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Complete foliations of space forms
by hypersurfaces
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Abstract. We study foliations of space forms by complete hypersurfaces, under some
mild conditions on its higher order mean curvatures. In particular, in Euclidean space
we obtain a Bernstein-type theorem for graphs whose mean and scalar curvature do not
change sign but may otherwise be nonconstant. We also establish the nonexistence of
foliations of the standard sphere whose leaves are complete and have constant scalar
curvature, thus extending a theorem of Barbosa, Kenmotsu and Oshikiri. For the more
general case of r -minimal foliations of the Euclidean space, possibly with a singular
set, we are able to invoke a theorem of Ferus to give conditions under which the non-
singular leaves are foliated by hyperplanes.
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1 Introduction

Codimension-one foliations of Riemannian spaces have been studied, through
the geometric point of view, since the beginnings of the last century, when S.
Bernstein [3], proved that the only entire minimal graphs in R3 are planes. This
result was later extended by J. Simons [12], for entire minimal graphs in Rn+1

up to n = 7, and disproved by E. Bombieri, E. de Giorgi and E. Giusti [4] in all
higher dimensions. We refer the reader to a paper of B. Nelli and M. Soret [10]
for a brief account of interesting related results on Bernstein’s problem, as it
became known these days.

A natural extension to the problem above is to consider codimension one
complete foliations of space forms, whose leaves have constant mean curva-
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ture. In this respect, J.L. Barbosa, K. Kenmotsu and G. Oshikiri [1] proved
that such a foliation must have minimal leaves if the ambient space is flat, and
does not exist in the sphere. Related results for graphs in products M ×R were
also obtained by J.L. Barbosa, G.P. Bessa and J.F. Montenegro [2], by impos-
ing some restrictions on the fundamental tone of the Laplacian on the graph.

In this paper we study foliations of space forms by complete hypersurfaces,
asking that the leaves have bounded second fundamental form and two consec-
utive higher order mean curvatures not changing signs. For the particular case
of a graph in Euclidean space whose defining function satisfies certain growth
conditions, in Theorem 1 we are thus able to use a result of D. Ferus (Theo-
rem 5.3 of [7]) to get a lower estimate on the relative nullity of the graph; we
also discuss some examples that show that our hypotheses are not superfluous.
As an interesting consequence, we obtain in Corollary 2 a Bernstein-type theo-
rem for such a graph, provided its mean and scalar curvature do not change sign
(but may otherwise be nonconstant).

For the case of general, transversely orientable foliations of space forms, we
follow the approach of [1], computing in Proposition 2 the divergence of the
vector field Pr DN N on a leaf of the foliation; here, N is a unit vector field
on the ambient space, normal to the leaves, and Pr is the r -th Newton trans-
formation of a leaf with respect to N . We are then able to extend one of the
above mentioned theorems of [1], proving the nonexistence of foliations of the
standard sphere whose leaves are complete and have constant scalar curvature
greater than one. We also consider a more direct generalization of the prob-
lem of Bernstein, i.e., that of the study of r -minimal foliations (possibly with a
singular set) of the Euclidean space. In this setting, we are also able to rely to
Ferus’ theorem to prove that the nonsigular leaves are foliated by hyperplanes
of a certain codimension, provided the r -th curvature of them does not vanish.
We remark that problems of this kind have already been considered by the first
author in the Lorentz setting [5].

Besides the formula for the divergence of Pr DN N , another central tool for our
work is a further elaboration, undertaken in Proposition 1 and Corollary 1, of
S.T. Yau’s extension (cf. [14]) of H. Hopf’s theorem on subharmonic functions
on complete noncompact Riemannian manifolds.

2 Graphs in Euclidean space

In what follows, unless otherwise stated, all spaces under consideration are sup-
posed to be connected.

In the paper [14], S.T. Yau obtained the following version of Stokes’ theorem
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on an n-dimensional, complete noncompact Riemannian manifold M : if ω ∈
�n−1(M), an n − 1 differential form on M , then there exists a sequence Bi of
domains on M , such that Bi ⊂ Bi+1, M = ∪i≥1 Bi and

lim
i→+∞

∫

Bi

dω = 0.

By applying this result to ω = ι∇ f , where f : M → R is a smooth func-
tion, ∇ f denotes its gradient and ι∇ f the contraction in the direction of ∇ f ,
Yau established the following extension of H. Hopf’s theorem on a complete
noncompact Riemannian manifold: a subharmonic function whose gradient has
integrable norm on M must actually be harmonic.

We begin by extending the above result a little further. In what follows, we
suppose M oriented by the volume element d M , and let L1(M) be the space of
Lebesgue integrable functions on M .

Proposition 1. Let X be a smooth vector field on the n dimensional complete,
noncompact, oriented Riemannian manifold Mn, such that divX does not change
sign on M. If |X | ∈ L1(M), then divX = 0 on M.

Proof. Suppose, without loss of generality, that divX ≥ 0 on M . Let ω be
the (n − 1)-form in M given by ω = ιX d M , i.e., the contraction of d M in the
direction of a smooth vector field X on M . If {e1, . . . , en} is an orthonormal
frame on an open set U ⊂ M , with coframe {ω1, . . . , ωn}, then

ιX d M =
n∑

i=1

(−1)i−1〈X, ei 〉ω1 ∧ . . . ∧ ω̂i ∧ . . . ∧ ωn.

Since the (n −1)-forms ω1 ∧ . . .∧ ω̂i ∧ . . .∧ωn are orthonormal in �n−1(M),
we get

|ω|2 =
n∑

i=1

〈X, ei 〉
2 = |X |2.

Then |ω| ∈ L1(M) and dω = d(ιX d M) = (divX)d M . Letting Bi be as in the
preceeding discussion, we get

∫

Bi

(divX)d M =
∫

Bi

dω
i

−→ 0.

But since divX ≥ 0 on M , it follows that divX = 0 on M . �
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Now, let M
n+1

be an (n + 1)-dimensional Riemannian manifold. If M is a
complete, orientable, immersed hypersurface on M , oriented by the choice of
a smooth unit vector field N , we let A : T M → T M be the shape operator of
M , i.e., AX = −DX N , where D stands for the Levi-Civitta connection of M .
For 0 ≤ r ≤ n, the r -th Newton tensor Pr on M is recursively defined by

Pr = Sr I − APr−1,

where P0 = I , the identity operator on each tangent space of M , and Sr is the
r -th elementary symmetric function of the eigenvalues of A (we also set S0 = 1
and Sr = 0 if r > n). A trivial induction shows that

Pr =
r∑

j=0

(−1) j Sr− j A( j), (1)

where A( j) denotes the composition of A with itself, j times (A(0) = I ).
One step ahead, let f be a smooth function on M and Lr f = tr(Pr Hess f ).

Then L0 is the Laplacian of M and, if M has constant sectional curvature, H.
Rosenberg proved in [13] that Lr f = div(Pr∇ f ), where div stands for the
divergence on M . Concerning this setting, one gets the following consequence
of Proposition 1.

Corollary 1. Let x : Mn → Qn+1(a) be a complete oriented hypersurface of
a space form Qn+1(a), with bounded second fundamental form. If f : M → R
is a smooth function such that |∇ f | ∈ L1(M) and Lr f does not change sign on
M, then Lr f = 0 on M.

Proof. If A is the second fundamental form of the immersion, then its eigen-
values are continuous functions on M . It thus follows from (1) that ||Pr || is
bounded on M whenever ||A|| is itself bounded on M . Therefore, there exists a
constant c > 0 such that ||Pr || ≤ c on M , and hence

|Pr∇ f | ≤ ||Pr || |∇ f | ≤ c|∇ f | ∈ L1(M).

Since Lr f = div(Pr∇ f ) does not change sign on M , proposition 1 gives
Lr f = 0 on M . �

We now specialize our discussion to the case of a complete oriented hyper-
surface x : Mn → Rn+1. If U is a parallel vector field inRn+1, we let f, g : M →
R be given by

f = 〈N , U 〉 and g = 〈x, U 〉, (2)
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where, as before, N is the unit normal vector field on M that gives its orien-
tation. Letting U> denote the orthogonal projection of U onto M , standard
computations (cf. [13]) give

∇ f = −A(U>), ∇g = U>, (3)

Lr f = −(S1Sr+1 − (r + 2)Sr+2) f + U>(Sr+1), (4)

Lr g = −(r + 1)Sr+1 f. (5)

Specializing a little more, let u : Rn → R be a smooth function and Mn ⊂
Rn+1 be the graph of u, i.e.,

Mn =
{
(x1, . . . , xn, u(x1, . . . , xn)) ∈ Rn+1; (x1, . . . , xn) ∈ Rn

}
.

We also make U = (−V, 1) in the above discussion, where V is a parallel
vector field in Rn . Following R. Reilly [11], we can take N = 1

W (−grad u, 1)

as a unit normal vector field on M , where grad u is the gradient of u on Rn and
W =

√
1 + |grad u|2. This way,

U> =
1

W 2
(grad u − V +〈grad u, V 〉grad u −|grad u|2V, 〈grad u, grad u − V 〉),

so that |U>| ≤ C
W |grad u − V |, where C =

√
1 + 2|V |2. Therefore,

∫

M
|U>|d M ≤

∫

Rn

C

W
|grad u − V |W dx = C

∫

Rn
|grad u − V |dx,

and this is finite if, for instance, there exist positive constants R, c and α such
that |grad u(p) − V | ≤ c

|p|n+α whenever |p| > R. We also point out that, in
standard coordinates, the second fundamental form of M with respect to the
above choice of unit normal vector field is 1

W Hess u, where by Hess u we mean
the Hessian form of u on Rn; hence, the condition that it is bounded amounts to
the existence of a constant c > 0 for which

||Hess u||2 ≤ c
(
1 + |grad u|2

)
.

We can now state and prove the following

Theorem 1. Let Mn ⊂ Rn+1 be the graph of a smooth function u : Rn → R,
such that |grad u − V | ∈ L1(Rn) for some V ∈ Rn and ||Hess u||2 ≤ c(1 +
|grad u|2), for some c > 0. If there exists 0 ≤ r ≤ n −1 such that the elementary
symmetric functions Sr+1 and Sr+2 do not change sign on M, then M has relative
nullity ν ≥ n − r . In particular, if Sr 6= 0, then the graph is foliated by
hyperplanes of dimension n − r .
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Proof. Letting f and g be as in (2), it follows from our hypotheses that both
|∇ f | and |∇g| are integrable on M . On the other hand, since M is a graph, the
function f is either positive or negative on M . Since Sr+1 doesn’t change sign
on M , (5) assures that the same is true of Lr g, and it follows from Corollary 1
that Lr g = 0 on M . In turn, this last information guarantees that Sr+1 vanishes
on M , so that (4) gives

Lr f = (r + 2)Sr+2 f.

By applying the same reasoning (since Sr+2 also doesn’t change sign on M), we
get Lr f = 0 on M , and hence Sr+2 = 0 on M . Finally, since Sr+1 = Sr+2 = 0,
Proposition 1 of [5] gives Sj = 0 for all j ≥ r + 1, so that ν ≥ n − r .

The last claim follows from a theorem of D. Ferus (Theorem 5.3 of [7]). �

We now have immediately the following Bernstein-type result, where it is not
assumed that the hypersurface has constant mean curvature.

Corollary 2. Let Mn ⊂ Rn+1 be the graph of a smooth function u : Rn → R,
such that |grad u − V | ∈ L1(Rn) for some V ∈ Rn and ||Hess u||2 ≤ c(1 +
|grad u|2), for some c > 0. If the mean curvature of M does not change sign on
it, then M is the hyperplane on Rn+1 orthogonal to (−V, 1).

Proof. Letting H and R respectively denote the mean and scalar curvatures of
M , just note that S1 = nH and (by Gauss’ equation) n(n −1)R = 2S2, so that S1

and S2 do not change sign on M . By the previous result, M has relative nullity n
and, since it is complete, it is a hyperplane. The rest follows from our previous
discussions. �

Remark 1. To see that the conditions on u are not superfluous, consider the
following two examples:

1. If u(x1, . . . , xn) = (x2
1 + ∙ ∙ ∙ + x2

r )(αr+1xr+1 + ∙ ∙ ∙ + αnxn), where
αr+1, . . . , αn are real constants, not all zero. If M is the graph of u,
then, out of the hyperplane αr+1xr+1 + ∙ ∙ ∙ + αnxn = 0, M has index of
relative nullity exactly equal to n − r ; in particular, Sr+1 = Sr+2 = 0. On
the other hand, |grad u − V | /∈ L1(Rn) for any V ∈ Rn and there is no
c > 0 such that ||Hess u||2 ≤ c(1 + |grad u|2) for all x ∈ Rn .

2. If u(x1, . . . , xn) = x2
1 + ∙ ∙ ∙ + x2

n and M is the graph of u, then S1, S2 > 0
on M and ||Hess u||2 ≤ 4n(1+|grad u|2), although |grad u−V | /∈ L1(Rn)

for any V ∈ Rn .
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3 Foliations of space forms

We now turn our attention to a more general situation, namely, we consider
codimension one foliations of Riemannian manifolds and try to understand
the effect of higher curvatures on the leaves. We remark that, for foliations
whose leaves have constant mean curvature, this problem has been considered
by Barbosa, Kenmotsu and Oshikiri in [1], and also by Bessa, Barbosa and
Montenegro in [2].

As before, M
n+1

is an (n + 1)-dimensional orientable Riemannian manifold
and F a smooth foliation of codimension one in M . Recall (cf. [9]) that F is
transversely orientable if we can choose a smooth unit vector field N , defined on
M , that is normal to the leaves ofF . If this is the case, then, for each p ∈ M , we
consider the linear operator A : Tp M → Tp M defined by A(Y (p)) = −DY (p)N ,
where, as before, D denotes the Levi-Civitta connection of M . It is clear that if
Y is a smooth vector field on M , then the same is true of A(Y ). Moreover, letting
AL denote the second fundamental form of a leaf L of F , we get A|L = AL .
Accordingly, we let Pr : Tp M → Tp M be the linear operator that coincides with
the r -th Newton transformation on each leaf of the foliation.

Following [1], we let X = DN N , so that X is tangent to the leaves of the
foliation and independent of the the choice of the field N . In what follows, we
compute the divergence of Pr (X) on M and on a leaf L of F .

Proposition 2. Let F be a smooth, transversely orientable foliation of codi-
mension one of a Riemannian manifold M

n+1
, N a unit vector field on M, normal

to the leaves of F and X = DN N. If L is a leaf of F , then

divL(Pr (X)) =
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 + 〈X, divL Pr 〉

+ tr(A2 Pr ) + 〈X, Pr (X)〉 − N (Sr+1),

(6)

where R is the curvature tensor of M, {ei } is an orthormal frame on L and
tr( ∙ ) stands for the trace in L for the operator in parentheses. Moreover,

divM Pr (X) = divL Pr (X) − 〈Pr (X), X〉. (7)

Proof. Given a point p ∈ L , choose an adapted frame field {e1, . . . , en, en+1}
defined in a neighborhood of p in M , i.e., an orthonormal set of vector fields
such that e1, . . . , en are tangent to the leaves and en+1 = N . Ask further that
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A(ei (p)) = λi ei (p), for all 1 ≤ i ≤ n. If we call D the Levi-Civitta connection
of L (and, as before, D that of M), then

divL Pr (X) =
n∑

i=1

〈Dei Pr (X), ei 〉

=
n∑

i=1

ei 〈Pr (X), ei 〉 −
n∑

i=1

〈Pr (X), Dei ei 〉

=
n∑

i=1

ei 〈X, Pr (ei )〉 −
n∑

i=1

〈X, Pr (Dei ei )〉

=
n∑

i=1

ei 〈DN N , Pr (ei )〉 −
n∑

i=1

〈DN N , Pr (Dei ei )〉

=
n∑

i=1

〈Dei DN N , Pr (ei )〉 +
n∑

i=1

〈DN N , Dei Pr (ei )〉

−
n∑

i=1

〈DN N , Pr (Dei ei )〉

=
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 +
n∑

i=1

〈DN Dei N , Pr (ei )〉

−
n∑

i=1

〈D[N ,ei ]N , Pr (ei )〉 +
n∑

i=1

〈DN N , Dei Pr (ei )〉

−
n∑

i=1

〈DN N , Pr (Dei ei )〉

=
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 −
n∑

i=1

〈DN A(ei ), Pr (ei )〉

−
n∑

i=1

〈D[N ,ei ]N , Pr (ei )〉 +
n∑

i=1

〈DN N , Dei Pr (ei ) − Pr (Dei ei )〉.

Now, substituting the equality

[N , ei ] =
n∑

j=1

〈[N , ei ], e j 〉e j + 〈[N , ei ], N 〉N

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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into the above, we get

divL Pr (X) =
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 − N
( n∑

i=1

〈A(ei ), Pr (ei )〉
)

+
n∑

i=1

〈A(ei ), DN Pr (ei )〉 −
n∑

i, j=1

〈[N , ei ], e j 〉〈De j N , Pr (ei )〉

−
n∑

i=1

〈[N , ei ], N 〉〈DN N , Pr (ei )〉 + 〈X, divL Pr 〉

=
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 − N
( n∑

i=1

〈ei , APr (ei )〉
)

+
n∑

i=1

〈A(ei ), DN Pr (ei )〉 + 〈X, divL Pr 〉

−
n∑

i, j=1

〈Dei N , e j 〉〈A(e j ), Pr (ei )〉 +
n∑

i, j=1

〈DN ei , e j 〉〈A(e j ), Pr (ei )〉

+

=0
︷ ︸︸ ︷

n∑

i=1

〈Dei N , N 〉〈X, Pr (ei )〉 −
n∑

i=1

〈DN ei , N 〉〈X, Pr (ei )〉

=
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 − N (tr APr ) + 〈X, divL Pr 〉

+
n∑

i=1

〈A(ei ), DN Pr (ei )〉 +
n∑

i, j=1

〈A(ei ), e j 〉〈A(e j ), Pr (ei )〉

+
n∑

i, j=1

〈DN ei , e j 〉〈A(e j ), Pr (ei )〉 +
n∑

i=1

〈ei , DN N 〉〈X, Pr (ei )〉

=
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 − N (tr APr ) + 〈X, divL Pr 〉

+
n∑

i=1

〈A(ei ), DN Pr (ei )〉 +
n∑

i, j=1

〈A(ei ), e j 〉〈e j , APr (ei )〉

+
n∑

i, j=1

〈DN ei , e j 〉〈A(e j ), Pr (ei )〉 +
n∑

i=1

〈ei , DN N 〉〈Pr (X), ei 〉
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=
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 − N (tr APr ) + 〈X, divL Pr 〉

+
n∑

i=1

〈A(ei ), DN Pr (ei )〉 +
n∑

i=1

〈A(ei ), APr (ei )〉

+
n∑

i, j=1

〈DN ei , e j 〉〈A(e j ), Pr (ei )〉 + 〈DN N , Pr (X)〉

=
n∑

i=1

〈R(N , ei )N , Pr (ei )〉 − N (tr APr ) + 〈X, divL Pr 〉

+tr A2 Pr + 〈X, Pr (X)〉 +
n∑

i=1

〈A(ei ), DN Pr (ei )〉

+
n∑

i, j=1

〈DN ei , e j 〉〈A(e j ), Pr (ei )〉.

In order to understand the last two summands above, let li j = 〈DN ei , e j 〉
and m ji = 〈A(e j ), Pr (ei )〉. It is not difficult to verify that li j = −l ji and
mi j = m ji , so that

n∑

i, j=1

〈DN ei , e j 〉〈A(e j ), Pr (ei )〉 =
n∑

i, j=1

li j m ji = 0.

On the other hand,

n∑

i=1

〈A(ei ), DN Pr (ei )〉 =
n∑

i, j=1

〈A(ei ), e j 〉〈DN Pr (ei ), e j 〉

=
n∑

i, j=1

〈A(ei ), e j 〉N
(
〈Pr (ei ), e j 〉

)

−
n∑

i, j=1

〈A(ei ), e j 〉〈Pr (ei ), DN e j 〉

=
n∑

i, j=1

〈A(ei ), e j 〉N
(
〈Pr (ei ), e j 〉

)

−
n∑

i, j,k=1

〈A(ei ), e j 〉〈Pr (ei ), ek〉〈ek, DN e j 〉.
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Letting hi j = 〈A(ei ), e j 〉 and tik = 〈Pr (ei ), ek〉, we get hi j = h ji and tik = tki ,
and hence

n∑

i, j,k=1

〈A(ei ), e j 〉〈Pr (ei ), ek〉〈ek, DN e j 〉 =
n∑

i, j,k=1

hi j tikl jk = 0.

Therefore,
n∑

i=1

〈A(ei ), DN Pr (ei )〉 =
n∑

i, j=1

〈A(ei ), e j 〉N
(
〈Pr (ei ), e j 〉

)

=
n∑

i, j=1

hi j N (ti j )

= N
( n∑

i, j=1

hi j ti j

)
−

n∑

i, j=1

N (hi j )ti j

= N (tr(APr )) −
n∑

i, j=1

N (hi j )ti j .

Now, by means of computations analogous to those leading to (17), on page 193
of [5], we conclude that

∑n
i, j=1 N (hi j )ti j = N (Sr+1) at p, and this concludes

the proof of (6).
It is now an easy matter to get (7):

divM Pr (X) =
n∑

i=1

〈Dei Pr (X), ei 〉 + 〈DN Pr (X), N 〉

=
n∑

i=1

〈Dei Pr (X), ei 〉 − 〈Pr (X), DN N 〉

= divL Pr (X) − 〈Pr (X), X〉.

�

Remark 2. Concerning the above computations, if M
n+1

has constant sectional
curvature, then Rosenberg proved in [13] that divL Pr = 0, thus simplifying (6).
We shall use this fact twice in what follows.

We now study codimension-one foliations of Sn+1 whose leaves have constant
scalar curvature, thus extending Corollary 3.5 of [1]1.

1As is the case of [1] (since even-dimensional spheres cannot have transversely orientable folia-
tions), the interesting case is that of odd-dimensional spheres. However, since the proof does not
distinguish between odd and even, we present it in general form.
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Theorem 2. There is no smooth, transversely orientable foliation of codimen-
sion one of the Euclidean sphere Sn+1, whose leaves are complete and have
constant scalar curvature greater than one.

Proof. Suppose there exists a foliation F of Sn+1 with the properties above,
let N be a unit vector field on Sn+1 normal to the leaves and AL( ∙ ) = −D( ∙ )N
be the shape operator of a leaf L with respect to N . If RL denotes the constant
value of the scalar curvature of the leaf L of F , it follows from Gauss’ equation
that 2S2 = n(n − 1)(RL − 1), so that S2 is a positive constant.

If λ1, . . . , λn are the eigenvalues of AL , then

S2
1 = |A|2 + 2S2 > |A|2 ≥ λ2

i .

Choosing the orientation in such a way that S1 > 0, it follows from the above
inequalities that S1 − λi > 0. This says that P1 is positive definite on L .

Since the scalar curvature function R : Sn+1 → R, that associates to each
point the value of the scalar curvature of the leaf of F through that point, is
constant on the leaves, Proposition 2.31 of [1] gives that either R is constant on
Sn+1, or there exists a compact leaf L of F having the property that

RL = max
p∈Sn+1

R(p).

Assume first that R is nonconstant on Sn+1, and let L be the compact leaf of
F with maximal scalar curvature, so that N (S2) = 0 along L . The curvature
operator of the sphere, together with Remark 2 and (6), now give

divL P1(X) = tr(P1) + tr(A2 P1) + 〈X, P1(X)〉 > 0.

On the other hand, since L is compact, divergence theorem applied to L gives
divL P1(X) = 0, which is a contradiction.

Now, assume that R is constant on Sn+1. Then N (S2) = 0, and (6) and (7)
give

divP1(X) = tr(P1) + tr(A2 P1) > 0.

However, integration over Sn+1 yields tr(P1) = tr(A2 P1) = 0, which contradics
the positive definiteness of P1. This concludes the proof of the theorem. �

Remark 3. We point out that there are several families of compact tori in
Sn+1 with constant scalar curvature greater than one, and refer the reader to
Example 4.4 of [6] for the details. Of course, none of them constitutes a foliation
of Sn+1.
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We finish this paper with a generalization of Theorem 1 to a singular foliation
of Rn+1, by which we mean a foliation F of Rn+1 \ S, where S ⊂ Rn+1 is a
set of Lebesgue measure zero. In order to state the result, if F is a transversely
orientable such foliation of Rn+1, with unit normal vector field N normal to the
leaves, then (as before) we let X = DN N , where D is the Levi-Civitta connection
of Rn+1. We also recall the reader that an isometric immersion x : Mn → M

n+1

is said to be r -minimal if Sr+1 = 0 on M .

Theorem 3. Let F be a smooth, transversely orientable singular foliation of
codimension one of Rn+1, whose leaves are complete, r-minimal and such that
Sr doesn’t change sign on them. If |X | ∈ L1 and |A| is bounded along each leaf,
then the relative nullity of each leaf is at least n − r . In particular, if Sr 6= 0 on
a leaf, then this leaf is foliated by hyperplanes of dimension n − r .

Proof. Let L be a leaf ofF . Since Sr doesn’t change sign on L , we again have
Pr semi-definite by a result of J. Hounie and M. L. Leite [8], so that tr(A2 Pr )

and 〈X, Pr (X)〉 are both nonnegative or both nonpositive on L . Therefore, by
applying (6) and Remark 2 again, we get

divL(Pr (X)) = tr(A2 Pr ) + 〈X, Pr (X)〉,

which is either greater than or less than zero on L . It thus follows from Propo-
sition 1 that divL Pr (X) = 0, and, since Sr+1 = 0 on L , we get

tr(A2 Pr ) = −(r + 2)Sr+2 = 0.

This way, as before we get Sk = 0 for all k ≥ r + 1, and it suffices to reason
as in the end of the proof of Theorem 1, invoking Ferus’ theorem. �

Remark 4. As an example of the situation described in the theorem above, one
has the singular foliation of Rn+1 by the concentric cylinders Sr

R × Rn−r . Here,
Sr

R ⊂ Rr+1 denotes the sphere with center 0 ∈ Rr aprop:first corollary of Yau
76nd radius R > 0; the singular set of the foliation is the (n − r)-hyperplane
{0} × Rn−r in Rn+1.
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