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Weak KAM methods and ergodic optimal
problems for countable Markov shifts
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Abstract. Let σ : 6 → 6 be the left shift acting on 6, a one-sided Markov subshift
on a countable alphabet. Our intention is to guarantee the existence of σ -invariant Borel
probabilities that maximize the integral of a given locally Hölder continuous potential
A : 6 → R. Under certain conditions, we are able to show not only that A-maximizing
probabilities do exist, but also that they are characterized by the fact their support lies
actually in a particular Markov subshift on a finite alphabet. To that end, we make use of
objects dual to maximizing measures, the so-called sub-actions (concept analogous to
subsolutions of the Hamilton-Jacobi equation), and specially the calibrated sub-actions
(notion similar to weak KAM solutions).
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1 Introduction

The development of the study of maximizing probabilities has given place to a
new and exciting field in ergodic theory. Growing in the intersection of topo-
logical dynamical systems and optimization theory, this fresh theorical branch is
known nowadays as ergodic optimization. Many results were already obtained
for dynamics defined by a continuous map T : X → X of a compact metric
space X assuming T has some hyperbolicity (see, for instance, [1, 3, 5, 7, 11]).
Although ergodic optimal problems in the context of noncompact dynamical
systems have been much less discussed, interesting works can be found in the
literature (see, for example, [9, 10]).

The principal purpose of this article is to take into account ergodic optimal
problems for a class of noncompact symbolic dynamics: topological Markov
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shifts with a countable number of states. Let then 6 denote a one-sided
Markov subshift on a countable alphabet, and σ : 6 → 6 the left shift map.
If A : 6 → R is continuous and bounded above, one would like to determine
and describe the σ -invariant Borel probability measures μ that maximize the
average value

∫
A dμ. In general, such a maximizing probability does not even

exist, since 6 may be noncompact. We show that this is not the case when the
potential A is sufficiently regular and verifies a coercive condition. In reality,
our main theorem (see theorem 1) states that, for one of these specific poten-
tials, its maximizing probabilities have in common the fact of being supported
in a certain compact σ -invariant subset that is actually contained in a Markov
subshift on a finite alphabet.

A second objective of this paper is to point out that weak KAM methods
(or viscosity solutions technics) can be adapted and employed also in noncom-
pact ergodic optimization. Tools of the theory of viscosity solutions have been
successfully used in Lagrangian mechanics (see, for instance, [2, 4]). Ergodic
optimization on compact spaces has witnessed the usefulness of these methods,
specially when ergodic optimal problems are interpreted as questions of vari-
ational dynamics (see, for example, [3, 5, 11]). We adopt the same spirit and
strategy here.

2 Basic concepts and main result

Our dynamical setting will be special topologically mixing Markov subshifts on
a countable alphabet: the primitive ones. Let us introduce them precisely.

For the sake of definiteness, the countably infinite alphabet will always be the
set of nonnegative integers Z+. Let thus M : Z+ × Z+ → {0, 1} be a transition
matrix. Consider the following sets of symbols given in an inductive way by

B0 =
{
i ∈ Z+ : M(i, j) = 1 for some j ∈ Z+

}
and

Bn =
{
i ∈ Z+ : M(i, j) = 1 for some j ∈ Bn−1

}
, for n > 0.

We say that the transition matrix M is primitive if there exist a (possibly count-
able) subset F ⊆ Z+ and an integer K0 ≥ 0 such that, for any pair of symbols
i, j ∈

⋂
n≥0 Bn , one can find `1, `2, . . . , `K0 ∈ F satisfying

M(i, `1)M(`1, `2) ∙ ∙ ∙ M(`K0, j) = 1.

In particular, we say that M is finitely primitive when F is finite.
Consider then the associated Markov subshift

6 =
{

x = (x0, x1, . . .) ∈ Z+
Z+ : M(x j , x j+1) = 1

}
.
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Fixed λ ∈ (0, 1), we equip 6 with the complete metric d(x, y) = λk , where
x = (x0, x1, . . .), y = (y0, y1, . . .) ∈ 6 and k = min{ j : x j 6= y j }. It is
easy to see that 6 is compact if, and only if,

⋂
n≥0 Bn is finite1. Let σ : 6 →

6 be the shift map, namely, σ(x0, x1, x2, . . .) = (x1, x2, . . .). We will also
say that the dynamics (6, σ ) is (finitely) primitive. Since M is primitive,
clearly (6, σ ) is a topologically mixing dynamical system.

Denote by Mσ the σ -invariant Borel probability measures. Let C0(6) in-
dicate the space of continuous real-valued functions on 6, equipped with the
topology of uniform convergence on compact subsets. We remind then central
concepts in the ergodic optimization theory.

Definition 1. If the potential A ∈ C0(6) is bounded above, we define the
ergodic maximizing value by

βA = sup
μ∈Mσ

∫
A dμ.

Any σ -invariant probability achieving this supremum is called maximizing (or,
if precision is required, A-maximizing).

We are particularly interested in ergodic optimal results for locally Hölder
continuous potentials.

Definition 2. A potential A : 6 → R is called locally Hölder continuous when
there exists a constant HA > 0 such that, for all integer k ≥ 1, we have

Vark(A) := sup
x,y∈6, d(x,y)≤λk

[
A(x) − A(y)

]
≤ HAλk .

Such a regularity condition only means that the k-th variation Vark(A) decays
exponentially fast to zero when k → ∞. We could focus on more general
regularity assumptions, like summability of variations. Recall that A : 6 → R
has summable variations if

Var(A) :=
∞∑

k=1

Vark(A) < ∞.

Yet one of our main goals here is to provide examples of the applicability of
the weak KAM technics. We believe local Hölder continuity is sufficient for
this end.

1Since the compact situation is well studied, the interesting case occurs naturally when
⋂

n≥0 Bn
is countable. The reader is thus invited to assume this hypothesis without hesitation.
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Notice that nothing is required from Var0(A) := supx,y∈6[A(x)−A(y)], which
means that a locally Hölder continuous potential, despide its uniform continuity,
may be unbounded. So a common assumption2 in this article will be

inf A|⋃
i∈F[i] > −∞,

where [i] just indicates the cylinder set {x = (x0, x1, . . .) ∈ 6 : x0 = i}.
Under this hypothesis, we will obtain in the next section a dual formula

βA = inf
f ∈C0(6)

sup
x∈6

(A + f − f ◦ σ) (x).

This expression raises the natural question about the existence of functions
achieving the above infimum, which motivates the following definition.

Definition 3. Suppose A : 6 → R is continuous and bounded above. A sub-
action (for the potential A) is a function u ∈ C0(6) verifying

(A + u − u ◦ σ)(x) ≤ βA, ∀ x ∈ 6.

We will see in section 4 that it is possible to construct locally Hölder continu-
ous sub-actions for potentials with the same regularity (see proposition 4). This
result is completely new as far as we know.

In the context of a noncompact dynamical system, given an arbitrary bounded
above continuous potential, the existence of maximizing probabilities is a non-
trivial question. However, we will be able to use the existence of sub-actions as
well as their properties in order to guarantee there exist maximizing probabilities
when we are taking into account coercive potentials.

Definition 4. A continuous potential A : 6 → R is said coercive when

lim
i→+∞

sup A|[i] = −∞.

In Aubry-Mather theory for Lagrangian systems, superlinearity is the usual
coercive hypothesis (see, for instance, [2, 4]). The coercive condition is not
strange to the countable Markov shift framework. On the contrary, it is an
essential theorical piece (in general implicitly) in several studies of the ther-
modynamic formalism generalized to a finitely primitive Markov subshift on

2Note this assumption is trivially verified when F is finite. Indeed, choosing a point xi ∈ [i] for
each i ∈ F, if x ∈ [ j], j ∈ F, then A(x) > A(x j ) − Var1(A) obviously implies inf A|⋃

i∈F[i]
>

mini∈F A(xi ) − Var1(A) > −∞.
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a countable alphabet. Coerciveness obviously follows from the imposition∑
i exp (sup A|[i]) < ∞. This summability condition is equivalent to the finite-

ness of the topological pressure when the potential A is, for example, locally
Hölder continuous. This summability condition also allows to define the Ru-
elle operator LA f (x) :=

∑
σ(y)=x eA(y) f (y) for a bounded continuous function

f : 6 → R. For more details, we refer the reader to the book of R.D. Mauldin
and M. Urbański (see [12]). Furthermore, when (6, σ ) is finitely primitive
and A is locally Hölder continuous, it is not difficult to show the hypothesis
‖LA1‖∞ < ∞ (omnipresent in the work of O. Sarig [15]) implies coercive-
ness too.

Given a nonnegative integer I , denote by

6I =
{

x = (x0, x1, . . .) ∈ {0, . . . , I }Z+ : M(x j , x j+1) = 1
}

the Markov subshift on the finite alphabet {ι1, . . . , ιrI } := {0, . . . , I }∩(⋂
n≥0 Bn

)
associated to the transition matrix M|{0,...,I }×{0,...,I }. Obviously 6I is

a compact σ -invariant subset of 6. So we simply denote σ |6I by σ .
When M is finitely primitive, let

IF := max{i : i ∈ F}.

Our main result concerning the existence of maximizing probabilities can be
stated as follows.

Theorem 1. Suppose (6, σ ) is a finitely primitive Markov subshift on a count-
able alphabet. Let A : 6 → R be a bounded above, coercive and locally Hölder
continuous potential. Then there exists an integer Î > IF such that

βA = max
μ∈Mσ

suppμ⊆6 Î

∫
A dμ.

In particular, maximizing measures do exist. Furthermore, there exists a compact
σ -invariant set � ⊆ 6 Î such that μ ∈ Mσ is an A-maximizing probability if,
and only if, μ is supported in �.

Its proof is discussed in section 4 and exploits the analogy with Aubry-Mather
theory in symbolic dynamics. The existence of a bounded continuous sub-
action for the potential A will tell us where to seek maximizing probabilities.
Nevertheless, a key step to the demonstration is to analyse first the problem
for the compact situation (6I , σ ), using the uniform oscillatory behavior of
some special sub-actions, that are called calibrated, and should be understood
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as corresponding to Fathi’s weak KAM solutions or viscosity solutions of the
Hamilton-Jacobi equation.

Theorem 1 clarifies previous results. For instance, in the special case where∑
i exp (sup A|[i]) < ∞, the identity βA = maxμ∈Mσ , suppμ⊆6 Î

∫
A dμ is im-

plicitly present in the work of I. D. Morris. Indeed, in the proof of lemma 3.5
of [13], one obtains that, if {μt}t>1 is the family of equilibrium states of t A,
then there is Î ∈ Z+ such that μt([i]) → 0 as t → ∞ for all i > Î . Since
this family of probabilities is uniformly tight and any accumulation measure is
maximizing, this shows that an A-maximizing probability exists and is supported
in 6 Î . Concerning the description of all A-maximizing probabilities, in [9] the
authors obtained in a more general context a not so precise characterization for
their supports (see remark 6).

3 Characterizations of the ergodic maximizing value

We will present other expressions which one could choose in order to introduce
the constant βA for our particular situation. In this section, we will consider a
larger class of potentials: the uniformly continuous ones. Remind that A : 6 →
R is uniformly continuous if limk→∞ Vark(A) = 0. Notice we are still dealing
with functions which may be unbounded.

Given A ∈ C0(6), as usual let Sk A =
∑k−1

j=0 A ◦ σ j and S0 A = 0. Hence,
the following result identifies the ergodic maximizing value with a maximum
ergodic time average.

Proposition 2. Let (6, σ ) be a primitive Markov subshift on a countable al-
phabet. Assume the uniformly continuous potential A : 6 → R is bounded
above and satisfies inf A|⋃

i∈F[i] > −∞. Then we verify

βA = lim
k→∞

sup
x∈6

1

k
Sk A(x) = inf

k≥1
sup
x∈6

1

k
Sk A(x).

Proof. Note that {supx∈6 Sk A(x)}k≥1 is a subadditive sequence of real num-
bers. Therefore, the limit limk→∞ supx∈6

1
k Sk A(x) exists and is in fact equal to

infk≥1 supx∈6
1
k Sk A(x).

Given a positive integer k, take a point xk ∈ 6 satisfying

sup
x∈6

1

k
Sk A(x) −

1

2k
<

1

k
Sk A(xk).
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Since (6, σ ) is a primitive Markov subshift, for all sufficiently large k, we can
find a periodic point yk = (yk

0 , yk
1 , . . .) ∈ 6 of period k, with yk

j ∈ F for each
j ∈ {k − K0, . . . , k − 1}, such that d(xk, yk) ≤ λk−K0 . From the immediate
inequality

1

k
Sk A(yk) ≤ βA,

we obtain

1

k
Sk A(xk) ≤

1

k
Sk A(xk) −

1

k
Sk A(yk) + βA

≤
1

k

[
Vark−K0(A) + . . . + Var1(A) + K0

(
sup A − inf A|⋃

i∈F[i]
)]

+ βA.

For k large enough, we thus have

sup
x∈6

1

k
Sk A(x) −

1

2k
<

1

k




k∑

j=1

Var j (A) + K0
(
sup A − inf A|⋃

i∈F[i]
)


 + βA.

So limk→∞ supx∈6
1
k Sk A(x) ≤ βA.

In order to show the equality does hold, take a probability μ ∈ Mσ such that
A ∈ L1(μ). For any k > 0, we clearly have

∫
A dμ =

∫
1

k
Sk A dμ ≤ sup

x∈6

1

k
Sk A(x).

Taking the infimum over k and then the supremum over μ, we finish the
proof. �

We remark that, for a noncompact dynamical system, in general we have

βA ≤ lim sup
k→∞

sup
x∈6

1

k
Sk A(x).

We refer the reader to [10] for a discussion on such a topic.
We present now a dual characterization of βA.

Proposition 3. Let (6, σ ) be a primitive Markov subshift on a countable al-
phabet. Suppose the uniformly continuous potential A : 6 → R is bounded
above and verifies inf A|⋃

i∈F[i] > −∞. Then

βA = inf
f ∈C0(6)

sup
x∈6

(A + f − f ◦ σ) (x).

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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Proof. Denote by C0
A(6) the set of continuous functions f : 6 → R satisfy-

ing sup(A + f − f ◦ σ) < ∞. Note that all bounded continuous real-valued
functions belong to C0

A(6). Moreover, we clearly have

inf
f ∈C0(6)

sup
x∈6

(A + f − f ◦ σ) (x) = inf
f ∈C0

A(6)

sup
x∈6

(A + f − f ◦ σ) (x) < ∞.

By conciseness, write κ = inf f ∈C0
A(6) supx∈6 (A + f − f ◦ σ) (x). Fix ε >

0. Choose a function f ∈ C0
A(6) such that A + f − f ◦ σ < κ + ε. For any

μ ∈ Mσ , we verify
∫

A dμ =
∫

(A + f − f ◦ σ) dμ ≤ κ + ε.

Hence, βA ≤ κ + ε. Since ε > 0 is arbitrary, we get βA ≤ κ.

Consider then fk = − 1
k

∑k
j=1 Sj A ∈ C0(6). The identity

A =
1

k
Sk(A ◦ σ) + fk ◦ σ − fk

implies sup(A + fk − fk ◦ σ) = sup 1
k Sk(A ◦ σ) ≤ sup A < ∞, that is, fk ∈

C0
A(6). Therefore, we obtain

κ ≤ inf
k≥1

sup
x∈6

1

k
Sk(A ◦ σ)(x).

The result follows thus from the previous proposition. �

In ergodic optimization on compact spaces, a similar dual expression of the
corresponding ergodic maximizing value is well known (see, for example, [1]).

4 Sub-actions and maximizing probabilities

A minimal sub-action

We will show the existence of minimal sub-actions for locally Hölder continu-
ous potentials. Similar results have been obtained in the compact situation (see,
for example, [3, 5]).

Proposition 4. Assume (6, σ ) is a primitive Markov subshift on a countable
alphabet. Let A : 6 → R be a bounded above and locally Hölder continuous
potential such that inf A|⋃

i∈F[i] > −∞. Then there exists an unique minimal,

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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nonnegative, bounded and locally Hölder continuous function u A : 6 → R+

verifying
A + u A − u A ◦ σ ≤ βA.

The minimality is in the sense that, for any nonnegative sub-action u ∈ C0(6,

R+) (not necessarily locally Hölder continuous), we have u A ≤ u.

Proof. Given x ∈ 6, define

u A(x) := sup
{

Sk(A − βA)(y) : k ≥ 0, y ∈ 6, σ k(y) = x
}
.

As S0(A − βA) = 0 by convention, obviously u A ≥ 0.
Take an integer k > K0 and a point y ∈ 6 verifying σ k(y) = x. We can

thus find a periodic point yk = (yk
0 , yk

1 , . . .) ∈ 6 of period k, with yk
j ∈ F when

j ∈ {k − K0, . . . , k − 1}, such that d(y, yk) ≤ λk−K0 . First notice that

Sk A(y)− Sk A(yk) ≤ Vark−K0(A)+ . . .+Var1(A)+ K0
(
sup A − inf A|⋃

i∈F[i]
)
.

Since clearly Sk A(yk) ≤ kβA, we then obtain

Sk(A − βA)(y) ≤ Var(A) + K0
(
sup A − inf A|⋃

i∈F[i]
)
, ∀ k > K0,

which assures that

0 ≤ u A(x)

≤ max
{
Var(A) + K0

(
sup A − inf A|⋃

i∈F[i]
)
, K0(sup A − βA)

}
.

(4.1)

So u A : 6 → R+ is a well defined bounded function. Moreover, from the
identity A ◦ σ k + Sk(A − βA) = Sk+1(A − βA) + βA and the definition of u A,
we get A + u A ≤ u A ◦ σ + βA.

Concerning its regularity, u A is a locally Hölder continuous function. Indeed,
let x = (x0, x1, . . .), x̄ = (x̄0, x̄1, . . .) ∈ 6 be arbitrary points with d(x, x̄) ≤
λk for some k ≥ 1. Given ε > 0, take an integer k̄ ≥ 0 and a point ȳ =
(ȳ0, ȳ1, . . .) ∈ 6, with σ k̄(ȳ) = x̄, such that

u A(x̄) − ε < Sk̄(A − βA)(ȳ).

Consider the point y = (ȳ0, ȳ1, . . . , ȳk̄−1, x0, x1, . . .) ∈ 6 satisfying σ k̄(y) = x.
So we have

u A(x̄) − u A(x) − ε < Sk̄ A(ȳ) − Sk̄ A(y)

≤ Vark+k̄(A) + Vark+k̄−1(A) + . . . + Vark(A)

≤ HA

(
λk+k̄ + λk+k̄−1 + . . . + λk

)

≤
HA

1 − λ
λk .
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Since ε can be considered arbitrarily small, this shows that

Vark(u A) ≤
HA

1 − λ
λk,

which means u A is locally Hölder continuous (with constant Hu A = HA
1−λ

).
Suppose now that u ∈ C0(6,R+) is a nonnegative sub-action for the poten-

tial A. Given x ∈ 6, if the point y ∈ 6 satisfies σ k(y) = x for some k ≥ 0,
it is easy to see that u(x) + kβA ≥ Sk A(y) + u(y) ≥ Sk A(y). This proves that
u(x) ≥ u A(x). �

Remark 5. If we keep the previous hypotheses when consindering a potential
A ∈ C0(6) with summable variations, we still obtain a minimal, non-negative
and bounded sub-action u A : 6 → R+. Nevertheless, from

Vark(u A) ≤
∑

j≥k

Var j (A),

we only assure its uniform continuity.

It is important to notice that the existence of a sub-action as above indicates
where we shall look for maximizing probabilities in the coercive case.

Proposition 5. Let (6, σ ) be a primitive Markov subshift on a countable al-
phabet. Suppose u ∈ C0(6) is a bounded sub-action for a bounded above and
coercive potential A ∈ C0(6). If μ ∈ Mσ is an A-maximizing probability, then
μ is supported in a Markov subshift on a finite alphabet.

Proof. Let μ ∈ Mσ be an A-maximizing probability. Since u ∈ C0(6) is a
sub-action for the potential A, we have

A + u − u ◦ σ − βA ≤ 0 and
∫

(A + u − u ◦ σ − βA) dμ = 0.

Therefore, the support of μ is a subset of the closed set (A+u−u◦σ −βA)−1(0).
Let η > 0 be a real constant. As A is coercive and u is bounded, there exists

Î ∈ Z+ such that

sup(A + u − u ◦ σ − βA)|⋃
i> Î [i]

< −η. (4.2)

In particular, we obtain μ(
⋃

i> Î [i]) = 0, or in a more useful way supp(μ) ⊆⋃
i≤ Î [i].

Being supp(μ) a σ -invariant set, we get supp(μ) ⊆
⋂

k≥0 σ−k
(⋃

i≤ Î [i]
)

=
6 Î , which ends the proof. �
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Remark 6. In [9], when considering a primitive subshift on a countable al-
phabet, the authors showed there exist invariant probabilities that maximize the
integral of a bounded above and coercive potential A with summable variations
and satisfying inf A|⋃

i∈F[i] > −∞. They characterized them by the fact that their
support lies in a compact subset of 6. Remark 5 and proposition 5 go beyond
guaranteeing that those A-maximizing probabilities are actually supported in a
Markov subshift on a finite alphabet.

Results for compact approximations

In the context of a transitive expanding transformation defined on a compact
metric space, the theory of ergodic optimization has received special attention,
which has yielded a more detailed theorical picture when the potential is suffi-
ciently regular as, let us say, Lipschitz continuous (see, for instance, [1, 3, 5, 7]).
To demonstrate theorem 1, we will take advantage of results concerning ergodic
optimal problems for the compact approximations (6I , σ ).

We suppose henceforth that (6, σ ) is a finitely primitive and A : 6 → R is a
bounded above and locally Hölder continuous potential. Recall (from footnote 2)
that in this case inf A|⋃

i∈F[i] > −∞.
For I ≥ IF, we will need to consider the following ergodic constants

βA(I ) := max
μ∈Mσ

suppμ⊆6I

∫

6I

A dμ.

Each one corresponds to the ergodic maximizing value associated to the Lipschitz
continuous potential A|6I defined on the compact metric space 6I . Recall 6I

is the Markov subshift on the finite alphabet

{ι1, . . . , ιrI } := {0, . . . , I } ∩

(
⋂

n≥0

Bn

)

associated to the transition matrix M|{0,...,I }×{0,...,I }. If I ≥ IF, then obviously
F ⊂ {ι1, . . . , ιrI } and (6I , σ ) is a topologically mixing dynamical system.

Remember that, in ergodic optimization on compact spaces, we call sub-action
for the potential A|6I any function u ∈ C0(6I ) satisfying, for each point x ∈ 6I ,
A(x)+u(x)−u ◦σ(x) ≤ βA(I ). Besides, a sub-action u ∈ C0(6I ) is said to be
calibrated when, for every x ∈ 6I , one can find a point x̄ ∈ 6I , with σ(x̄) = x,
such that

A(x̄) + u(x̄) − u(x) = βA(I ).

Main properties of calibrated sub-actions are discussed, for instance, in [3, 5, 7].
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Lemma 6. Assume (6, σ ) is a finitely primitive Markov subshift on a countable
alphabet. Let A : 6 → R be a bounded above and locally Hölder continuous
potential. Consider an integer I ≥ IF. If u ∈ C0(6I ) is a calibrated sub-action
for the Lipschitz continuous potential A|6I , then

osc(u) := max
x,y∈6I

[u(x) − u(y)] ≤ Var(A) + K0

(
sup A − inf

i∈F
A|[i]

)
.

Proof. Take arbitrary points x, y ∈ 6I . As u is a calibrated sub-action, we
define inductively a sequence {xk = (xk

0 , xk
1 , . . .)} ⊆ 6I by choosing x0 := x

and, for all k ≥ 0, demanding σ(xk+1) = xk with u(xk) = u(xk+1) + A(xk+1) −
βA(I ).

Write y0 := y = (y0, y1, . . .). Since(6, σ ) is finitely primitive and I ≥ IF,
there exists a word (w1, w2, . . . , wK0) ∈ FK0 , with M(w j , w j+1) = 1, such that
M(x K0+1

0 , w1) = 1 = M(wK0, y0). So we may consider the point yk ∈ 6I

defined by

yk =

{
(wK0−k+1, . . . , wK0, y0, y1, . . .) if 1 ≤ k ≤ K0

(xk
0 , . . . , x K0+1

0 , w1, w2, . . . , wK0, y0, y1, . . .) if k > K0

.

Clearly, σ(yk+1) = yk and u(yk) ≥ u(yk+1) + A(yk+1) − βA(I ).
Then notice that

u(x) − u(y) ≤ u(x1) − u(y1) + A(x1) − A(y1)

≤ u(x2) − u(y2) + A(x1) − A(y1) + A(x2) − A(y2)

...

≤ u(xk) − u(yk) +
k∑

j=1

[A(x j ) − A(y j )].

As d(xk, yk) = λk−K0−1d(xK0+1, yK0+1) for k > K0, the continuity of u
implies limk→∞[u(yk) − u(xk)] = 0. Hence, we obtain

u(y) − u(x) ≤
∞∑

j=1

[A(x j ) − A(y j )]

=
K0∑

j=1

[A(x j ) − A(y j )] +
∞∑

j=K0+1

[A(x j ) − A(y j )]

≤ K0
(
sup A − inf A|⋃

i∈F[i]
)
+ Var(A),

from which the statement follows immediately. �
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It is necessary to recall other central notions and facts of ergodic optimization
on compact spaces. A point x ∈ 6I is said to be non-wandering with respect
to the Lipschitz continuous potential A|6I if, for all ε > 0, one can find a point
y ∈ 6I and an integer n > 0 such that

d(x, y) < ε, d(x, σ n(y)) < ε and |Sn(A − βA(I ))(y)| < ε.

Let �(A, I ) ⊆ 6I denote the set of non-wandering points with respect to A|6I .
This set is a compact σ -invariant subset of 6I . For any sub-action u ∈ C0(6I ),

�(A, I ) ⊆ {x ∈ 6I : (A + u − u ◦ σ − βA(I ))(x) = 0}. (4.3)

Furthermore, �(A, I ) characterizes the maximizing probabilities in the sense
that, for μ ∈ Mσ with supp(μ) ⊆ 6I , one has

∫

6I

A dμ = βA(I ) ⇔ supp(μ) ⊆ �(A, I ). (4.4)

The demonstrations of these properties and more details on the non-wandering
set with respect to a Lipschitz continuous potential may be found, for instance,
in [3, 5, 6, 11].

Since (6IF, σ ) is a topologically mixing dynamical system, we may consider
a probability measure μF ∈ Mσ whose support is a periodic orbit in 6IF ∩ FZ+ .
In particular, for all I ≥ IF, notice that

βA(I ) ≥
∫

6I

A dμF ≥ inf A|⋃
i∈F[i]. (4.5)

Let us assume in addition that the potential A : 6 → R is coercive. A funda-
mental inequality is thus the following one.

Notation 7. The coerciveness of the potential allows us to determine an inte-
ger Î > IF satisfying

sup A|⋃
i> Î [i]

< inf A|⋃
i∈F[i] −

[
Var(A) + K0

(
sup A − inf A|⋃

i∈F[i]
)]

. (4.6)

So we have an important lemma.

Lemma 7. Suppose (6, σ ) is a finitely primitive Markov subshift on a count-
able alphabet. Let A : 6 → R be a bounded above, coercive and locally Hölder
continuous potential. Then

βA(I ) = βA( Î ) ∀ I ≥ Î ,

where the positive integer Î is defined by (4.6). Furthermore, given an integer
I ≥ Î , only (A|6 Î

)-maximizing probabilities maximize the integral of A|6I

among σ -invariant probabilities supported in 6I .
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Proof. Clearly βA( Î ) ≤ βA(I ) whenever I ≥ Î . In order to obtain the equal-
ity, it is enough to show that every (A|6I )-maximizing probability is actually
supported in 6 Î .

Suppose on the contrary the existence of a probability measure μ ∈ Mσ , with
supp(μ) ⊆ 6I and

∫
6I

A dμ = βA(I ), such that supp(μ) − 6 Î 6= ∅.

Take then x = (x0, x1, . . .) ∈ supp(μ) − 6 Î . We may assume x0 > Î .
Therefore, from (4.5) and (4.6), it follows

A(x) − βA(I ) ≤ sup A|⋃
i> Î [i]

− inf A|⋃
i∈F[i]

< −
[
Var(A) + K0

(
sup A − inf A|⋃

i∈F[i]
)]

.

Let u ∈ C0(6I ) be a calibrated sub-action for the Lipschitz continuous poten-
tial A|6I . Thanks to (4.4) and (4.3), we have A(x)+u(x)−u◦σ(x)−βA(I ) = 0,
which then yields

u(x) − u ◦ σ(x) > Var(A) + K0
(
sup A − inf A|⋃

i∈F[i]
)
.

However, this inequality contradicts lemma 6 which assures that

osc(u) ≤ Var(A) + K0
(
sup A − inf A|⋃

i∈F[i]
)
.

Hence, necessarily supp(μ) ⊆ 6 Î whenever μ ∈ Mσ maximizes the integral
of A|6I among the σ -invariant probabilities supported in 6I . �

Proof of Theorem 1

Our strategy is to extend the statement of lemma 7 to the noncompact dynami-
cal system (6, σ ). More precisely, we will show that

∫
A dμ ≤ βA( Î ), ∀ μ ∈ Mσ . (4.7)

Clearly it will follow βA = βA( Î ), guaranteeing the existence of maximizing
probabilities. Propositions 4 and 5 and lemma 7 will then assure that only
A|6 Î

-maximizing probabilities maximize the integral of the potential A among
all σ -invariant Borel probability measures. Besides, from (4.4), the compact
σ -invariant subset of 6 Î in the statement of theorem 1 will immediately be
� = �(A, Î ).

So we just need to demonstrate (4.7). As a matter of fact, this inequality is a
consequence of the denseness of probabilities whose support is a pediodic orbit
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(see, for instance, [14]) and lemma 7. For the sake of completeness, we discuss
its proof carefully.

Notice first that, thanks to the ergodic decomposition theorem, it is enough
to suppose μ ∈ Mσ ergodic. It seems convenient to recall that as usual we are
considering the space of bounded real-valued functions on 6 and its subspaces
equipped with the uniform norm. We take then a dense sequence { f j } j≥0 of
bounded uniformly continuous real-valued functions on 6. Let 3 j ⊆ 6 denote
the set of points for which the Birkhoff’s ergodic theorem holds for f j as a μ-
integrable function. Take then a point z ∈

⋂
j≥0 3 j . It is not difficult to see that

the sequence of Borel probability measures

νk :=
1

k

k−1∑

j=0

δσ j (z)

converges in the weak topology to μ.
Since (6, σ ) is a finitely primitive Markov subshift, for every integer k > K0,

let yk = (yk
0 , yk

1 , . . .) ∈ 6 be a periodic point of period k, with yk
j ∈ F whenever

j ∈ {k − K0, . . . , k − 1}, such that d(z, yk) ≤ λk−K0 . Consider then the σ -
invariant Borel probability measure

μk :=
1

k

k−1∑

j=0

δσ j (yk ) ∈ Mσ .

Let f : 6 → R be a bounded function dependending on n coordinates, that is,
satisfying Varn( f ) = 0. Notice that (supposing k > K0 + n)

∣
∣
∣
∣

∫
f dμk −

∫
f dνk

∣
∣
∣
∣ =

1

k

∣
∣Sk f (yk) − Sk f (z)

∣
∣

≤
2

k
(K0 + n)‖ f ‖∞ → 0 as k → ∞.

As functions depending on finitely many coordinates are dense among
bounded uniformly continuous real-valued functions on 6, we conclude that
the sequences {μk} and {νk} have the same weak limit μ. However, lemma 7
assures that, for each index k,

∫
A dμk ≤ βA( Î ).

Thus, (4.7) follows just by passing to the limit.
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A final remark

Notice that, in reality, the coerciveness of the potential was exactly used twice
in our arguments. Indeed, the coercive condition was employed just to assure
both inequalities (4.2) and (4.6).

Nevertheless, during the construction of the sub-action u A ∈ C0(6) in the
proof of proposition 4, its boundness was made explicit in (4.1). Therefore, one
can easily adapted the demonstration of proposition 5 using this information and
the fact that βA ≥ inf A|⋃

i∈F[i] in order to guarantee the following statement.

Proposition 8. Let (6, σ ) be a finitely primitive Markov subshift on a count-
able alphabet. Assume A : 6 → R is a bounded above and locally Hölder
continuous potential. Suppose there exists an integer Î > IF such that

sup A|⋃
i> Î [i]

< inf A|⋃
i∈F[i] −

[
Var(A) + K0

(
sup A − inf A|⋃

i∈F[i]
)]

.

Then, supp(μ) ⊆ 6 Î whenever μ ∈ Mσ is an A-maximizing probability.

Since lemma 7 is actually a consequence of inequality (4.6) and not of the
coerciveness of the potential, one may now obtain a more general version of
theorem 1, without necessarily imposing an asymptotic behavior to sup A|[i].
In fact, we have the following result.

Theorem 9. Suppose (6, σ ) is a finitely primitive Markov subshift on a count-
able alphabet. Let A : 6 → R be a bounded above and locally Hölder continu-
ous potential. Assume the existence of an integer Î > IF such that

sup A|⋃
i> Î [i]

< inf A|⋃
i∈F[i] −

[
Var(A) + K0

(
sup A − inf A|⋃

i∈F[i]
)]

.

Then βA = βA( Î ). Moreover, μ ∈ Mσ is an A-maximizing probability if, and
only if, supp(μ) ⊆ �(A, Î ).

We decided to discuss this generalized result at the end of the paper because
the existence of Î in the above statement seems to be just a technical assumption.
Coerciveness, in turn, is compelling, as the works in thermodynamic formalism
indicate. Besides, it is important to have in mind that certain maximizing prob-
abilities can be seen as zero temperature limits of Gibbs-equilibrium states (see
[8, 13]).

Finally, we would like to point out that inequality (4.6), which has proved to
be so fundamental, is quite similar to the oscillation condition proposed in [9]
(see definition 5.1 there). It is interesting to refind such a condition as a natural
consequence of uniform oscillatory behaviour of calibrated sub-actions defined
on compact approximations.
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[12] R.D. Mauldin and M. Urbański. Graph directed Markov systems: geometry and
dynamics of limit sets. Cambridge University Press (2003).

[13] I.D. Morris. Entropy for zero-temperature limits of Gibbs-equilibrium states
for countable-alphabet subshifts of finite type. Journal of Statistical Physics,
126 (2007), 315–324.

[14] K.R. Parthasarathy. On the category of ergodic measures. Illinois Journal of
Mathematics, 5 (1961), 648–656.

[15] O.M. Sarig. Thermodynamic formalism for countable Markov shifts. Ergodic
Theory and Dynamical Systems, 19 (1999), 1565–1593.

Bull Braz Math Soc, Vol. 41, N. 3, 2010



“main” — 2010/8/20 — 12:57 — page 338 — #18

338 RODRIGO BISSACOT and EDUARDO GARIBALDI

Rodrigo Bissacot
Departamento Matemática, UFMG
30161-970 Belo Horizonte, MG
BRAZIL

E-mail: rodrigo.bissacot@gmail.com

Eduardo Garibaldi
Departamento de Matemática, UNICAMP
13083-859 Campinas, SP
BRAZIL

E-mail: garibaldi@ime.unicamp.br

Bull Braz Math Soc, Vol. 41, N. 3, 2010


