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Codimension one generic homoclinic
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Abstract. We study C1-generic diffeomorphisms with a homoclinic class with non
empty interior and in particular those admitting a codimension one dominated splitting.
We prove that if in the finest dominated splitting the extreme subbundles are one dimen-
sional then the diffeomorphism is partially hyperbolic and from this we deduce that the
diffeomorphism is transitive.
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1 Introduction

It is a main problem in generic dynamics to understand the structure of homo-
clinic classes, this has became most important after some results in [4] which
raised the interest in the study of chain recurrence classes and in particular
homoclinic classes which are, generically, the chain recurrence classes con-
taining periodic points. This results, as most of the results (including the ones
here presented) are in the C1 category, very little is known about Cr generic
diffeomorphisms with r > 1 (see [15]).

A lot is known in the case of an isolated homoclinic class H(p, f ) of a hyper-
bolic periodic point p (i.e., it is maximal invariant in a neighborhood) of a
generic diffeomorphism f , see for instance [5], chapter 10 (we remark here that
the genericity of f implies that the continuation H(pg, g) is also isolated for
g in a neighborhood of f ). The key point of knowing that the class is isolated
is that, after perturbation, orbits that remains in a neighborhood must belong to
the continuation of the homoclinic class H(pg, g). However, if one does not
know a priori that the homoclinic class is isolated (in other words, the class
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might be wild, i.e., non isolated) only very sparse results have been obtained
(see for example [2] where they prove that generic homoclinic classes are index
complete). The main difficulty is to overcome the fact that after perturbations
one cannot ensure that the perturbed points remain in the class.

For example, it is not known whether the non-wandering set of a C1-generic
diffeomorphism may have nonempty interior and not coincide with the whole
manifold. We treat this problem in this paper solving it in some particular cases
and also giving some results which may help to obtain a general solution. We
remark that it is not difficult to construct examples of diffeomorphisms such
that its non-wandering set has non empty interior and doesn’t coincide with the
whole manifold.

1.1 Definitions and statement of results

Let M be a compact connected boundaryless manifold of dimension d and let
Di f f 1(M) be the set of diffeomorphisms of M endowed with the C1 topology.
We shall say that a property (or a diffeomorphism) is generic if and only if there
exists a residual (Gδ-dense) set R of Di f f 1(M) for which for every f ∈ R
satisfies that property.

The main result of this paper concerns the following conjecture of [3], we
shall denote �( f ) to the nonwandering set of f :

Conjecture 1. There is a residual setR ⊂ Di f f 1(M) such that if f ∈ R and
int (�( f )) 6= ∅ then f is transitive.

For a hyperbolic periodic point p ∈ M of some diffeomorphism f we denote
its homoclinic class by H(p, f ), defined as the closure of the transversal inter-
sections between the stable and unstable manifolds of the orbit of p. For generic
diffeomorphisms, if the nonwandering set has nonempty interior, then there is a
homoclinic class with nonempty interior (see [3] or [4]). So, the conjecture is
reduced to the study of homoclinic classes with nonempty interior.

Some progress has been made towards the proof of this conjecture (see [3]
and [1]), in particular, it has been proved in [3] that isolated homoclinic classes
as well as homoclinic classes admitting a strong partially hyperbolic splitting
(we shall define this concept later) verify the conjecture. Also, they proved that
a homoclinic class with non empty interior must admit a dominated splitting
(see Theorem 8 in [3]). In [1] the conjecture was proved for surface diffeo-
morphisms.

In [3] the question about whether within the finest dominated splitting the
extremes subbundles should be volume hyperbolic was posed. We give a pos-
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itive answer when the class admits codimension one dominated splitting. This
gives also new situations where the above conjecture holds and weren’t known.

Let us recall the definition of dominated splitting: a compact set H invari-
ant under a diffeomorphism f admits dominated splitting if the tangent bundle
over H splits into two D f invariant subbundles TH M = E ⊕ F such that there
exist C > 0 and 0 < λ < 1 such that for all x ∈ H :

‖D f n
/E(x)‖‖D f −n

/F( f n(x))‖ ≤ Cλn

we say in this case that F dominates E .
Let us remark that Gourmelon ([9]) proved that there always exists an adapted

metric for which C = 1.
We shall say that a bundle F is uniformly expanding (contracting) if there

exists n0 < 0 (n0 > 0) such that ‖D f n0
/F(x)‖ < 1/2 ∀x ∈ H .

The main theorem of this paper is the following

Theorem 1. Let f be a generic diffeomorphism with a homoclinic class H
with non empty interior and admitting a codimension one dominated splitting
TH M = E ⊕ F where dim(F) = 1. Then, the bundle F is uniformly expanding
for f .

As a consequence of our main theorem we get the following easy corollaries.
Recall that a compact invariant set H is strongly partially hyperbolic if it

admits a three ways dominated splitting TH M = Es ⊕ Ec ⊕ Eu (that is, Es ⊕ Ec

is dominated by Eu and Es is dominated by Ec ⊕ Eu), where Es is non trivial
and uniformly contracting and Eu is non trivial and uniformly expanding.

Corollary 1. Let H be a homoclinic class with non empty interior for a
generic diffeomorphism f such that TH M = E1 ⊕ E2 ⊕ E3 is a dominated
splitting for f and dim(E1) = dim(E3) = 1. Then, H is strongly partially
hyperbolic and H = M .

Proof. The class should be strongly partially hyperbolic because of the previ-
ous theorem (applied to f and to f −1). Corollary 1 of [3] (page 185) implies
that H = M . �

We say that a homoclinic class H is far from tangencies if there is a neighbor-
hood of f such that there are no homoclinic tangencies associated to periodic
points in the continuation of H . The tangencies are of index i if they are asso-
ciated to a periodic point of index i , that is, its stable manifold has dimension
i . We get the following result following the generalization of the results of [18]
in [10] (see also [2]):
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Corollary 2. Let H be a homoclinic class with non empty interior for a generic
diffeomorphism f such that H is far from tangencies of index 1 and n − 1 and
has index 1 and n − 1 periodic points. Then, H = M .

Proof. Since the class is far from tangencies, and the classes for generic
diffeomorphisms either coincide or are disjoint (see [4]) we have that using
[10] the class must admit a dominated splitting with one dimensional extremal
subbundles (see also [2] Corollary 3), thus, by using Corollary 1 we get the
result. �

In fact, the previous corollary can be compared to a corollary of a new re-
sult of Yang ([20]) on Lyapunov stable homoclinic classes far from tangencies.
Yang’s result (Theorem 3 in [20]) implies that a generic homoclinic class with
nonempty interior and far away from (any) tangencies must be strongly partially
hyperbolic or contained in the closure of the set of sinks and sources, and thus
(using the results of [3]) the whole manifold.

Incidentally, we also give a new proof in the two dimensional case:

Corollary 3. Let f be a generic surface diffeomorphism having a homoclinic
class with nonempty interior. Then f is conjugated to a linear Anosov diffeo-
morphism in T2.

Proof. Since the class must admit dominated splitting (Theorem 8 of [3]), this
should be into 2 one dimensional subbundles. So, the class must be hyper-
bolic and thus, since the conjecture holds for hyperbolic homoclinic classes f is
Anosov (the rest follows from classical theory of Anosov diffeomorphisms). �

1.2 Idea of the proof

The idea of the proof is the following.

First we prove that if the homoclinic class has interior, the periodic points in
the class (which are all saddles) should have eigenvalues (in the F direction)
exponentially (with the period) far from 1. Otherwise we manage to obtain a
sink or a source inside the interior of the class and thus contradicting the fact
that the interior of the homoclinic class for generic diffeomorphisms is, roughly
speaking, robust (Theorem 4 of [3]).

Then, using the previous fact and some results of [12] and [16] we man-
age to prove that the center manifolds integrating a one dimensional extreme
subbundle should have nice dynamical properties. For this we also use the con-
necting lemma for pseudo orbits of [4].
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Finally, in the event that the extreme subbundle is not hyperbolic, we manage
to obtain (using dynamical properties and a Lemma of Liao) periodic points
near the class with bad contraction or expansion in those extreme subbundles.
Using Lyapunov stability of the homoclinic class (which is generic, see [3] and
[6]) we ensure that the periodic points we found belong to the class and thus
reach a contradiction.

2 Preliminary results

In this section we shall state some results we are going to use in the proof of
the main theorem. It can be skipped and used as reference when the results
are used.

Some generic properties of diffeomorphisms are contained in the following
Theorem (see [3] and references therein):

Theorem 2. There exists a residual subsetR ofDi f f 1(M) such that if f ∈ R

a1) f is Kupka Smale (that is, all its periodic points are hyperbolic and their
invariant manifolds intersect transversally).

a2) The periodic points of f are dense in the chain recurrent set of f (1).
Moreover, homoclinic classes coincide with those chain recurrent clas-
ses which contain periodic points.

a3) Every homoclinic class with non empty interior of f is Lyapunov stable
for f and f −1 (2). This implies that the stable and unstable set of any
point in the class is contained in the class.

a4) For every periodic point p of f , H(p, f ) = W s(p) ∩ W u(p).

a5) Given a homoclinic class H of a periodic point p, if U is an open set
such that U ⊂ int (H) then there exists U neighborhood of f such that
for every g ∈ U ∩R, U ⊂ H(pg, g) is satisfied (where pg is the contin-
uation of p for g).

a6) Homoclinic classes vary continuously with the Hausdorff distance with
respect to f . This means, that given p ∈ H a periodic point and ε >

1The chain recurrent set is the set of points x satisfying that for every ε > 0 there exist an ε-
pseudo orbit form x to x , that is, there exist points x = x0, x1, . . . xk = x , k > 0 such that
d( f (xi ), xi+1) < ε.

2Lyapunov stability of 3 means that ∀U neighborhood of 3 there is V ⊂ U neighborhood of 3

such that f n(V ) ⊂ U ∀n ≥ 0.
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0, there exists U a neighborhood of f such that for every g ∈ U, the
homoclinic class of the continuation of p lies within less than ε from H
in the Hausdorff distance.

To obtain dynamical properties of the center manifolds we shall use the fol-
lowing results from [12] and [16]. First recall that if TH M = E ⊕ F is a domi-
nated splitting then, Theorem 5.5 of [11] gives us a local f -invariant manifolds
W F

ε tangent to F .
Local f -invariance means that ∀ε > 0 there exists δ > 0 such that

f −1
(
W F

δ (x)
)

⊂ W F
ε

(
f (x)

)
.

Taking f −1 we have an analog for E .

Theorem 3 (Main Theorem of [12]). Let 3 a compact invariant set of a
generic diffeomorphism f admitting a codimension one dominated splitting
T3M = E ⊕ F with dim(F) = 1. Assume that Per( f/3) = 3. Then, ∀x ∈ 3

and ∀ε > 0 there exists δ > 0 such that

f −n
(
W F

δ (x)
)

⊂ W F
ε

(
f −n(x)

)
∀n ≥ 0

In particular, W F
δ (x) ⊂

{
y ∈ M : d( f n(x), f n(y)) ≤ ε

}
.

Remark 2.8 of [7] gives a similar result that is enough in our context.
If there is a dominated splitting for H of the form TH M = E ⊕ F , then, there

exists V , a neighborhood of H such that if a point z satisfies that f n(z) ∈ V
∀n ∈ Z then we can define the splitting for z and it will be dominated (see [5]).
Such a neighborhood will be called adapted.

If I is an interval, we denote by

ω(I ) =
⋃

x∈I

ω(x), and by W ss
ε (I ) =

⋃

x∈I

W ss
ε (x)

its strong stable manifold. Also `(I ) denote its length. We shall state the fol-
lowing result which is an immediate Corollary of Theorem 3.1 of [16] for gen-
eric dynamics.

Theorem 4 ([16]). Let f ∈ Di f f 1(M) a generic diffeomorphism and 3 com-
pact invariant set admitting a codimension one dominated splitting T3M =
E ⊕ F (where dim(F) = 1). Then, there exists δ0 such that if I is an interval
integrating the subbundle F satisfying `( f n(I )) < δ < δ0 ∀n ≥ 0 and that
its orbit remains in an adapted neighborhood V of 3, then, only one of the
following holds:
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1. ω(I ) is contained in the set of periodic points of f restricted to V of 3

one of which is an attractor.

2. I is wandering (that is, W ss
ε ( f n(I )) ∩ W ss

ε ( f m(I )) = ∅ for all n 6= m).
This implies that `( f n(I )) → 0 as |n| → ∞.

Other result we shall use is the following well known Lemma of Franks:

Theorem 5 (Frank’s Lemma [8]). Let f ∈ Di f f 1(M). Given U( f ), a C1

neighborhood of f , then ∃ U0( f ) and ε > 0 with the following property: if
g ∈ U0( f ), θ = {x1, . . . , xm} and

L :
⊕

xi ∈θ

Txi M →
⊕

xi ∈θ

Tg(xi )M such that
∥
∥
∥L − Dg|⊕ Txi M

∥
∥
∥ < ε

are given, then there exists g̃ ∈ U( f ) such that Dg̃xi = L|Txi M . Moreover if R
is a compact set disjoint from θ we can consider g̃ = g in R ∪ θ .

Finally we state the following Lemma of Liao. A proof can be found (with
the same notation) in [19]. We shall state the result in the particular case of
index one dominated splitting with an adapted metric (which always exist be-
cause of [9]), but it holds in a wider context. Recall also that for linear maps Ai

in one dimensional spaces it holds that
∏

i ‖Ai‖ = ‖
∏

i Ai‖.

Lemma 1 (Liao [13]). Let 3 be a compact invariant set of f with dominated
splitting TH M = E ⊕ F such that ‖D f/E(x)‖‖D f −1

/F(x)‖ < γ ∀x ∈ 3 and
dim(F) = 1. Assume that

1. There is a point b ∈ 3 such that ‖D f −n|F(b)‖ ≥ 1 ∀n ≥ 0.

2. There exists γ < γ1 < γ2 < 1 such that given x ∈ 3 satisfying

‖D f −n
/F(x)‖ ≥ γ n

2 ∀n ≥ 0

we have that there is y ∈ ω(x) satisfying

‖D f −n
/F(y)‖ ≤ γ n

1 ∀n ≥ 0.

Then, for any γ2 < γ3 < γ4 < 1 and any neighborhood U of 3 there
exists a periodic point p of f whose orbit lies in U , is of the same index as the
dominated splitting and satisfies ‖D f −n

/F(p)‖ < γ n
4 ∀n ≥ 0 and ‖D f −n

/F(p)‖ ≥ γ n
3

∀n ≥ 0.
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3 Proof of the main theorem

For p ∈ Per( f ), π(p) denotes the period of p.

Lemma 2. Let H be a homoclinic class with interior of a generic diffeo-
morphism f such that TH M = E ⊕ F is a dominated splitting with dim F = 1.
Then, there exists λ < 1 such that for all p ∈ Per( f |H ) the following holds:

‖D f −π(p)

/F(p) ‖ ≤ λπ(p)

Proof. Arguing by contradiction assume that the conclusion does not hold,
that is, for every λ < 1 there exists p ∈ Per( f/H ) such that ‖D f −π(p)

/F(p) ‖ ≥

λπ(p) which is equivalent to ‖D f π(p)

/F(p)‖ ≤ λ−π(p) since F is one dimensional.
When the class is isolated this is enough since one can perturb the orbit in
order to create a sink contradicting the isolation. Here, since the class may
be wild, the creation of the sink represents no contradiction, so we must use
the persistence of the interior given by generic property a5) of Theorem 2 and
create a sink there.

Let U be an open set such that U ⊂ int (H). Since f is generic, property
a5) of Theorem 2 ensure us the existence of a neighborhood U of f such that
for every g in a residual subset of U we have U ⊂ Hg (Hg is the continuation
of H for g, from a5) of Theorem 2 this continuation makes sense since it will
be the only class containing U ).

Frank’s Lemma implies the existence of ε > 0 such that if we fix an arbitrary
finite set of points, we can perturb the diffeomorphism as near as we want of
those points obtaining a new diffeomorphism with arbitrary derivatives (ε-close
to the originals) in those points and such that the diffeomorphism lies inside U.

Let us fix 1 > λ > 1 − ε/2 and let p ∈ Per( f/H ) as before. Since f is
generic, the periodic points of the same index as p are dense in H so, we can
choose q ∈ U ∩ Per( f ) homoclinically related to p.

Let x ∈ W s(p) ∩ W u(q) and y ∈ W s(q) ∩ W u(p), we get that the set 3 =
O(p) ∪ O(q) ∪ O(x) ∪ O(y) hyperbolic.

Consider the following periodic pseudo orbit contained in 3,

{
. . . , p, f (p), . . . , f Nπ(p)−1(p), f −n0(y),

. . . , f n0(y), f −n0(x), . . . , f n0(x), p, . . .
}

which we shall denote as ℘N . Clearly, given β > 0 there exists n0 such that
℘N is a β-pseudo orbit. At the same time, if we choose N large enough we
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obtain a pseudo orbit which stays near p much longer than of q and then inherit
the behavior of the derivative of p rather than that of q.

The shadowing lemma for hyperbolic sets (see [17]) implies that for every
α > 0 there exists β such that every closed β-pseudo orbit is α-shadowed by a
periodic point. So, let us choose α in such a way that the following conditions
are satisfied:

(a) B2α(q) ⊂ U .

(b) If d(z, w) < α and x, y are in an adapted neighborhood of H then,

‖D f/F(z)‖

‖D f/F(w)‖
< 1 + c

(c verifies (1 + c)
(
1 − ε

2

)−1
< 1 + ε).

Let β < α be given from the Shadowing Lemma for that α and let n0 be
such that ℘N is a β-pseudo orbit. Therefore there exists a periodic orbit r of
period π(r) = Nπ(p) + 4n0 which α-shadows ℘N . Therefore, setting k =
supx∈M ‖D fx‖, we have

‖D f Nπ(p)+4n0
/F(r) ‖ ≤ k4n0(1 + c)Nπ(p)‖D f π(p)

/F(p)‖
N

≤ k4n0

(
(1 + c)(1 −

ε

2
)−1

)Nπ(p)

< (1 + ε)π(r)

where the last inequality holds provided N is large enough. Notice that the orbit
of r passes through U . On the other hand, by domination, we have that

‖D f π(r)

/E(r)‖ < ‖D f π(r)

/F(r)‖.

Since E and F are invariant we conclude that any eigenvalue of D f π(r)
r is less

than (1 + ε)π(r).
Now, if we compose in the orbit of r its derivatives with homoteties of value

(1 + ε)−1 we obtain, by using Frank’s Lemma, a diffeomorphism g so that
all the eigenvalues associated to the periodic orbit r are less than 1, that is, r
is a periodic attractor (sink). This contradicts the generic assumption, since
the sink is persistent, so every residual R ∈ U will have diffeomorphisms
with a sink near r , thus contained in U , and thus contradicting that the interior
is persistent. �
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Lemma 3. Let H be a homoclinic class with non empty interior for a generic
diffeomorphism f such that TH M = E ⊕ F is a dominated splitting with
dim(F) = 1. Then, there exists ε0 such that for all ε ≤ ε0 there exists δ

such that ∀x ∈ H ,

W F
δ (x) ⊂ W uu

ε (x) :=
{

y ∈ M : d( f −n(x), f −n(y)) ≤ ε ;

d( f −n(x), f −n(y)) → 0
}
.

Proof. First we shall prove the Lemma for periodic points and then, using
this fact prove the general statement. Let ε0 > 0 such that Bε0(H) is contained
in the adapted neighborhood of H and such that if d(x, y) < ε0 then

‖D f −1
/F(x)‖

‖D f −1
/F(y)‖

< λ−1

where λ is given by Lemma 2. Let ε ≤ ε0 and let δ > 0 from Theorem 3
corresponding to this ε.

Let p ∈ Per( f/H ) for which there is y ∈ W F
δ (p) such that d( f −n(y),

f −n(p)) 9 0. Since W F
δ (p) is one dimensional, W F

δ (p)\{p} is a disjoint
union of two intervals. Denote Iδ the connected component of W F

δ (p)\{p} that
contains y. By Theorem 3 we have either f 2π(p)(Iδ) ⊂ Iδ or f 2π(p)(Iδ) ⊃ Iδ.
In any event, since y ∈ Iδ we conclude that there exits a point z0 ∈ W F

ε (p)

fixed under f 2π(p) and such that ‖D f 2π(p)

/F(z0)
‖ ≤ 1.

This contradicts the previous Lemma, since by the way ε was chosen we get
(since we know that d( f i (p), f i (z0)) < ε for all i) that

‖D f 2π(p)

/F(p) ‖ =
2πp−1∏

i=0

‖D f/F( f i (p))‖ < λ−2π(p)

2πp−1∏

i=0

‖D f/F( f i (z0))‖

= λ−2π(p)‖D f 2π(p)|F(z0)‖ < λ−2π(p)

Now, lets prove the general statement. Let us suppose that for every ε >

0 there exist x ∈ H and a small arc I ⊂ W F
δ (x) containing x such that

`( f −n(I )) 9 0. We know, because of Theorem 3 that `( f −n(I )) ≤ ε, then,
taking n j → +∞ such that γ ≤ `( f −n j (I )) ≤ ε and taking limits, we obtain
an arc J integrating F such that `( f n(J )) ≤ ε ∀n ∈ Z and containing a point
z ∈ J ∩ H (a limit point of f −n j (x)).

Now, we shall use Theorem 4 to reach a contradiction. It is not difficult to
discard the first possibility in the Theorem because it will contradict what we
have proved for periodic points.
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On the other hand, if J is wandering, we know that it can not be accumu-
lated by periodic points. Since f is generic, we reach a contradiction if we
prove that the points in J are chain recurrent (see property a2) of Theorem 2).
Theorem 4, implies that, `( f n(J )) → 0 (|n| → +∞), then, since z ∈ H ∩ J ,
if we fix ε, and y ∈ J , then, for some future iterate k1 and a past one −k2,
we know that f k1(y) is ε-near of f k1(z) and f −k2(y) is ε-near f −k2(z). Since
homoclinic classes are chain recurrent classes, there is an ε pseudo orbit from
f k1(z) to f −k2(z) and then, y is chain recurrent, a contradiction. �

Corollary 4. Let H be a homoclinic class with non empty interior for a generic
diffeomorphism f such that TH M = E ⊕ F is a dominated splitting with
dim(F) = 1. Then, F is uniquely integrable.

Proof. It follows from the fact that the center stable manifold is dynamically
defined (see [11]). �

Uniqueness of the center manifolds imply that one can know that if you have
a point y ∈ W F

δ (x) ∩ H then there exists γ < δ such that W F
γ (y) ⊂ W F

δ (x).

Corollary 5. Let H = H(p, f ) be a homoclinic class with non empty inte-
rior for a generic diffeomorphism f such that TH M = E ⊕ F is a dominated
splitting with dim(F) = 1. Then, for all L > 0 and l > 0 there exists n0 such
that if I is a compact arc integrating F whose length is smaller than L , then
`( f −n(I )) < l ∀n > n0.

Proof. It is easy to see that every compact arc integrating F should have its
iterates of length going to zero in the past because of Theorem 3 (it is enough to
consider a finite covering of I where the Theorem applies).

Lets suppose then that there exists L and l such that for every j > 0 there
is an arc I j integrating F of length smaller than L and n j > j such that
`( f −n j (I j ) ≥ l. We can suppose without loss of generality that `(I j ) ∈
(L/2, L).

Also, we can assume (maybe considering subsequences) that I j converges
uniformly to an arc J integrating F and verifying L/2 ≤ `(J ) ≤ L .

Since the length of J is finite and it integrates F we know that `( f −n(J )) → 0
with n → +∞.

Let ε = l/2 and δ given by Theorem 3 which ensures that W 2
δ (x) ⊂ W u

ε (x)∀x .
Let n0 such that ∀n ≥ n0 we have `( f −n(J )) < δ/4. Let also be γ small

enough such that if x ∈ Bγ (J ) then d( f −k(x), f −k(J )) < δ/4 ∀0 ≤ k ≤ n0.
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Now, if we consider j large enough (in particular j > n0) such that I j ⊂ Bγ (J )

we obtain `( f −n0(I j )) < δ and so `( f −n(I j )) < ε < l ∀n ≥ n0, so, n j < n0

which is a contradiction. �

We are ready to give the proof of our main theorem:

Theorem 6. Let H be a homoclinic class with non empty interior for a generic
diffeomorphism f such that TH M = E ⊕ F is a dominated splitting with
dim(F) = 1. Then, F is uniformly expanding

Proof. Because of the existence of an adapted norm for the dominated split-
ting (see [9]) we can assume that ‖D f |E(x)‖‖D f −1|F( f (x))‖ < γ (for the sake of
simplicity).

Suppose the theorem is not true. Thus, for every 0 < ν < 1 there exists some
x ∈ H such that ‖D f −n

/F(x)‖ ≥ ν, ∀n ≥ 0 (otherwise for every x there would
be some n0(x) which would be the first one for which ‖D f −n

/F(x)‖ < ν and by
compactness, the n0(x) are uniformly bounded, then F would be hyperbolic).
If we choose points xm satisfying ‖D f −n

/F(x)‖ ≥ 1 − 1/m ∀n ≥ 0, a limit point x
will satisfy ‖D f −n

/F(x)‖ ≥ 1 ∀n ≥ 0.
First of all, we consider the case where we cannot use the Shifting Lemma of

Liao (Lemma 1). It is not difficult to see that this implies (using Pliss’ Lemma,
see also [19]) that ∀γ < γ1 < γ2 < 1, there exists x ∈ H such that

‖D f −n
/F(x)‖ ≥ γ n

2 ∀n ≥ 0

but, ∀y ∈ ω(x) we have that

‖D f −n
/F(y)‖ ≥ γ n

1 ∀n ≥ 0

So, if we work in ω(x) which is a closed invariant set, we have that the sub-
bundle E will be hyperbolic since the dominated splitting implies that ∀z ∈ ω(x)

‖D f/E(z)‖ <
γ

‖D f −1
/F( f (z))‖

<
γ

γ1
< 1 .

This implies that, since we have dynamical properties for the manifolds in-
tegrating the subbundle F , that we can shadow recurrent orbits. Indeed, if we
have a recurrent point y ∈ ω(x), for every small ε (in particular, such that
the stable and unstable manifolds of y are well defined) we can consider n
large enough so that d

(
f n(y), y

)
≤ ε/3, f n

(
W E

ε (y)
)

⊂ W E
ε/3

(
f n(y)

)
and

f −n
(
W F

ε ( f n(y))
)

⊂ W F
ε/3(y) which gives us (using classical arguments) a
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periodic point p of f which verifies that has period n and remains ε-close to the
first n iterates of y. It is not difficult to see that we can consider this periodic
point to be of index 1 and such that its stable manifold intersects the unstable
manifold of y. So, p ∈ W u(H) and using Lyapunov stability of H we know
W u(H) ⊂ H (see [6] Lemma 2.1), so p ∈ H .

Since γ1 was arbitrary, we can choose it to satisfy γ1 > λ where λ is as in
Lemma 2 Also, we can choose ε small so that ‖D f −n

/F(p)‖ > λn contradicting
Lemma 2.

Now, we shall study what happens if Liao’s shifting Lemma can be applied.
That is, there exists γ < γ1 < γ2 < 1 such that for all x ∈ H satisfying

‖D f −n
/F(x)‖ ≥ γ n

2 ∀n ≥ 0

there exists y ∈ ω(x) such that

‖D f −n
/F(x)‖ ≤ γ n

1 ∀n ≥ 0

So, using the Shifting Lemma we have that for every γ2 < γ3 < γ4 < 1
we have a periodic orbit pU of f contained in any neighborhood U of 3 and
satisfying that

‖D f −n
/F(p)‖ ≤ γ n

4 and ‖D f −n
/F( f i (p))

‖ ≥ γ n
3

for some i ∈ 0, . . . , π(p) (remember that F is one dimensional, so the product
of norms is the norm of the product). But since this periodic points are not very
contracting in the direction F , if we choose γ3 > λ (as before) and U sufficiently
small to ensure that the stable manifold of some periodic point will intersect the
unstable one of a point in H we reach the same contradiction as before. �
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