (m+n)-symmetric,

b. 0(m, n, k) is palindromic and odd iff C(m, n, k) is supersymmetric,

c. 0(m, n, k) is bipalindromic iff C(m, n, k) is k-symmetric,

d. 0(m, n, k) is nonpalindromic and odd iff C(m, n, k) is antisymmetric, and

e. 0(m, n, k) is nonpalindromic and even iff C(m, n, k) is asymmetric.

In the following examples, we give all the forms for each case of the class
C(m, n, k) satisfying m > 0 and n < 0; the reader may verify the symmetry
type of the class.

3This fact was probably already known to Lagrange, Galois, etc. A geometrical proof of the first
part is in [4].

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Example a. m = 5, n = −7, k = 9. 0 = [1, 2, 2, 1]. In the same class, we
have the following forms:

m n k period
5 −7 9 [1, 1, 2, 2]
7 −7 −5 [1, 2, 2, 1]
7 −5 9 [2, 2, 1, 1]
5 −5 −11 [2, 1, 1, 2]

We note that there is one pair of adjoints and two self-adjoint forms.

Example b. m = 1, n = −2, k = −3. 0 = [1, 3, 1]. In the same class, we
have the following forms:

m n k period
1 −2 −3 [3, 1, 1]
1 −2 3 [1, 1, 3]
2 −2 −1 [1, 3, 1]
2 −1 3 [3, 1, 1]
2 −1 −3 [1, 1, 3]
2 −2 1 [1, 3, 1]

We note that there are two self-adjoint forms, which are conjugates.

Example c. m = 1, n = −2, k = −5. 0 = [5, 2, 1, 2]. In the same class,
we have the following forms:

m n k period
1 −2 −5 [5, 2, 1, 2]
1 −2 5 [2, 1, 2, 5]
3 −2 −3 [1, 2, 5, 2]
3 −2 3 [2, 5, 2, 1]

We note that there are two pairs of conjugate forms.

Example d. m = 5, n = −3, k = −13. 0 = [2, 1, 4]. In the same class, we
have the following forms:

m n k period
5 −3 −13 [2, 1, 4]
5 −9 7 [1, 4, 2]
3 −9 −11 [4, 2, 1]
3 −5 13 [2, 1, 4]
9 −5 −7 [1, 4, 2]
9 −3 11 [4, 2, 1]

Bull Braz Math Soc, Vol. 41, N. 1, 2010



“main” — 2010/3/17 — 23:32 — page 89 — #7

SYMMETRIES OF QUADRATIC FORM CLASSES AND OF QUADRATIC SURD. PART II 89

We note that the orbit contains three pairs of antipodal forms.

Example e. m = 5, n = −15, k = 18. 0 = [1, 2, 3, 4]. In the same class,
we have the following:

m n k period
5 −15 18 [1, 2, 3, 4]
8 −15 −12 [2, 3, 4, 1]
8 −7 20 [3, 4, 1, 2]
5 −7 −22 [4, 1, 2, 3]

We note that there are no pairs of symmetric forms.

Corollary 3.4. Given a period s of length P , the two primitive classes
C(m, n, k) such that 0(m, n, k) = s coincide iff P is odd.

Remark. The square root of a rational number
√

p/q has a continued fraction
whose period is either odd and palindromic or bipalindromic because it is the
root of the equation qx2 − p = 0, corresponding to a class of forms (m, n, k)

that is either k-symmetric or supersymmetric, since contains a form with k = 0.
This answers a question posed by Arnold in [3].

In [2], Arnold posed the question whether the roots of all quadratic equations
of type x2 + kx + n = 0 are palindromic. The following corollary answers this
question.

Corollary 3.5. The continued fractions of the quadratic surds corresponding
to a form whose class represents 1 have a period that is either odd and palin-
dromic or even and bipalindromic.

3.3 The numbers of forms with mn < 0 from the periods of the surds

The theorems below, referring to some special domains of the space of forms,
complete the results of Part I.

We show that the period 0(m, n, k) is related to the set, called cycle (or to
half of it), composed by the forms of the class C(m, n, k), satisfying m > 0 and
n < 0 and hence belonging to H 0, defined in Sec. 4 of Part I.

Besides under the considered involutions, a cycle could be a priori invari-
ant under a n-cyclic symmetry, i.e., it could satisfy the following: for every
point f of the cycle there exists an operator M ∈ T such that the n points
Mf, M2f, . . . , Mnf = f belong to the cycle and are distinct.

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Corollary 3.6. The cycle of all forms lying in H 0 cannot have the n-cyclic
symmetry.

Let 0(m, n, k) = [a1, . . . , aP ].

Definition. If P is odd, then the geometric period of the continued fraction
with period 0 is

5(m, n, k) := 02 = [a1, a2, . . . , aP , aP+1, . . . , ap],

where p = 2P and aP+i = ai for i = 1, . . . , P; otherwise, the geometric
period coincides with

0 : 5(m, n, k) := 0(m, n, k) and p = P.

Theorem 3.7. Let (m, n, k) be any triple of integers such that k2 − 4mn > 0
is a nonsquare number, and let 5(m, n, k) = [a1, a2, . . . , ap]. We define

todd :=
p∑

i odd

ai , teven :=
p∑

i even

ai , t :=
p∑

i

ai . (3)

The class C(m, n, k) has t points in H 0 and in H 0
R , has todd points in every

domain of G A and G Ā, and has teven points in every domain of G B and G B̄ (or
vice versa). Moreover, todd = teven = t/2 if 0 is either odd or even palindromic,
i.e., if the corresponding form is supersymmetric, antisymmetric, or (m+n)-
symmetric.

In Sec. 4 of Part I, we showed that each class whose discriminant is a square,
has representatives on the boundaries of the domains of the tiling. In particular,
Theorem 4.13 states that there are k distinct classes whose discriminant is equal
to k2. These k classes have a fixed number of representatives in the interior of
each domain. The following theorems provide, for every class, the number of
its forms in H 0 and its symmetry type from the finite continued fraction of a
rational number related to a representative of that class.

Remark. The last element of a finite continued fraction is greater than 1.

Definition. The odd continued fraction of a rational number r > 1 is the
finite continued fraction [a1, . . . , aN ] of r if N is odd and the continued faction
[a1, a2, . . . , aN − 1, 1] otherwise. Similarly, the even continued fraction of a
rational number r > 1 is the finite continued fraction [a1, . . . , aN ] of r if N is
even and the continued faction [a1, a2, . . . , aN − 1, 1] otherwise.

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Note that the odd and the even continued fraction of r = [a1, . . . , aN ] both
represent r :

[a1, . . . , (aN − 1), 1] = a1 +
1

∙ ∙ ∙ + 1
(aN −1)+ 1

1

= a1 +
1

∙ ∙ ∙ + 1
aN

= [a1, . . . , aN ].

Theorem 3.8. Let k > m > 0 and [a1, . . . , aN ] be the even continued frac-
tion of the rational number k/m. We define

t̂odd :=
N−1∑

i odd

ai − 1, t̂even :=
N∑

i even

ai − 1, t̂ :=
N∑

i

ai − 1. (4)

The following statements hold:

i. The class C(m, 0, k) has t̂ points in H 0 and H 0
R , has t̂odd points in the

interior of every domain of G A and G Ā, and has t̂even points in the
interior of every domain of G B and G B̄ .

ii. Moreover, t̂odd = t̂even = (t̂ − 1)/2 if C(m, 0, k) is (m+n)-symmetric.

Theorem 3.9. If 0 ≤ m < |k|, the class C(m, 0, k) is not antisymmetric
and is

i. supersymmetric iff either m = 0 or k is even and m = k/2;

ii. (m+n)-symmetric iff the even continued fraction of k/m is palindromic;

iii. k-symmetric iff the odd continued fraction of k/m is palindromic;

iv. asymmetric iff both the odd and the even continued fraction of k/m are
not palindromic.

The appendix contains examples illustrating these theorems.
Section 5 is devoted to the reduction theory for indefinite forms from the

geometric standpoint of our model.
The (finite or infinite) sequence of integers (b0, b1, b2, . . . ), bi ≥ 2, denotes

the minus continued fraction of the number ξ :

ξ = b0 −
1

b1 − 1
b2−

1
∙∙∙

.

We prove the following theorem on periodic minus continued fractions:

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Theorem 3.10. Let (c1, c2, . . . , cL) be the period of the minus continued frac-
tion of a quadratic surd. If the corresponding class is supersymmetric, antisym-
metric, or (m+n)-symmetric, then

L∑

i=1

ci = 3L

4 Proofs

4.1 Fundamental lemmas

In Part I, for every 1 > 0 such that 1 ≡ 0 or 1 ≡ 1 mod 4, we introduced
the set

H1 = {(m, n, k) ∈ Z3 : k2 − 4mn = 1}.

This is the space of quadratic forms

f = mx2 + ny2 + kxy

with real coefficients and fixed discriminant 1 (see Fig. 1-I). Moreover, we
defined the projection Q of the hyperboloid H1 to the open cylinder CH (Fig. 1-
III).

Remark. Let ξ+(f) and ξ−(f) be the roots of the equation f = 0 for the
variable ξ = x/y ∈ RP1. Then the cylinder CH and the space

4 =
{
(ξ+(f), ξ−(f)) ∈ RP1 × RP1 \ {(ξ, ξ)|ξ ∈ RP1}, f ∈ H1

}
(5)

are homeomorphic. Indeed, the map Q : H1 → CH (see eq. (17) of Part I) is a
homeomorphism. Also, eq. (2) defines a homeomorphism between H1 and 4.

We show explicitly how the domains characterizing the tiling of CH are
mapped by this homeomorphism to 4.

In Fig. 1-II, the cylinder CH is depicted with the curved segments bounding
some of its domains replaced with straight line segments. Note that the cylin-
der (5) is obtained from the torus RP1 × RP1 minus its diagonal (Fig. 1-IV).
The circles c1 and c2, the boundary of CH , represent the points of the cone
1 = 0, to which the points at infinity of the hyperboloid approach. For such
limit values of the coefficients, the roots of the corresponding quadratic equa-
tions tend to a same value. Hence, the two circles correspond to the diagonal
ξ+ = ξ−. The root ξ+ vanishes when n = 0 and k > 0, and ξ− vanishes when
n = 0 and k < 0. The roots ξ+ and ξ− attain ±∞ when m = 0, and they
also change sign when m changes sign. Note that the lines m = 0 and n = 0

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Figure 1: The arrows coorienting a line where a coefficient vanishes point to-
wards the region where the value of that parameter is positive.

are the boundaries of the domains H 0 and H 0
R . The rhomboidal regions H 0

and H 0
R in CH (Fig. 1-III and Figs. 8 and 10 in Part I) are represented by true

rhombi in Fig. 1-II. These regions are thus represented in 4 by the square re-
gions ξ+ ∙ ξ− < 0, also denoted by H 0 and H 0

R in Fig. 1-IV. Outside H 0 and
H 0

R , the coefficients m and n have the same sign, and there are four special do-
mains: HA and HĀ, where m and n are positive, m + n < k, k > 0 (HA) and
m + n < −k, k < 0 (HĀ); HB and HB̄ , where m and n are negative, m + n > k,
k < 0 (HB) and m + n > −k, k < 0 (HB̄). These domains are mapped

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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to the respective domains

HA =
{
(ξ+, ξ−) : −1 < ξ+ < 0, ξ− < −1

}
,

HĀ =
{
(ξ+, ξ−) : ξ+ > 1, 0 < ξ− < 1

}
,

HB =
{
(ξ+, ξ−) : ξ+ < −1, −1 < ξ− < 0

}
,

HB̄ =
{
(ξ+, ξ−) : 0 < ξ+ < 1, ξ− > 1

}
.

(6)

Figure 2 shows how to obtain the square representing 4 from the rectangle
representing CH of Fig. 1-IV and II respectively: we cut the rectangle along the
lines m = 0, thus obtaining two triangles: one containing H 0 (with the circle
c1 as base) and the other containing H 0

R (with the circle c2 as base; see Fig. 2).
We then place the triangle containing H 0 above the other as shown in the figure.
Finally, we turn the figure thus obtained by π/4 counterclockwise. Observe that
this procedure preserves the continuity of the map from CH to 4.

Figure 2: Correspondence between CH and 4.

Remark. The complementary fc of the form f in CH is represented by a point
with the same ordinate as f and shifted by π in the horizontal direction, while
the conjugate, adjoint, and antipodal forms are symmetric with respect to f as
shown in Fig. 1-III.

The following relations hold among the pairs (ξ+, ξ−) of the triples obtained
from the triple f = (m, n, k) by all the considered involutions.

f (m, n, k) ξ+ ξ− fc = −f∗ (n, m, −k) −1/ξ+ −1/ξ−

f (m, n, −k) −ξ− −ξ+ fc = −f
∗

(n, m, k) 1/ξ− 1/ξ+

f∗ (−n, −m, k) −1/ξ− −1/ξ+ f∗
c = −f (−m, −n, −k) ξ− ξ+

f
∗

(−n, −m, −k) 1/ξ+ 1/ξ− f
∗
c = −f (−m, −n, k) −ξ+ −ξ−

Table 1

Bull Braz Math Soc, Vol. 41, N. 1, 2010
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Therefore, in 4, the complementary of the forms in H 0 are obtained by mov-
ing H 0 by a translation over H 0

R , and vice versa, and the forms outside H 0 and
outside H 0

R are obtained by moving the upper-right quarter of 4 over the lower-
left, and vice versa. The conjugation becomes the reflection with respect to the
diagonal ξ+ = −ξ−, whereas the antipodal symmetry, which is a reflection with
respect to the center of H0 and H 0

R , becomes the reflection with respect to the
point (1, −1) or (−1, 1).

We recall that

A =
(

1 1
0 1

)
, B =

(
1 0
1 1

)
, and R =

(
0 1

−1 0

)

denote the generators of SL(2,Z) acting on the xy plane and that A, B, and R
denote the corresponding generators of T.

Definition. The operators α, β, and σ acting on RP1 are defined in terms of
the operators A, B, and R of T in this way

α(ξ±(f)) = ξ±(A(f)), β(ξ±(f)) = ξ±(B(f)), σ (ξ±(f)) = ξ±(R(f)). (7)

Lemma 4.1. The actions of the operators α, β, and σ on the roots ξ± coincide
with those of the inverse of the homographic operators A, B, and R defined by
the generators A, B, and R of SL(2,Z).

Proof. The actions of the inverse homographic operators A−1 and B−1 (see
eq. (13) of Part I) are

A−1 : ξ →
ξ − 1

1
, B−1 : ξ →

1

−1 + 1/ξ
, R−1 = R : ξ → −

1

ξ
. (8)

On the other hand, if ξ± are the two roots of f (x, y)|y=1 = 0, then α(ξ±)

are by definition the corresponding roots of f (x + y, y)|y=1 = f (x + 1, 1) = 0
and are hence equal to ξ± − 1.

By definition, β(ξ+) is the first root of the equation f (x, x + y)|y=1 = 0.
We note that 1/ξ+ = (−k −

√
1)/2n is the second root w− of the equation

f (1, y) = 0. Hence β(w−) by the above definition is the second root of f (x, y+
x)|x=1 = f (1, y + 1) = 0. We hence have β(1/ξ+) = 1/ξ+ − 1. The first
root of the equation f (x, x + y)|y=1 = 0 is therefore equal to 1/β(1/ξ+) =
1/(−1 + 1/ξ+). The proof for β(ξ−) is analogous (exchanging ξ+ with ξ−

and first with second).
Finally, we note that −1/ξ± = (k ±

√
1)/2n are exactly the first and second

roots of f (−y, x)|y=1, i.e., −1/ξ± = ξ±(R(f)), and are hence equal to σ(ξ±(f))
by definition. �
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Remark. The above lemma defines an isomorphism between the group T act-
ing on the space of forms and the group generated by α, β, and σ acting on 4.

The actions of the operators α−1 and β−1 are

α−1(ξ) = ξ + 1, β−1(ξ) =
1

1 + 1/ξ
.

The following lemma holds for all real numbers.
We write αn and βn for the respective nth iterations of α and β.

Lemma 4.2. If ξ > 1 with continued fraction ξ = [a, b, c, . . . ], then

αa(ξ) = [0, b, c, . . . ].

If 0 < ξ < 1 and ξ = [0, d, e, g, . . . ], then

βd(ξ) = [e, g, . . . ].

Proof. By Lemma 4.1,

α(ξ) = ξ − 1 and αa(ξ) = ξ − a.

Hence, if

ξ = a +
1

b + 1
c+ 1

∙∙∙

,

then

αa(ξ) =
1

b + 1
c+ 1

∙∙∙

= [0, b, c, . . . ].

Moreover,

β(ξ) =
1

−1 + 1
ξ

and βd(ξ) =
1

−d + 1
ξ

.

Hence, if

ξ =
1

d + 1
e+ 1

g+ 1
...

,

then

βd(ξ) =
1

−d + 1
1
d + 1

e+ 1
g+ 1

...

=
1

−d + d + 1
e+ 1

g+ 1
...

= e +
1

g + 1
...

= [e, g, . . . ].

�
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Remark. If the continued fraction of x > 0 is [a1, a2, a3 . . . ], then it is con-
venient for our aim to let the continued fraction of −x < 0 be denoted simply
by −[a1, a2, a3 . . . ]. We have:

−
[
a1, a2, a3 . . .

]
=

[
− a1, −a2, −a3 . . .

]
.

Indeed, if

x = a1 +
1

a2 + 1
a3+

1
a4+ 1

...+ 1
an

.

then

−x = −a1 −
1

a2 + 1
a3+

1
a4+ 1

...+ 1
an+ 1

...

= (−a1) +
1

(−a2) + 1
(−a3)+

1
(−a4)+ 1

...+ 1
(−an )+ 1

...

.

Lemma 4.3. If ξ < −1 and its continued fraction is ξ = −[a, b, c, . . . ], then

α−a(ξ) = −[0, b, c, . . . ].

If −1 < ξ < 0 with continued fraction ξ = −[0, d, e, g, . . . ], then

β−d(ξ) = −[e, g, . . . ].

Proof. By Lemma 4.1 and the remark following it,

α−a(ξ) = ξ + a.

Hence, if ξ = −[a, b, c, . . . ], i.e.,

ξ = −a −
1

b + 1
c+ 1

∙∙∙

,

then

ξ + a = −
1

b + 1
c+ 1

∙∙∙

.

Moreover,

β−b(ξ) =
1

d + 1/ξ
.
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Hence, if ξ = −[0, d, e, g, . . . ], i.e.,

ξ = −
1

d + 1
e+ 1

g+ 1
∙∙∙

,

then
1

d + 1/ξ
= −

1

e + 1
g+ 1

∙∙∙

.

�

We group some observations in the following lemma.

Notation. A black or a white arrow from the point f to the point g in CH

indicates respectively that Af = g or Bf = g.

Remark. The arrows provide any sequence of points belonging to a cycle or
to a chain in H 0 with an orientation.

Lemma 4.4. If the points f and g in CH are joined by an arrow from f to g,
then

1. the points f∗ and g∗ in CH symmetric with respect to the horizontal line of
points f and g are joined by an arrow from g∗ to f∗ of the opposite color
(see Fig. 3-I,II);

2. the points f and g in CH symmetric with respect to the vertical line k = 0
of points f and g are related by an arrow from g to f of the same color (see
Fig. 3-II,III);

3. the points f
∗

and g∗ in CH symmetric with respect to the center of H 0 of
points f and g are related by an arrow from f

∗
to g∗ of the opposite color

(see Fig. 3-II-IV).

Proof. The proofs of the corresponding identities

1. (Af)∗ = B−1f∗, (Bf)∗ = A−1f∗;

2. Af = A−1 f, Bf = B−1 f;

3. (Af)∗ = Bf
∗
, (Bf)∗ = Af

∗
.

(9)

are given in Lemma 1.3 of Part I.
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Remark. The cycle of the forms in H 0 is oriented by the direction of the
arrows. Every point of the cycle has one and only one successor, which is the
only one of its images by A and B that lie inside H 0, and one and only one
predecessor, which is the only one of its images by A−1 and B−1 that lie inside
H 0 (see Lemma 4.6 of Part I).

4.2 Classes non representing zero

Because of the one-to-one map between CH and 4, we let the same symbols
denote the regions in CH and in 4, as in Fig. 1.

Definition. The form f = (m, n, k) is a turning point iff mn < 0 and
|m + n| < |k|.

The adjective turning of a point f in H 0 (or in H 0
R) means that if g and h are

respectively the predecessor and the successor of f in the cycle containing f ,
then the operators T1 and T2 satisfying f = T1g and h = T2f are different, that
is, at f , the incoming arrow and the outcoming arrow have different colors (see
Lemma 4.6 of Part I).

Remark. If f is a turning point in H 0, then the roots ξ±(f), besides the re-
lation ξ+(f) > 0, ξ−(f) < 0, holding in H 0, satisfy: either ξ+(f) > 1 and
−1 < ξ−( f ) < 0 or 0 < ξ+(f) < 1 and ξ−( f ) < −1.

Definition. The continued fraction of ξ is said immediately periodic if it has
no nonzero elements before the period, i.e., either ξ = [[a1, a2, a3, . . . , ap]], or
ξ = [0, [a1, a2, a3, . . . , ap]].

Proof of Theorem 3.1

Lemma 4.5. The continued fractions of ξ±(h) are immediately periodic if h is
a turning point.

Proof. By definition, the turning point h belongs to a cycle γh(T1, . . . Tt) in
H 0, where either Ti = A or Ti = B. Let T1 = A. We can write T h = h, where
T = Bap Aap−1 ∙ ∙ ∙ Ba2 Aa1 is a product of p alternating powers of A and B, such
that the exponents ai satisfy

∑p
i=1 ai = t .

For the cycle of h, we write

γh
(

Aa1, Ba2, . . . , Aap−1, Bap
)
,
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and ha1 := Aa1h, ha1+a2 = Ba2 Aa1h, and so on, until ht = T h = h. Let
(ξ+, ξ−) be the pair of roots associated with h. Using Lemma 4.1, we con-
struct the operator τ , obtained from T by translating A into α and B into β,
which satisfies

τ(ξ+) = ξ+, τ (ξ−) = ξ−. (10)

Since h ∈ H 0, ξ+(h) is positive and ξ−(h) is negative. We write ξ+ =
[b1, b2, . . . ]. The image of h by Aa1+1 is outside H 0, by Lemma 4.6 of Part I.
We thus obtain αa1ξ+ = [b1 − a1, b2, . . . ] = [0, b2, . . . ] and hence b1 = a1.
Analogously, the image of Aa1h by Ba2+1 is outside H 0, and βa2 ◦ αa1(ξ+) =
[b3, b4, . . . ], i.e., b2 = a2. In the same way we obtain bi = ai for i = 1, . . . , p.
But by eq. (10), at the end of the cycle we get

τ
(
ξ+

)
=

[
bp+1, bp+2, . . .

]
=

[
a1, a2, . . . , ap, bp+1, bp+2, . . .

]
.

Similarly, applying the j th iteration τ j of τ to ξ+, for every natural number j ,

τ j
(
ξ+

)
=

[
b jp+1, b jp+2, . . .

]
=

[
a1, a2, . . . , ap, a1, a2, . . .

]
,

we find that [a1, a2, . . . , ap−1, ap] are the first p elements of the continued frac-
tion obtained from ξ+ canceling the first j p elements and hence concluding
that

ξ+ =
[
[a1, a2, a3, . . . , ap]

]
,

i.e., the continued fraction of ξ+ is immediately periodic. Note that p is even
because T begins with a power of B and ends with a power of A.

For ξ−, it is convenient to write the second equation in (10) as

ξ− = τ−1
(
ξ−

)
,

where τ−1 = α−a1 ◦ β−a2 ∙ ∙ ∙ α−ap−1 ◦ β−ap . Again, by Lemma 4.6 of Part I,
the image of h by A−1 is outside H 0, i.e, α−1(ξ−) = ξ− + 1 > 0, and hence
0 > ξ− > −1, i.e., ξ− = −[0, c1, c2, . . . ]. Similarly, again using Lemma 4.3,
we find that β−ap(ξ−) = −[c2, c3, . . . ] and hence c1 = ap. Now, applying
A−ap−1 to B−ap h, we obtain α−ap−1 ◦β−ap(ξ−) = −[c3, c4, . . . ], i.e., c2 = ap−1.
In the same way we obtain ci = ap+1−i for i = 1, . . . , p. At the end of the
cycle, by eq. (10), we get

τ−1
(
ξ−

)
= −

[
cp+1, cp+2, . . .

]
= −

[
ap, ap−1, . . . , a2, a1, cp+1, cp+2, . . .

]

and hence also find that ap, ap−1, . . . , a2, a1 are the first p elements of the con-
tinued fraction of any iteration of τ−1 on ξ−, i.e.:

τ− j
(
ξ−

)
= −

[
c jp+1, c jp+2, . . .

]
= −

[
ap, ap−1, . . . , a1, ap, ap−1, . . .

]
.
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We hence conclude that

ξ− = −
[
0, [ap, ap−1, . . . , a2, a1]

]
.

�

We have proved that the roots ξ±(h) are periodic and their periods are mutu-
ally inverse when h ∈ H 0 is a turning point, i.e., the operator T of T+ satisfy-
ing T h = h starts with A and ends with B (or vice versa).

In the cycle of h between h and ha1 (whenever a1 > 1), a nonturning point in
H 0 is evidently obtained as

h j = A j h

for any j < a1 and satisfies

ξ+
(
h j

)
=

[
a1 − j, a2, . . .

]
=

[
a1 − j, [a2, a3, . . . , ap, a1]

]
,

i.e., it has the same period as ξ+(h), being the period defined up to cyclic per-
mutations. Moreover,

ξ−
(
h j

)
= −

[
j, [ap, ap−1, . . . , a1]

]
.

Applying this reasoning to every point of the cycle between two turning points,
we obtain that the periods of the continued fractions of ξ±(h) are mutually
inverse for every h ∈ H 0.

To complete the proof of Theorem 3.1, we must consider the points outside
H 0. Every point belongs to an orbit, and every orbit has a representative inside
H 0, by the results of Part I. Moreover, every point of any orbit can be written
as p = T h with h ∈ H 0 and T ∈ T. Every element T of the group can
be written as a finite product of the generators A, B, and R. By Lemma 4.1,
we translate T into τ composed of the corresponding generators α, β, and σ .
The action of each of these generators on a continued fraction obviously affects
only its initial elements, and τ hence affects only a finite initial part of ξ±(h).
Therefore, the periods of ξ±(τ (h)) remain unchanged, since they are defined up
to cyclic permutations.

For instance, the periods of the continued fractions of ξ±(hc) are the same as
those of ξ±(h) because of the relations shown in Table 1 and because hc = Rh.
We have completed the proof of Theorem 3.1. �

Remark. For every class C(m, n, k) of indefinite forms with a discriminant
different from a square number, the above proof shows that the number of
points of the cycle in H 0 (Theorem 4.11 of Part I) is deducible from the pe-
riods of the continued fractions of ξ±(m, n, k). As we remarked, the number p
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of sequences of arrows of the same colors that alternate in the cycle is necessar-
ily even. But the length P of the period of the continued fraction can be odd.
In this case, the cycle indeed corresponds to the double of the period, and
p = 2P , as we will see in detail in Theorems 3.3.b and 3.3.d.

Proof of Theorem 3.2. By Lemma 4.5, the roots ξ+(f) and ξ−(f) are imme-
diately periodic if f is a turning point of H 0, and every class of forms with a
discriminant different from a square number has a representative in H 0 that is a
turning point.

Note that ξ+ is positive and ξ− is negative in H 0, and vice versa in H 0
R . We

also recall that inverting the order of the pair of roots (and hence of periods)
corresponds to inverting the signs of the coefficients of the equation (i.e., of f).

Given a sequence s = (a1, . . . , aP), we firstly suppose that [[a1, . . . , aP ]] is
the first root of a quadratic equation with integer coefficients. To determine such
an equation, we write

ξ = a1 +
1

a2 + 1
∙∙∙+ 1

aP +1/ξ

.

We denote its coefficients (m, n, k) that define the form f := (m, n, k).
If we suppose that the first root is less than 1, i.e., ξ = [0, [a1, a2, . . . , aP ]],

we obtain the equation,

ξ =
1

a1 + 1
a2+

1
∙∙∙+ 1

aP +ξ

,

whose coefficients correspond to f
∗

(see Table I).
Supposing that the first root is negative and greater than −1, i.e., it is equal to

−[0, [a1, a2, . . . , aP ]], we obtain an equation, whose coefficients correspond to
−f∗.

Finally, supposing that the first root is negative and less than −1, i.e., it is
equal to −[[a1, a2, . . . , aP ]], we obtain another equation, with coefficients cor-
responding to −f .

Since −f∗ = fc and −f = f
∗
c , the four triples of coefficients that we have

obtained belong to only two classes, related by the antipodal symmetry. �

Here we prove the theorem on the symmetries of the periods. We illustrate
Theorem 3.3 in Fig. 3, where the coordinate of the horizontal axis is −k and the
coordinate of the vertical axis is (m + n). The cycles in H 0 indeed correspond
to the periods related to the forms considered in the examples. In these figures,
the small circles indicate the forms. Black circles correspond to turning points.
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The black arrow indicates the operator A and the white arrow indicates the
operator B.

-k

m+n

-k

m+n

-k

m+n

-k

m+n

-k

m+n

(5,-7,9) (1,-2,-3)

(1,-2,-5)

(5,-3,-13)

(5,-15,18)

  [1,1,2,2]    [3,1,1,3,1,1]       [5,2,1,2] 

      [2,1,4,2,1,4] [1,2,3,4] 

(m+n)-symmetric supersymmetric

antisymmetric

k-symmetric

asymmetric

Π = Γ=
2

2 Π = Γ=Π = Γ  =

Π = Γ =Π = Γ  =

III

VIV

III

Figure 3: The elements of the period 5 are equal to the numbers of arrows
between two consecutive turning points (black circles).

Lemma 4.6. If a cycle contains two points related by some symmetry, then the
cycle has that symmetry.

Proof. By Lemma 4.6 of Part I, a point of a cycle uniquely determines both its
following and its preceding point, and hence all points of the cycle. Because of
the relations stated in Lemma 4.4 between the arrows entering and exiting from
two symmetric points, the symmetry of a pair of points determines the symmetry
of the pairs of their neighboring points in the cycle and hence the symmetry of
the entire cycle. �

Note that the symmetry of a cycle in H 0 as invariance under some reflec-
tion concern only its points: the directions of the arrows and their colors are
necessarily related by the rules given by Lemma 4.4.
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Lemma 4.7. There are no arrows connecting points with the same value of k
in a cycle containing more than two points.

Proof. Points with the same value of k lie in a vertical line. Suppose that a
vertical white arrow connects two symmetric points f and f∗. By Lemma 4.6, a
black arrow must connect f∗ to (f∗)∗ = f . Hence, either these two points form
a cycle, or they cannot be joined by an arrow. �

Lemma 4.8. An (m+n)-symmetric cycle contains exactly two self-adjoint
points. The self-adjoint points are turning points.

Proof. Let f and f∗ be two different points of the cycle (they lie in the same
vertical line). Let g follow f (i.e., either Af = g or Bf = g). The symmetric
g∗ belongs to the cycle and is related to f∗ by B−1f∗ or A−1f∗. Following the
arrows after g and their symmetric arrows after g∗, we must close that part of
the cycle from f to f∗. But because there are no arrows between adjoint points
by Lemma 4.7, for some pair of adjoint points h and h∗, we must have Ah = j
and B−1h∗ = j, where j is self-adjoint (belonging to the line (m + n) = 0).
The point j is therefore a turning point. In the part of the cycle from f∗ to f
there is a self-adjoint point by the same argument. We must prove that there are
not other self-adjoint points. By the above argument, starting with any pair of
adjoint points and reaching the successive pairs following the arrows according
to their directions, when we reach the second self-adjoint point, we close the
cycle. Observe that a self-adjoint point lies necessarily in H 0. Since a cycle
cannot visit twice any of its points, and all points in H 0 of the orbit belong to
the cycle, no other self-adjoint points are possible. �

Lemma 4.9. If an orbit contains a self-adjoint point, then it is symmetric with
respect to the plane (m + n) = 0.

Proof. Let h = h∗ be a self-adjoint point. It follows from the arguments
in the proof of the preceding lemma that if the successor of h is Ah, then the
predecessor of h is B−1h. Then Ah and B−1h are a pair of adjoint points. By
Lemma 4.6, the orbit is at least (m+n)-symmetric. �

Proof of Theorem 3.3.a (see Fig. 3-I). Suppose that the class is (m+n)-
symmetric. This means that the cycle is invariant under reflection with respect
to the plane m + n = 0. We choose one of the two self-adjoint points of the
cycle (which exist by Lemma 4.8), for example, h. We consider all points of
the cycle between h and the second self-adjoint point h′ following the arrows.
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The product of generators A and B corresponding to the sequence of the arrows
from h to h′ is an operator M ∈ T+ satisfying

Mh = h′.

The points between h′ and h forming the other part of the cycle are the adjoints
of the points from h to h′. By Lemma 4.4,

M̂h = h′,

where M̂ is obtained from M by changing A to B−1 and B to A−1. Equivalently,
we can write

M̂−1h′ = h,

where M̂−1 is obtained from M by reversing the order of the factors and ex-
changing A and B. But then M̂−1 = M∨, i.e., the transpose of M , because the
transpose of A and B are respectively B and A. Hence,

M M∨h = h.

Therefore, if M is a word, product of q words of type Ai and B j ,

M = Aa1 Ba2 ∙ ∙ ∙ Aaq−1 Baq ,

then the operator T = M M∨ defining the cycle is the product

Aa1 Ba2 ∙ ∙ ∙ Aaq−1 Baq Aaq Baq−1 ∙ ∙ ∙ Ba2 Aa1 .

The roots ξ±(h) satisfying τ(ξ±) = ξ± are hence

ξ+ =
[
[a1, a2, . . . , aq, aq, . . . , a2, a1]

]
,

ξ− =
[
0, [aq, aq−1, . . . , a1, a1, a2, . . . , aq]

]
.

Their periods have the length P = 2q and are palindromic.
On the other hand, given a period 0 of length P , we associate a cycle to it,

as explained in the proof of Theorem 3.1, using Lemma 4.2. Now, if 0 is even
and palindromic, then the corresponding product of powers of operators A and
B defines an operator T , satisfying T h = h for some turning point h ∈ H 0.
T is composed by an even number of alternating powers Ai and B j , whose
exponents are the elements of the palindromic period 0. Therefore we can
write T = M M∨ and

h = M M∨h = (M∨)−1 M−1h.

By the second equality above, we have

h = M̂ M−1h and h∗ = M M∨h∗,

because M∨−1 = M̂ and M̂−1 = M∨. Il follows that h = h∗ is self-adjoint.
By Lemma 4.9, the cycle, and hence the class, is (m+n)-symmetric. �
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Proof of Theorem 3.3.b (see Fig. 3-II). If a class is supersymmetric, then its
cycle in H 0 is invariant under reflection in the horizontal plane (m + n = 0)
and also in the vertical plane k = 0. A supersymmetric orbit, being, in partic-
ular, (m+n)-symmetric, has two self-adjoint points by Lemma 4.6, satisfying
m + n = 0. Since, by the same lemma, the cycle cannot contain more than two
selfadjoint points, and these points are conjugate, i.e. symmetric with respect
to the vertical plane k = 0, the cycle is supersymmetric. We call these points
h and h. Being self-adjoint, they are turning points. Let Ah and B−1h be the
successor and predecessor of h. By Lemma 4.4, the successor and predecessor
of h are Bh and A−1h, and

Ah = A−1h, B−1h = Bh.

If we follow the successive points of the cycle after h and Ah, we must reach
the point h, and A−1h necessarily precedes it. To each of these points from h
and h, say f = T h, there corresponds the conjugate point f = T̄ h in the same
arc of the cycle from h to h, where T̄ is obtained from T by changing each A to
A−1 and each B to B−1. Therefore, we can write

h = Mh, h = M̄h,

obtaining M̄ = M−1, i.e., M is a palindromic word:

M = Aa1 Ba2 ∙ ∙ ∙ Ba2 Aa1 .

We note that the sequence must end with A or B if it starts respectively with A
or B; therefore, the number of powers of A and B in M is odd.

Using Theorem 3.3.a, the operator obtained as the product of the generators
corresponding to the remaining part of the cycle from h to h, is M∨, which is
composed of the same sequence of q groups of generators as M in reversed order
with B and A exchanged. Since M itself is palindromic, M∨ is obtained from
M by simply exchanging A and B.

Using Lemma 4.2 we thus find that the periods of the continued fractions of
ξ±(h) are odd and, being palindromic, coincide.

Conversely, if we have a continued fraction with an odd palindromic period
[
a1, a2, . . . , aq−1, aq, aq−1, . . . a2, a1

]
,

we associate to it an operator M = Aa1 Ba2 ∙ ∙ ∙ Ba2 Aa1 . The form h satisfying
M M∨h = h is self-adjoint, as we have seen proving Theorem 3.3.a. The fact
that the word M is palindromic, implies, applying Lemma 4.4, that the cycle
of h is also invariant under conjugation, and hence it is supersymmetric. The
entire orbit is therefore supersymmetric. �
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Proof of Theorem 3.3.c (see Fig. 3-III). Let the class be k-symmetric. This
means that the cycle is invariant under reflection with respect to the vertical
plane k = 0. Consider a pair h and h of conjugate points in the cycle. Let
Ah and B−1h be the successor and predecessor of h. We follows the same
arguments applied in Theorem 3.3.b to the conjugate points h and h (that here
do not lie in the plane m + n = 0) and to the arc of the cycle between them,
obtaining

h = Mh, h = M̄h.

Therefore M = M̄−1, i.e., M is a palindromic sequence

M = Aa1 Ba2 Aa3 ∙ ∙ ∙ Aa3 Ba2 Aa1 .

We note that the sequence must end with A or B if it starts respectively with
A or B. The number of powers of A and of B composing the word M is
2q − 1 and is therefore odd. Applying the same argument to the arc from h to
h, we obtain h = Nh, where N (if M starts with A) is

N = Bb1 Ab2 Bb3 ∙ ∙ ∙ Bb3 Ab2 Bb1 .

As before, the number of powers of A and of B is odd, say 2r − 1.
We thus obtain

h = N Mh,

where T = N M defining the cycle is composed of two sequences that are
palindromic and odd:

[
(a1, . . . , aq, . . . , a1)(b1, . . . , br , . . . , b1)

]
.

By Theorem 3.1, the resulting sequence is the period of the root of the quadratic
equation associated with h, and this period is by consequence even and bipalin-
dromic.

Conversely, given a bipalindromic period, we subdivide it into two palin-
dromic odd sequences (a1, . . . , aq, . . . , a1) and (b1, . . . , br , . . . , b1) of respec-
tive lengths 2q − 1 and 2r − 1 and build the operators M = Aa1 Ba2 ∙ ∙ ∙ Aa1 and
N = Bb1 Ab2 ∙ ∙ ∙ Bb1 . By Theorem 3.1, the period [a1, . . . , aq, . . . , a1, b1, . . . ,
br , . . . , b1] is the period of the root ξ+(f), where f satisfies

f = N Mf .

Lemma 4.4 implies that the points f and Mf , which are in the cycle, are conju-
gate and that all the points Af, A2f, . . . , Aa1

f, B Aa1f, . . . belonging to that part
of the cycle between f and Mf are the conjugate points of the corresponding
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points A−1 Mf, A−2 Mf, . . . , A−a1 Mf , B−1 A−a1 Mf, . . . belonging to the same
part of the cycle. Observe that if aq is even, then there is a point (the central
point in the sequence from f to Mf) on the plane k = 0 that is therefore self-
conjugate. Similarly, the pairs of points obtained in the other part of the cycle,
from Mf to N Mf = f , are conjugate, and there is possibly a central point self-
conjugate, if br is even. We thus find that the cycle is k-symmetric because it
contains pairs of conjugate points and at most two isolate selfconjugate points.
The entire orbit is therefore k-symmetric. �

Proof of Theorem 3.3.d (see Fig. 3-IV). Let the class we consider be anti-
symmetric. This means that its cycle is invariant under reflection in the center
of H 0. We choose any pair of antipodal points in the cycle and call them h and
h

∗
. Let Ah and B−1h be the successor and predecessor of h. By Lemma 4.4,

the successor and predecessor of h
∗

are Bh
∗

and A−1h
∗
, and

(Ah)
∗

= Bh
∗
, B−1h∗ = A−1h

∗
. (11)

If we consider the successive points of the cycle following h and Ah, we must
reach the point h

∗
. To each point f = T h after h, there corresponds a symmetric

point f = Ť h in the antipodal part of the cycle from h to h, where Ť is obtained
from T by changing each A to B and each B to A. Hence, we finally write

h
∗

= Mh, h = M̌h
∗
.

Eq. (11) implies that the last operator in M must be the same as the initial
operator (in this case A). We thus obtain

h = M̌ Mh,

where the word M is composed by an odd number q of sub-words, i.e., the
alternating powers of A and B. The operator defining the cycle is therefore

M̌ M = Ba1 Aa2 ∙ ∙ ∙ Baq Aa1 Ba2 ∙ ∙ ∙ Aaq .

Hence, the roots ξ±(h) have odd periods
[
a1, a2, . . . , aq

]
,

[
aq, aq−1, . . . , a1

]
.

The lack of any symmetry among the points belonging to the half of the cycle
between h and h

∗
implies that the period [a1, a2, . . . , aq] is non palindromic.

Conversely, suppose that for some form g, ξ+(g) has odd non palindromic
period [a1, a2, . . . , aq]. By Theorem 3.1, there is a form h ∈ H 0 in the same
class of g satisfying T h = h, where T = M̌ M , and

M = Aaq Baq−1 ∙ ∙ ∙ Ba2 Aa1, M̌ = Baq Aaq−1 ∙ ∙ ∙ Aa2 Ba1 .
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We define f := Mh. From h = M̌ Mh we obtain

f = M M̌ Mh = M M̌f,

and, using Eq. 11,
h∗ = M M̌h

∗
.

Therefore h
∗

= f , that is, since f = Mh, the form h∗ is in the same class
of h and the orbit of h possesses the antipodal symmetry. The orbit cannot
be supersymmetric because in this case the period [a1, a2, . . . , aq] should be
palindromic, according to Theorem 3.3.b. Hence the orbit is antisymmetric. �

Proof of Theorem 3.3.e (see Fig. 3-V). The asymmetric case is the simplest.
The number p of alternating powers of A and B, factors of the operator T ∈
T+ satisfying T h = h, where h is a turning point of the cycle, is necessarily
even. Since there is no symmetry relating the points of the cycle of h, the
periods of the roots ξ±(h) are non palindromic and contain an even number p of
elements. On the other hand, if the continued fractions of ξ±(g) have even non
palindromic period, by Theorem 3.1 there is a form h ∈ H 0 in the same class of
g satisfying T h = h, where T is made of alternating powers of A and B, whose
exponents are the elements of the periods of the continued fractions of ξ±(g).
The lack of symmetry in these periods implies the asymmetricity of the cycle
and hence of the entire corresponding class of forms. �

Proof of Corollary 3.4. By Theorem 3.2, the sequence s uniquely defines a
primitive class iff this class is invariant under the antipodal symmetry. Such a
class is either supersymmetric or antisymmetric. By Theorem 3.3, these cases
are the only cases where the periods are odd. �

Proof of Corollary 3.6. Suppose that the cycle in H 0 has the n-cyclic sym-
metry, i.e., that there exists an operator M of T+ and a point h ∈ H 0 such
that h = Mnh. By the results of Part I and Theorem 3.1, all points hi of the
cycle satisfy M̃n

i hi = hi for some M̃n
i obtained from Mn by a cyclic permu-

tation of its factors. Among them, there is a turning point f such that ξ+(f) is
immediately periodic,

ξ+(f) =
[
[(a1, . . . , ap)1, (a1 . . . , ap)2, . . . , (a1, . . . , ap)n]

]
,

where M̃n = (Bap Aap−1 ∙ ∙ ∙ Ba2 Aa1)n with even p. But ξ+(f) satisfies

μ
(
ξ+(f)

)
= ξ+(f),
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where μ is obtained from Bap Aap−1 ∙ ∙ ∙ Ba2 Aa1 by translating A into α and B
into β. By Lemma 4.1, f also satisfies

f = Bap Aap−1 ∙ ∙ ∙ Ba2 Aa1f,

and therefore belongs to a cycle of p elements. Since a point of the cycle cannot
be visited twice, no other points can belong to the same cycle, and the cycle has
not the n-cyclic symmetry. �

Proof of Theorem 3.7. By Corollary 4.12 of Part I, the number of points of a
class C(m, n, k) inside every domain of G A and of G Ā is equal to the number
tB , which is the total number of times that B appears as factor in the operator
T ∈ T+ that defines the cycle in H 0. Proving Theorem 3.1, we have seen
that the elements of 5 = [a1, a2, . . . , ap] are the exponents of the alternating
powers A and B forming T . It follows that tB is equal to either todd or teven,
depending which generator among A and B have the powers a j with odd j .

If the period 0 is even palindromic, then P is even and ai = aP+1−i . More-
over, (P + 1 − i) is odd if i is even, and vice versa. Hence, the values todd and
teven, given by eq. (3), coincide and are equal to t/2 because their sum is equal
to t .

If the period is even nonpalindromic, then p = P , and the values todd and
teven may not coincide.

If the period 0 is odd, then P is odd. In 5, by definition, ai+P = ai for
all i = 1, . . . , P , so that i and (i + P) have opposite parity, for every i .
Also in this case, todd = teven. �

4.3 Classes representing 1

Proof of Corollary 3.5. We prove this corollary by showing that the class
of forms representing 1 is either k-symmetric or supersymmetric4. The state-
ments follow from Theorems 3.3.c and 3.3.b. Indeed, in such a class, there is a
representive f with the coefficients (1, n, k), i.e., a form

f = x2 + kyx + ny2.

4Alternative proof: The class of the quadratic form C(1, n, k) is the sole class representing 1
among the classes with the discriminant k2 − 4n. This class is the identity of the group of classes.
Because the inversion in the class group corresponds to the conjugation, the identity class is self-
conjugate and is hence invariant under reflection in the axis k = 0. The sole classes having this
symmetry are the supersymmetric classes (with an odd palindromic period) and the k-symmetric
classes (with an even bipalindromic period).
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Let T =
(

1
0

−k
1

)
∈ SL(2,Z). If v = (x, y), then g(v) = f (T v) = x2 − kxy +

ny2. We observe that g = (1, n, −k) = f and hence f ∈ C(1, n, k). Therefore,
the class C(1, n, k) is either k-symmetric or supersymmetric. �

4.4 Classes representing 0

The classes of forms representing 0 have a discriminant equal to a square num-
ber (see §4.5 of Part I). The roots of the corresponding quadratic equations are
rational and therefore have a finite continued fraction.

Proof of Theorem 3.8. The rational number k/m is equal to ξ+(h), h =
(m, 0, −k). The quadratic form h for which ξ+(h) > 0 and ξ−(h) = 0 belongs
to the set FĀ (see Sec. 4.5 of Part I). By Theorem 4.13 of Part I, h is one of the
k forms with discriminant 1 = k2 and is the sole form of its class in FA.

The classes C(m, 0, k) and C(m, 0, −k) are conjugate, and have therefore
the same number of points in each domain.

The form f = Ah is in the interior of H 0 and satisfies A−1f ∈ FĀ. By
Theorem 4.17 of Part I, it is the starting point of the chain containing all the t
points in H 0 of its class. The final point of that chain is the form g satisfying
g = T f for some operator T ∈ T+, the product of t−1 generators.

By hypothesis, [a1, a2, . . . , aN ] is the even continued fraction of ξ+(h). Using
Lemmas 4.1 and 4.2, we obtain ξ+(f) = [a1 − 1, a2, . . . , aN ] and ξ+(g) = [1].

We define τ by the equation ξ+(g) = τ(ξ+(f)). Since N is even,

τ = βaN −1 ◦ αaN−1 ∙ ∙ ∙ βa2 ◦ αa1−1.

Hence, the operator T sending f to g is equal to

T = BaN −1 AaN−1 ∙ ∙ ∙ Ba2 Aa1−1.

According to Corollary 4.18 of Part I, the number of points of C(m, n, k) in
the interior of each domain in G A and in G Ā is equal to the total number (tB(T ))
of times that B appears as factor in T and is therefore equal to t̂even given by
eq. (4), and the number of points in the interior of each domain in G B and in G B̄
is equal to the total number (tA(T )) of times that A appears as factor in T and is
therefore equal to t̂odd.

When the class is supersymmetric or (m+n)-symmetric, it is symmetric with
respect to the horizontal plane (m + n) = 0. The number of points in the
interior of the domains in G A and G Ā coincides with that in the interior of the
domains in G B and G B̄ . Since t̂odd + t̂even = t̂ − 1, we have

t̂odd = t̂even = (t̂ − 1)/2. (12)
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The number of points in the interior of H 0 is hence odd when tA(T ) = tB(T ).
The theorem is proved. �

Remark. The case of f = (0, 0, k) is not concerned by the above theorem,
where m > 0. In this case the orbit is supersymmetric by Lemma 4.15 of Part I,
and t = tA = tB = 0.

Proof of Theorem 3.9. For m = 1, . . . , k − 1, the rational number k/m
is the nonzero root of the equation mξ 2 − kξ =, i.e., ξ+(h) = k/m, and
h = (m, 0, −k) is a representative of the class C(m, 0, −k). Observe that the
form (m, 0, k) is the conjugate of h, and its class has the same type of symmetry
as the class of h.

Item i: Lemma 4.15 of Part I states that C(0, 0, k) is supersymmetric. If
m = k/2, let h = (m, 0, −2m). The form f := Ah = (m, −m, 0) is then the
central point of H 0, satisfying m + n = 0 and k = 0. By Lemma 4.4, Bf = h∗,
Af = h, and B−1f = h

∗
, therefore they belong to the boundary of H 0, as h.

Hence, f is the only point of the orbit in the interior of H 0, and the orbit is
supersymmetric. The fact that if m 6= 0 then m = k/2 if the orbit C(m, 0, k)

is supersymmetric is proved by the following reasoning. The initial point i of
the chain in H 0 is reached by two arrows from A−1i and B−1i, and the final
point f is joined by two arrows to Af and Bf . Since the orbit is supersymmetric,
the arrows from A−1i to i and the arrow from B−1i to i must be symmetric
with respect to the center, as well as the arrows from f to Af and from f to Bf .
Therefore, the only possibility is that both the initial and the final point coincide
with the central point of H 0.

Item ii: Let h = (m, 0, −k), m > 0, with m 6= k/2, and let m/k =
[a1, . . . , aN ] with even N . Let C(m, 0, −k) be (m+n)-symmetric. By the same
arguments proving Theorem 3.8, we obtain

βaN ◦ αaN−1 ∙ ∙ ∙ βa2 ◦ αa1

(m

k

)
= 0,

while by the same arguments proving Theorem 3.3.a,

BaN AaN−1 ∙ ∙ ∙ Ba2 Aa1h = h∗. (13)

The final point g of the chain staring at f = Ah must be sent by B−1 to h∗ because
the orbit is (m+n)-symmetric. Similarly, the adjoint of the successor of f , say
Af , is the predecessor of g, B−1g, and so on. In this way we obtain that the
sequence of powers of A and B in (13) is palindromic. As in the proof of
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Theorem 3.3.a, we conclude that every (m+n)-symmetric chain contains exactly
one self-adjoint point in H 0, satisfying (m + n) = 0. On the other hand, if the
even continued fraction of (m/k) is palindromic, then using Lemma 4.2, we
reach a point on the boundary of H 0, and by the symmetry of the corresponding
operator in T+, we conclude that this point is h∗ and the orbit is hence at least
(m+n)-symmetric. In fact, such orbit could be supersymmetric, but this is
excluded by item i.

Item iii: Let h = (m, 0, −k), m > 0, with m 6= k/2, and let m/k =
[a1, . . . , aN ] with odd N . Let C(m, 0, −k) be k-symmetric. By the same argu-
ments proving Theorem 3.8, we obtain

αaN ◦ βaN−1 ∙ ∙ ∙ βa2 ◦ αa1

(m

k

)
= 0,

while by the same arguments proving Theorem 3.3.b,

AaN BaN−1 ∙ ∙ ∙ Ba2 Aa1h = h. (14)

Indeed, the final point g of the chain starting at f = Ah must be sent by A
to h because the orbit is k-symmetric. Each point of the chain, obtained as
T h for some T ∈ T+, has its conjugate in the chain, and the arrow, A or B,
between two consecutive points g and j, is sent by the conjugation to the arrow,
A−1 or B−1 respectively, between the consecutive points j̄ and ḡ according to
Lemma 4.4. In this way we obtain that the sequence of powers of A and B
in (14) palindromic. On the other hand, if the odd continued fraction m/k is
palindromic, then using Lemma 4.2, we reach a point on the boundary of H 0,
and by the symmetry of the corresponding operator in T+, we conclude that
this point is h and the class has hence at least the k-symmetry. In fact, it is
k-symmetric, since item i excludes the possibility of being supersymmetric.

Item iv: The remaining possibility is that the chain and also the orbit C(m, 0, k)

are asymmetric. This occurs iff neither the odd nor the even continued fraction
of k/m are palindromic.

To conclude the proof, we observe that for an antisymmetric orbit we have
tA = tB because the points in G A and in G B of an antisymmetric class are related
by the antipodal symmetry, as well as the points in G Ā and G B̄ . By Theorem 3.8,
the number of points in H 0 must therefore be odd. An antisymmetric chain in
H 0 containing an odd number of points must contain the center of H 0, but the
orbit would then be supersymmetric by item i. Therefore the class C(m, 0, k) is
never antisymmetric. �
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5 Reduction theory

We present here a corollary of Theorem 3.1 that provides a reduction procedure
allowing to transform an indefinite form f = mx2 + ny2 + kxy with mn ≥ 0
into a form m ′x2 + n′y2 + k ′xy of the same class with m ′n′ ≤ 0.

Moreover, in this section, we show how such reduction procedure is related to
the “classical reduction theory” [5], [6], [7].

Corollary 5.1. Let f = (m, n, k) with mn > 0 and 1 not a square number.
Let [α0, α1, . . . , αN , [a1, . . . , ap]] be the continued fraction of the root ξ+(f).
Then the form f ′ in the same class as f:

f ′ := (m ′, n′, k ′) = T (f)

satisfies m ′n′ < 0, where

T = CαN ∙ ∙ ∙ Aα2 Bα1 Aα0 (15)

with C = A if N is even and C = B if N is odd.
If the discriminant 1 of f = (m, n, k) with mn > 0 is a square number, and

[α0, α1, . . . , αN ] is the continued fraction of the rational root ξ+(f), then the
form f ′ = T f , with T defined by (15), satisfies m ′n′ = 0.

Proof. The expression for T follows from Lemma 4.2. Observe that α0 may
be zero. Moreover, if ξ+(f) < 0, then the elements of the continued fraction are
all negative. We obtain

ξ+(T f) =
[
[a1, . . . , aP ]

]

if N is even, otherwise

ξ+(T f) =
[
0, [a1, . . . , aP ]

]
.

Since ξ+(T f) is immediately periodic, we conclude that T f ∈ H 0 or T f ∈ H 0
R

and hence that the form T f satisfies m ′n′ < 0. In the case when ξ+(f) is rational,
then ξ+(T f) = 0, and the form T f satisfies m ′n′ = 0, i.e., belong to the boundary
of H 0 or H 0

R . Observe that the condition ξ+(f) > 0 means that f is in either G Ā
or G B̄ (where m > 0 and n > 0), see Fig. 1. The operator T indeed belongs to
T+, and its sequence of powers of A and B can be read as a path from f toward
H 0 (or its boundary, in the rational case) entirely in G Ā or in G B̄ . This path is
unique by Theorem 4.2 in Part I. Similarly, if ξ+(f) < 0, f is in either either
G A or G B (where m < 0 and n < 0). The operator T belongs to T−, and its
sequence of powers of A−1 and B−1 can be read as a path from f toward H 0 (or
its boundary, in the rational case) entirely in G A or in G B . �
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5.1 Classical reduction theory in the Poicaré tiling of the de Sitter world

Definition. The minus continued fraction of the real number ξ > 0 is the
(finite or infinite) sequence of integers (b0, b1, b2, . . . ), b0 ≥ 1, bi ≥ 2 ∀i > 0,
such that:

ξ = b0 −
1

b1 − 1
b2−

1
∙∙∙

. (16)

We call for short minued fraction a minus continued fraction.

Example. The minued fraction of 1/4 (whose continued fraction is [0, 4]) is
(1, 2, 2, 2):

1

4
= 1 −

1

2 − 1
2− 1

2

.

Any irrational number has an infinite minued fraction, and a quadratic surd
has a periodic minued fraction, whose period is defined exactly as for the pe-
riodic continued fractions (see Definition 3). A periodic minued fraction with
period of length L is denoted by

(
b0, b1, . . . , bN−1, (bN , bN+1, . . . , bN+L−1)

)
. (17)

The minued fraction x if said immediately periodic if x = ((b0, b1, b2, . . . ,
bL−1)).

The following theorems represent a synthesis of the classical reduction the-
ory. The proofs that we give here show a geometric description of this theory in
the Poincaré tiling of the de Sitter world.

Definition. An indefinite form h = (m, n, k) such that C(m, n, k) does not
represent zero is said to be reduced iff it satisfies m > 0, n > 0, k < 0, and
m + n < |k|.

Theorem 5.2. Let h = (m, n, k) be a reduced form. Then the minued fraction
of ξ+(h) is immediately periodic, and the number of elements of its period is
equal to the number of reduced forms of the class C(m, n, k). The first roots ξ+

associated with the other reduced forms are given by the cyclic permutations of
the elements of ξ+(f).

Theorem 5.3. Let f = (m, n, k) satisfy m > 0, n > 0 and k < 0. Then the
minued fraction of ξ+(f) is periodic,

ξ+(f) =
(
b0, b1, . . . , bM , (c1, c2, . . . , cL)

)
,
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and the form h = T f , where

T = R AbM ∙ ∙ ∙ R Ab2 R Ab1 R Ab0,

is reduced.

The proof of Theorem 5.2 follows from the results of this work and from the
following lemma.

Lemma 5.4. Let f = (m, n, k) and ξ+(f) = (a, b, c, d, . . . ) > 0. Then
ξ+(R Aaf) = (b, c, d, . . . ). I.e., canceling the first element in the minued frac-
tion of ξ+(f) corresponds to acting on f by the operator A iterated a number of
times equal to that element and then acting by R.

Proof. By Lemma 4.1,

ξ+(Aaf) = αa(ξ+(f)) = −
1

b − 1
c− 1

d− 1
∙∙∙

and

ξ+(R Aaf) = σ ◦ αa(ξ+(f)) = b −
1

c − 1
d− 1

∙∙∙

.

�

A reduced form h of a class C(m, n, k) not representing zero belongs to HĀ.
It is represented in 4 by a point with ξ+ > 1 and 0 < ξ− < 1.

The point f := Ah is in H 0 (see Fig. 4). We now consider all the successive
points A2h, A3h, etc., that belong to H 0. For some power, say Ac1 with c1 ≥ 3,
the point Ac1h exits from H 0 and is necessarily in HA. At this point, we apply
the operator R, going back to HĀ. The point R Ac1h coincides with h if and
only if the period of the continued fraction of ξ+(f) consists of two elements.
Indeed, if R Ac1h = h, then the point f = Ah in H 0 satisfies AR Ac1−1f = f .
Using the relation R = A−1 B A−1, we obtain

B Ac1−2f = f,

hence concluding that the cycle in H 0 contains only two turning points and that,
by Theorem 3.7, the orbit has only one element in HĀ.

If R Ac1h differs from h, then we repeat the above procedure until getting

R AcL R AcL−1 ∙ ∙ ∙ R Ac1h = h.
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For the same reason, this occurs when all points in HĀ, as well as in H 0, are
visited (see Figure 4). By Lemma 5.4, using the same arguments as in the proof
of Theorem 3.1, we find that the minued fraction of ξ+(h) is periodic, namely,

ξ+(h) =
(
(c1, c2, . . . , cL)

)
.

H

H
R
0

H
R

0

0

HA

H
B

HB

A

R
HA

Figure 4: Relation between a cycle in H 0 with geometric period [1, 1, 3, 1, 1, 3]
and a cycle (dotted line) in H A with period (3, 5, 3, 2, 2).

We have thus proved that the minued fraction of the first root of an equation
corresponding to a form in HĀ is immediately periodic and the length L of its
period is equal to the number of points of the class in HĀ, i.e., the number of
reduced forms. �

Proof of Theorem 5.3. Observe that a form f satisfying the conditions of the
theorem lies in G Ā. By Theorem 4.2 of Part I, there is a form h in HĀ such that
f = T −1h, where T ∈ T+. Hence we write f = T h, where T is a word in the
operators A and B. We rewrite T as a product of the operators A and R by the
following procedure: we replace each operator B in T with AA−1 B A−1 A and
then each A−1 B A−1 with R. In the obtained expression of T every factor Bi has
been replaced with (AR A)(AR A) ∙ ∙ ∙ (AR A)︸ ︷︷ ︸

i times

. Observe that the expression of T

in terms of R and A is unique. By Theorem 5.2, the minued fraction of ξ+(h) is
immediately periodic. Using Lemma 5.4, we conclude that

T = R AbM R AbM−1 ∙ ∙ ∙ R Ab1 R Ab0

if and only if ξ+(f) = (b0, b1, . . . , bM , (c1, c2, . . . , cL)). �
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Corollary 5.5. If 5 = [a1, a2, . . . , ap] is the geometric period of the contin-
ued fraction of ξ+(h), h ∈ HĀ, then the period of the minued fraction of ξ+(h)

is obtained as follows:

1. the element a2i+1 of the period is replaced with a2i+1 + 2 and

2. the element a2i of the period is replaced with with a sequence 2, 2, . . . , 2
formed by the number 2 repeated a2i−1 times.

Remark. Let ξ+(f) be the root associated to a form f non representing zero.
Then the length of the period of the minued fractions of ξ+(f) is equal to the
number of reduced forms of the class of f in HA, whereas the number of forms
in H 0 is equal to the sum of all elements of the geometric period of the contin-
ued fraction of ξ+(f).

Example. The supersymmetric class represented in Fig. 4 is that of the exam-
ple of Theorem 3.3.b. Let f = (2, −1, −3). We have ξ+(f) = 3/4 +

√
17/4 =

[[1, 1, 3]]. Hence, 5 = [1, 1, 3, 1, 1, 3]. There are ten points inside H 0.
The point h = A−1f = (2, 4, −7) is in HĀ and ξ+(h) = 7/4 +

√
17/4 has

the minued fraction
ξ+(h) = ((3, 5, 3, 2, 2)).

There are indeed five points in HĀ.
We are now able to prove Theorem 3.10.

Proof of Theorem 3.10. By Corollary 5.5, with a given period (c1, c2, . . . , cL)

of a minued fraction, we associate the period [a1, a2, . . . , ap] of the corre-
sponding continued fraction, replacing each element ci > 2 with the element
a j = ci − 2 and replacing each sequence of r (r ≥ 0) successive elements
ci+1, ci+2, . . . , ci+r all equal to 2 with the element a j+1 = r +1 (hence, a j+1 = 1
if r = 0, i.e., ci+1 > 2). We obtain a period of p elements with even p,
which is the geometric period 5 of the continued fraction. By Theorem 3.7,
the sum of the odd-indexed elements of the continued fraction is equal to the
sum of even-indexed elements is also equal to the number of points of the orbit
in HA and in HĀ if the class has the mentioned symmetries. By Theorem 5.2,
the number of points in HĀ of the orbit equals the number L of elements of the
period of the considered minued fraction. Since both the sums of the odd-indexed
and of the even-indexed elements of the period 5 are obtained by subtracting 2
to the elements ci of the minued fraction, we obtain the equation

L∑

i=1

(ci − 2) = L ,

and hence the statement of the theorem. �
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Remark. For a nonsymmetric class, the minued fractions corresponding to
ξ+ and ξ−, which have inverse geometric periods, are different.

Acknowledgements. I am grateful to Vladlen Timorin for his interest and for
reference [7] about classical reduction theory, as well as to the referee for his
attentive reading of the paper and a huge quantity of remarks to improve the
presentation of the results.

Appendix:
Tables of classes of indefinite forms with a small discriminant

The following tables contain a representative of every class with 1 ≤ 100;
moreover, if 1 is not a square integer, we give the period 0, its length P , the
number t↑ of points inside each domain in G A and G Ā, the number t↓ of points
inside each domain in G B and G B̄ , and the type of symmetry. A star indicates that
the class is nonprimitive, i.e., is obtained from a primitive class by multiplying
by an integer greater than 1.

If 1 is equal to a square number, then instead of 0 and P , we give the continued
fraction of k/m, its length N , the number t of points in the interior of H 0 and of
H 0

R , the number t↑ of points in the interior of each domain in G A and G Ā, the
number t↓ of points in the interior of each domain in G B and G B̄ , and the type
of symmetry.

Remark. The classes of forms not representing zero are either supersymmet-
ric or k-symmetric if 1 ≤ 100.

Indeed, the first class (i.e., with a minimal discriminant) not representing
zero and having the (m+n)-symmetry has the period [1, 1, 3, 3, 1, 1] and the
discriminant 136. The first antisymmetric class has the period [1, 2, 3] and the
discriminant 148, and the first asymmetric class has the period [1, 1, 1, 2, 3, 5]
and the discriminant 316.

The tables show that there are classes of forms representing zero with 1 ≤ 100
that have all the possible types of symmetry.

Moreover, in the following figure, we plot the fractions of the total number of
classes with a given discriminant versus the discriminant < 104 corresponding
to the different types of symmetries (indicated by different symbols).

Updating Reference. A Reference more precise than [2] in Part I is

V.I.Arnold, G. Capitanio, R. Uribe-Vargas, Geometry, Springer, pages 255–290,
to appear.
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Figure 5: Rhombus, k-symmetric; circle, supersymmetric; cross, (m + n)-sym-
metric; window, asymmetric; square, antisymmetric.
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1 m n k 0 P t↑ − t↓ symm. n.p.
5 1 -1 1 [1] 1 1-1 super
8 1 -1 2 [2] 1 2-2 super
12 2 -1 2 [2, 1] 2 2-1 k

1 -2 2 [1, 2] 2 1-2 k
13 1 -1 3 [3] 1 3-3 super
17 2 -2 1 [1, 3, 1] 3 5-5 super
20 1 -1 4 [4] 1 4-4 super

2 -2 2 [1] 1 1-1 super ?

21 3 -1 3 [3, 1] 2 3-1 k
1 -3 3 [1, 3] 2 1-3 k

24 2 -1 4 [4, 2] 2 4-2 k
1 -2 4 [2, 4] 2 2-4 k

28 3 -2 2 [1, 1, 4, 1] 4 5-2 k
2 -3 2 [1, 4, 1, 1] 4 2-5 k

29 1 -1 5 [5] 1 5-5 super
32 2 -2 4 [2] 1 2-2 super ?

1 -4 4 [1,4] 2 1-4 k
4 -1 4 [4,1] 1 4-1 k

33 2 -1 5 [5, 2, 1, 2] 4 6-4 k
1 -2 5 [2, 1, 2, 5] 4 4-6 k

37 3 -3 1 [1, 5, 1] 3 7-7 super
40 3 -3 2 [1, 2, 1] 3 4-4 super

1 -1 6 [6] 1 6-6 super
41 2 -2 5 [2, 1, 5, 1, 2] 5 11-11 super
44 2 -1 6 [6, 3] 2 6-3 k

1 -2 6 [3, 6] 2 3-6 k
45 3 -3 3 [1] 1 1-1 super ?

1 -5 5 [1, 5] 2 1-5 k
5 -1 5 [5, 1] 2 5-1 k

48 1 -3 6 [2, 6] 2 2-6 k
3 -1 6 [6, 2] 2 6-2 k
4 -2 4 [2, 1] 2 1-2 k ?

2 -4 4 [1, 2] 2 1-2 k ?

52 3 -3 4 [1, 1, 6, 1, 1] 5 10-10 super
2 -2 6 [3] 1 3-3 super ?

53 1 -1 7 [7] 1 7-7 super
56 5 -2 4 [2, 1, 6, 1] 4 8-2 k

2 -5 4 [1, 6, 1, 2] 4 2-8 k
57 4 -3 3 [1, 1, 3, 7, 3, 1] 6 7-9 k

3 -4 3 [1, 3, 7, 3, 1, 1] 6 9-7 k

Tables of classes not representing zero with 1 < 100.
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1 m n k 0 P t↑ − t↓ symm. n.p.
60 2 -3 6 [2, 3] 2 2-3 k

3 -2 6 [3, 2] 2 3-2 k
1 -6 6 [1, 6] 2 1-6 k
6 -1 6 [6, 1] 2 6-1 k

61 3 -3 5 [2, 7, 2] 3 11-11 super
65 4 -4 1 [1, 7, 1] 3 9-9 super

2 -2 7 [3, 1, 3] 3 7-7 super
68 1 -1 8 [8] 1 8-8 super

4 -4 2 [1, 3, 1] 3 5-5 super ?

69 5 -3 3 [1, 1, 7, 1] 4 8-2 k
3 -5 3 [1, 7, 1, 1] 4 2-8 k

72 3 -3 6 [2] 1 2-2 super ?

1 -2 8 [4, 8] 2 8-4 k
2 -1 8 [8, 4] 2 8-4 k

73 4 -4 3 [1, 2, 3, 1, 7, 1, 3, 2, 1] 9 21-21 super
76 3 -1 8 [8, 2, 1, 3, 1, 2] 6 10-7 k

1 -3 8 [2, 1, 3, 1, 2, 8] 6 7-10 k
77 1 -7 7 [1, 7] 2 1-7 k

7 -1 7 [7, 1] 2 7-1 k
80 4 -4 4 [1] 1 1-1 super ?

2 -2 8 [4] 1 4-4 super ?

1 -4 8 [2, 8] 2 2-8 k
4 -1 8 [8, 2] 2 8-2 k

84 6 -2 6 [3, 1] 2 3-1 k ?

2 -6 6 [1, 3] 2 1-3 k ?

4 -3 6 [2, 1, 1, 8, 1, 1] 6 4-10 k
3 -4 6 [1, 1, 8, 1, 1, 2] 6 10-4 k

85 3 -3 7 [2, 1, 2] 3 5-5 super
1 -1 9 [9] 1 9-9 super

88 2 -3 8 [2, 1, 8, 1, 2, 4] 6 12-6 k
4 -2 8 [4, 2, 1, 8, 1, 2] 6 6-12 k

89 4 -4 5 [1, 1, 4, 9, 4, 1, 1] 7 21-21 super
92 1 -7 8 [1, 3, 1, 8] 4 2-11 k

7 -1 8 [8, 1, 3, 1] 4 11-2 k
93 1 -3 9 [3, 9] 2 3-9 k

3 -1 9 [9, 3] 2 9-3 k
96 5 -3 6 [2, 1, 1, 1] 4 3-2 k

3 -5 6 [1, 1, 1, 2] 4 2-3 k
2 -4 8 [2, 4] 2 2-4 k ?

4 -2 8 [4, 2] 2 4-2 k ?

1 -8 8 [1, 8] 2 1-8 k
8 -1 8 [8, 1] 2 8-1 k

97 2 -2 9 [4, 1, 2, 2, 9, 2, 2, 1, 4] 9 27-27 super

Tables of classes not representing zero with 1 < 100 (continuation).
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1 m n k k/m N t t↑ − t↓ symm. n.p.
1 0 0 1 0 0 0 0-0 super
4 0 0 2 0 0 0 0-0 super ?

1 0 2 [2] 1 1 0-0 super
9 0 0 3 0 0 0 0-0 super ?

1 0 3 [3] 1 2 1-0 k
2 0 3 [1, 1, 1] 3 2 0-1 k

16 0 0 4 0 0 0 0-0 super ?

1 0 4 [4] 1 3 2-0 k
2 0 4 [2] 1 1 0-0 super ?

3 0 4 [1, 2, 1] 3 3 0-2 k
25 0 0 5 0 0 0 0-0 super ?

1 0 5 [5] 1 4 3-0 k
2 0 5 [2, 2] 2 3 1-1 m+n
3 0 5 [1, 1, 1, 1] 4 3 1-1 m+n
4 0 5 [1, 3, 1] 3 4 0-3 k

36 0 0 6 0 0 0 0-0 super ?

1 0 6 [6] 1 5 4-0 k
2 0 6 [3] 1 2 1-0 k ?

3 0 6 [2] 1 1 0-0 super ?

4 0 6 [1, 1, 1] 3 2 0-1 k ?

5 0 6 [1, 4, 1] 3 5 0-4 k
49 0 0 7 0 0 0 0-0 super ?

1 0 7 [7] 1 6 5-0 k
2 0 7 [3, 1, 1] 3 4 2-1 asym
3 0 7 [2, 2, 1] 3 4 1-2 asym
4 0 7 [1, 1, 2, 1] 4 4 2-1 asym
5 0 7 [1, 2, 1, 1] 4 4 1-2 asym
6 0 7 [1, 5, 1] 3 6 0-5 k

64 0 0 8 0 0 0 0-0 super ?

1 0 8 [8] 1 7 6-0 k
2 0 8 [4] 1 3 2-0 k ?

3 0 8 [2, 1, 2] 3 4 2-1 k
4 0 8 [2] 1 1 0-0 super ?

5 0 8 [1, 1, 1, 1, 1] 5 4 1-2 k
6 0 8 [1, 2, 1] 3 3 0-2 k ?

7 0 8 [1, 6, 1] 3 7 0-6 k

Tables of classes not representing zero with 1 ≤ 100.
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1 m n k k/m N t t↑ − t↓ symm. n.p.
81 0 0 9 0 0 0 0-0 super ?

1 0 9 [9] 1 8 7-0 k
2 0 9 [4, 1, 1] 3 5 3-1 asym
3 0 9 [3] 1 2 1-0 k ?

4 0 9 [2, 3, 1] 3 5 1-3 asym
5 0 9 [1, 1, 3, 1] 4 5 3-1 asym
6 0 9 [1, 1, 1] 3 2 0-1 k ?

7 0 9 [1, 3, 1, 1] 4 5 1-3 asym
8 0 9 [1, 7, 1] 3 8 0-7 k

100 0 0 10 0 0 0 0-0 super ?

1 0 10 [10] 1 9 8-0 k
2 0 10 [5] 1 4 3-0 k ?

3 0 10 [3, 3] 2 5 2-2 m+n
4 0 10 [2, 2] 2 3 1-1 m+n ?

5 0 10 [2] 1 1 0-0 super ?

6 0 10 [1, 1, 1, 1] 4 3 1-1 m+n ?

7 0 10 [1, 2, 2, 1] 4 5 2-2 m+n
8 0 10 [1, 3, 1] 3 4 0-3 k ?

9 0 10 [1, 8, 1] 3 9 0-8 k

Tables of classes not representing zero with 1 ≤ 100 (continuation).
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