
“main” — 2010/8/20 — 13:03 — page 355 — #1

Bull Braz Math Soc, New Series 41(3), 355-387
© 2010, Sociedade Brasileira de Matemática

On a characterization of analytic
compactifications for C∗ × C∗
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Abstract. LetM be a minimal compact surface, let 0 ⊂ M be a compact analytic sub-
variety. Assume that X := M \ 0 is Stein. Then we will show that X admits algebraic
compactifications Mi (resp. non algebraic compactifications Mi ) which are not bira-
tionally equivalent (resp. not bimeromorphically equivalent) iff X is biholomorphic to
Ť := C∗×C∗, a toric surface. However in contrast with Ť, we shall show that there exist
compactifiable Stein surfaces which do not admit any affine structure. Also as applica-
tions, we shall characterize the algebraic structures of arbitrary compactifiable surfaces
X according to the topological type of 0.
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1 Introduction

Unless the contrary is explicitly stated, all C-analytic spaces are assumed to
be non compact and algebraic varieties are defined over C, irreducible and non
complete. Also 2-dimensional, connected C-analytic manifolds will be referred
to as surfaces. Since our investigations rely entirely on Kodaira classification of
compact surfaces, unless otherwise specified, all compact surfaces are assumed
to be minimal i.e. free from exceptional curves of the first kind; although some
results mentioned here also hold for arbitrary compact surfaces. For a given
compact surface M , let us denote by a(M) := the transcendence degree of
the field of global meromorphic functions on M over C. Also 1-dimensional
C-analytic spaces will be referred to simply as curves.
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Definition 1.1.

(1) A compact surface M is said to be an analytic compactification of a
given surface X if there are given:

(a) a compact C-analytic subvariety 0 ⊂ M , and

(b) a biholomorphism X ∼= M\0.

(2) A surface X is said to be compactifiable if it admits an analytic compact-
ification M .

(3) A compactifiable surface X is said to admit an algebraic (resp. a non
algebraic) compactification if M is a projective algebraic (resp. a non
algebraic) variety. Then, by abuse of language, we shall say that X admits
an algebraic (resp. a non algebraic) structure.

(4) A surface X is said to admit an affine structure if there exists an affine
varietyX such that X ∼= Xh , whereXh is the underlying C-analytic space
associated to X.

(5) Finally, to simplify our notation, from now on, we shall refer to any surface
X ∼= C∗ ×C∗, where C∗ := C \ 0 , as a toric surface and will be denoted
from now on by Ť.

Our main concern here is the following:

Problem 1.2. To classify all the compactifiable Stein surfaces?

In [30], it was shown that all compactifiable Stein surfaces are quasiprojective;
in particular, they admit algebraic structures, namely, one has

Theorem 1.3. Let X be a compactifiable Stein surface. Then there exists an
algebraic variety X such that X ∼= Xh.

Furthermore, one has:

Theorem 1.4. [29] (Theorem 6) Let X be a compactifiable Stein surface.
Then all non algebraic compactifications of X are bimeromorphically equivalent,
provided X 6∼= Ť.

Furthermore, a complete classification of Stein surfaces in Theorem 1.4 is also
established, namely

Theorem 1.5. [30] (Theorem 3) Let X be a given Stein surface.

Then X admits a non algebraic compactification iff X ∼= Aν
α .

Bull Braz Math Soc, Vol. 41, N. 3, 2010



“main” — 2010/8/20 — 13:03 — page 357 — #3

ON A CHARACTERIZATION OF ANALYTIC COMPACTIFICATIONS FOR C∗ × C∗ 357

Notation 1.6. [1] Let 0 < |α| < 1. Then from now on, affine C-bundles
of degree ν ≤ 0, without global holomorphic sections, over the elliptic curve
C∗/〈α〉 will be denoted by Aν

α.

Notice that it is a serendipity that, for any α,

Ť ∼= A0
α (1.6.1)

Confronted with this state of affairs, it is natural to consider the following:

Problem 1.7. Let 0i ⊂ Mi with i = 1 or 2 be compact analytic subvarieties in
the compact algebraic surfaces Mi . Assume that Xi := Mi \ 0i are biholomor-
phic Stein surfaces.

Is it true that Mi are always birationally equivalent?

In analogy with Theorem 1.4, our Main Theorem which is even valid for
non minimal compact surfaces, will tell us that Xi 6∼= Ť is the necessary and
sufficient condition for the birational equivalence of the Mi ’s. As pointed out to
us by the referee, Problem 1.7 is a triviality ([8] Corollary I.4.5), if one replaces
the assumption “biholomorphic Stein surfaces” by “algebraically isomorphic”
with Mi being arbitrary complete algebraic varieties of any dimension. Indeed,
in order to explore a peculiar aspect of the Main Theorem, let us consider the
following:

Example 1.8. Let A be a fixed non singular affine curve of genus g ≥ 1 and
let Xi with i = 1 or 2, be the total spaces of 2 distinct non trivial algebraic line
bundles on A. Then one can check that:

(1) Xi are affine varieties;

(2) their underlying analytic spaces Xi are biholomorphic to Ah ×C since Ah

is an open Riemann surface.

In view of our Main Theorem, the Stein surfaces Xi only admit birational alge-
braic compactifications; yet, one can check that ([25] Proposition 3.1)Xi are not
algebraically isomorphic.

This shows a marked difference between this setting in algebraic geometry
and its counterpart in the analytic category. Notice that all known examples
of compactifiable Stein surfaces, which are not affine do indeed admit some
affine structure; more generally, one would like to know whether the algebraic
variety X in Theorem 1.3 can always be chosen to be affine. Precisely, here our
fundamental issue would be ([30] Problem 2’).
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Problem 1.9. (Enoki) Do compactifiable Stein surfaces always admit some
affine structure?

Finally there was the following

Problem 1.10. (Hartshorne) To classify compactifiable Stein surfaces which
are not affine?

As an application of the above result, let us consider the following general
setting:

Problem 1.11. Let 0 := ∪i0i (resp. 0′ := ∪i0
′
i ) be a connected compact

curve in a given compact surface M(resp. M ′), where 0i (resp. 0′
i ) are the

irreducible components of 0 (resp. 0′). Let ai, j := 0i ∙0 j (resp. a′
i, j := 0′

i ∙0
′
j )

and let A := (ai j ) (resp. A′ := (a′
i j )) be the intersection matrix. Assume that

X := M \ 0 and X ′ := M ′ \ 0′ are biholomorphic. Does the bimeromorphy of
M and M ′ determine by the eigenvalues of A and A′?

This paper is the continuation of [29, 30, 31]; in particular, it will provide an
affirmative answer (resp. counterexamples) to Problem 1.7 (resp. Problem 1.9).
Also it seeks to rectify and strengthen some results there. So the organization will
be as follows: In section 2, we shall briefly review the intrinsic character of Ť.
In section 3, we shall classify the non algebraic structures of compactifiable
Stein surfaces. In section 4, the uniqueness issue of compactifiable Stein sur-
faces will be taken up. Section 5 will be devoted to the proof of the Main
Theorem which provides an affirmative answer to Problem 1.7. The affine struc-
ture of compactifiable Stein surfaces will be explored in section 6 in which
counterexamples to Problem 1.9 will be exhibited. Also detailed discussions of
Problem 1.10 will be carried out. Finally in section 7, we shall tackle Prob-
lem 1.11.

2 The toric surface

2.1. This venture, as well as many others, was inspired by the groundbreaking
paper [9] and the following pioneering observation: [23] (p. 108)

“For any non singular elliptic curve τ̃ := C/Z + Zτ viewed as a Lie group,
there exists a unique algebraic group G which is a non trivial extension

0 −→ Ga −→ G −→ τ̃ −→ 0 (2.1.1)

whereGa is the 1-dimensional additive group. Consequently, one can check [7]
that
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(a) the algebraic cohomology group H 0(G, OG) = C where OG is the alge-
braic structure sheaf of G; but

(b) analytically G is isomorphic to Gm × Gm =: Gan where Gm is the 1-
dimensional multiplicative group. Thus the analytic cohomology group
H 0(Gan, Oan) has infinite dimension, where Oan is the analytic structure
sheaf of Gan”.

2.2. We infer readily that Ť admits both affine algebraic and non affine al-
gebraic structures. In other words, Ť admits two distinct families of algebraic
compactifications:

(1) the non rational ones, namely the elliptic ruled surfaces π : E → τ̃ .

(2) the rational ones, namely Hirzebruch surfaces, Fn for any n ≥ 0 and n 6= 1.

Remark 2.3.

(1) It was shown (see e.g. [24, 25, 27]) that those 2 families are the only
algebraic compactifications of Ť.

(2) Although all rational structures of Ť are birationally equivalent, the nov-
elty of (2.1.1) stems from the fact that it inherits Ť with infinitely many
different (i.e. non birationally equivalent) algebraic structures.

2.4. This phenomenon shows a sharp contrast with the case when dimC X = 1
[25] or when X is a compact C-analytic space which admits, in view of GAGA
principle [8], at most one algebraic structure. An alternate approach to (2.1.1)
was also established in [18] (p. 145) as follows:

2.5. Let G be the rank 2 group of (2 × 2) diagonal matrices with complex
entries. Hence G ∼= C∗ × C∗. Let A be the subgroup of G, consisting of those
matrices of the form (

exp z 0
0 exp i z

)

with z ∈ C. Obviously A is a closed subgroup of G . Since A ∼= C, we infer
that G is a topologically trivial principal bundle over G/A with structural group
A. Since C is contractible, one has an isomorphism of fundamental groups
π1(G) ∼= π1(G/A). Since G/A is 1-dimensional and its fundamental group is
abelian with 2 generators, it follows readily that G/A is an elliptic curve.
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2.6. This result tells us that the toric surface Ť admits a structure of an affine
principal line bundle of degree zero over an elliptic curve.

2.7. Also notice that few years earlier, the structure of such a bundle, also known
as A-bundle of degree zero, was thoroughly investigated in [1]. Apparently, it
was not aware of the important isomorphism (1.6.1), until [23] and [18] came
along.

3 The existence of an algebraic structure

Our main goal here is the following

Problem 3.1. To classify the Stein surfaces X which admit non algebraic com-
pactifications?

Since, as we’ll see later, affine C-bundles of degree ν ≤ 0 over some elliptic
curve, are answers to Problem 3.1, so let us recall, for the sake of completeness,
some fundamental constructions:

3.2. [4] Let k ≥ 1 be some fixed integer. Let α ∈ C with 0 < |α| < 1, let
t := (t1, . . . , tk) ∈ Ck and let ν ∈ C∗. Now let

τ :=
k∑

j=1

t jν
j−1

and let us define a holomorphic automorphism

gk,α,τ : C× C∗ −→ C× C∗, by

(u, v) 7→ (vku + τ, αv).

3.3. Let Ak,α,t be the quotient surface C × C∗/〈gk,α,τ 〉. Then one can check
that:

(1) Ak,α,t is a bundle of affine lines over the elliptic curve Cα := C∗/〈α〉,
with structural group, the affine group. Its linear part L is a holomorphic
line bundle over Cα such that c1(L) = −k.

(2) In correlation with notation 1.6, notice that, in the case where t 6= 0, one
has, with ν = −k,

Ak,α,t = Aν
α

Hence, from now on, Ak,α,t will be referred to, as affine C-bundles of
degree −k over Cα.

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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(3) As mentioned in 2.6, Ť can be realized as an affine C-bundle of degree
zero over some elliptic curve. However, in contrast with Ť, each Ak,α,t

admits (up to birational equivalence) unique algebraic structures (see e.g.
Theorem 3.11 below). In particular, the latter does not admit rational
compactifications.

Now let us mention some intrinsic properties of affine C-bundles Ak,α,t.

Theorem 3.4. [4] Let A be an affine C-bundle of degree −k < 0, over some
elliptic curveC∗/〈α〉. ThenA is equivalent as an affine C-bundle to someAk,α,t

for some t ∈ Ck .

Lemma 3.5. [30]

(1) When t 6= 0, Ak,α,t are free of compact curves.

(2) Meanwhile, Ak,α,0 is the total space of a line bundle L on C∗/〈α〉 such
that c1(L) = −k.

Notation 3.6. For any geometric ruled surface π : M → Cg where Cg is a
compact non singular curve of genus g ≥ 0, there exists a rank 2 vector bundle
Vg on Cg such that M ' P(Vg). Furthermore, we assume that Vg is normal-
ized in the sense of Hartshorne [8] (V.2.8.1) and the number e := −c1(det Vg)

will be referred to as an invariant of M . Also let 4 be the canonical section
of M with OM(4) ' O(1), where O is the structural sheaf of P(Vg). Then
42 = −e. Also, let F := π−1(x) for any x ∈ Cg be the fibres of M .

Convention 3.7. [26] For any fixed α ∈ C with 0 < |α| < 1, let V1 be a
rank 2 vector bundle on the elliptic curve C∗/〈α〉 and let R := P(V1) be the
corresponding ruled surface.

(1) If V1 is indecomposable with invariant e = 0, then let us denote the ruled
surface R by Rα

0 . The latter contains a unique section, say 40 such that
42

0 = 0.

(2) If V1 is indecomposable with invariant e = −1, then let us denote the
ruled surface R by Rα

−1. The latter contains infinitely many sections, say
4−1 such that 42

−1 = 1.

(3) If V1 is decomposable with invariant e ≥ 0, then let us denote the ruled
surface R by Sα

e . The latter contains a canonical section, denoted by 4

such that 42 = −e and another section, say 4∞ such that 4 ∩ 4∞ = ∅
and that 42

∞ = e.
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Definition 3.8. (see e.g. [28]) A surface X is said to be strongly pseudoconvex
(or 1-convex for short) if there exist

(1) a 2-dimensional Stein space Y with only finitely many isolated normal
singularities, say pi and

(2) a proper and surjective morphism π : X → Y , inducing a biholomorphism

X \ S ' Y \
⋃

i

{pi }

where S := ∪iπ
−1(pi ) will be referred to as the exceptional set of X .

Remark 3.9. Obviously any Stein surface is 1-convex (with S = ∅). So from
now on, 1-convex surfaces which are not Stein (i.e. dimC S > 0) will be referred
to as properly 1-convex surfaces.

Lemma 3.10.

(1) The affine C-bundle Ak,α,t(with t 6= 0) are compactifiable Stein surfaces
which also admit affine structure.

(2) Meanwhile Ak,α,0 are compactifiable properly 1-convex surfaces with
exceptional set, an elliptic curve 4, such that 42 = −k < 0.

Proof. By definition, each such Ak,α,t admits an elliptic ruled surface π :
Eα := P(V1) → Cα as its compactification. In particular, one can find a section
2 ⊂ Eα such that Ak,α,t ' Eα \ 2 := X. Now one will have the following 3
alternatives:

• If 22 < 0, then V1 is necessarily decomposable and 2 = 4 the canonical
section; hence there exists a section at “infinity”, say 3 ⊂ Eα such that
32 > 0 and 2 ∙ 3 = 0 i.e. 3 ⊂ X ' Ak,α,t which is not possible in view
of Lemma 3.5.

• If 22 = 0, then one has 2 possibilities:

(a) If V1 is decomposable, thenAk,α,t will contain at least one compact
curve; but that will contradict Lemma 3.5.

(b) On the other hand, if V1 is indecomposable, it means that Ak,α,t is
an affine bundle of degree zero, but this is not possible, since k 6= 0.

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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• Therefore, 22 > 0. We infer readily that Ak,α,t are 1-convex, see e.g.
[29].

(1) Now, as far as affine C-bundle Ak,α,t are concerned, as previously ob-
served (lemma 3.5) since t 6= 0,Ak,α,t are free of compact curves. Hence
2 is actually an ample divisor. Thus X is affine. In particular Ak,α,t

is Stein.

(2) On the other hand, as noticed earlier, if 2 := Eα \Ak,α,0, then 22 = k;
in particular, Ak,α,0 is properly 1-convex and admits 4 := the canonical
section of L as exceptional set with 42 = −k < 0. �

We are now in a position to provide a complete structure of elliptic surfaces
M which are compactifications of Ak,α,t.

Theorem 3.11. Let M be an algebraic compactification of Ak,α,t and let
0 := M\Ak,α,t. Then

(1) 02 = k ≥ 1.

(2) M ' Rα
0 (resp. Sα

e ) iff t 6= 0 and k (resp. e) is even.

(3) M ' Rα
−1 (resp. Sα

e ) iff t 6= 0 and k (resp. e) is odd.

(4) M ' Sα
e with e = k iff t = 0.

Proof. In view of Lemma 3.10, M ' P(V1) is an elliptic ruled surface. Also
it follows from [4] (Proposition 7.1) that 02 = k.

• Assume that t 6= 0. Then Ak,α,t is Stein. Consequently 0 is an ample
divisor.

(1) If k = 2p with p ≥ 1, then it is easy to see that M ' Rα
0 , provided

that V1 is indecomposable. Then one can check that

0 ≡ 40 + pF

where ≡ stands for numerical equivalence.
On the other hand if V1 is decomposable, then M ' Sα

e with e even.
Then one has ([8] Proposition V.2.6), in view of the ampleness of 0

0 ≡ 4 + rF

where r = p + e
2 and p > e

2 .
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(2) If k = 2p − 1 with p ≥ 1, then M ' Rα
−1 provided V1 is indecom-

posable. Then one has

0 ≡ 4−1 + (p − 1)F.

On the other hand if V1 is decomposable then M ' Sα
e with e odd.

Then one can check that ([8] loc.cit.)

0 ≡ 4 + sF

where s = p + (e−1)

2 and p > (e+1)

2 .

• Assume that t = 0. Then Ak,α,0 is 1-convex. Consequently, M ' Sα
e

with e = k. �

Corollary 3.12. Let M be an algebraic compactification of A1,α, t with t 6= 0.
Then necessarily M ' Rα

−1.

Therefore, for any 0 6= t 6= t′ 6= 0, one has

A1,α,t ' A1,α,t′

On the other hand, one has, for any α and β,

Rα
0 \ 40 ' Ť ' Rβ

0 \ 40

Definition 3.13. [16] Let t, α, β ∈ C with 0 < |α| ≤ |β| < 1, let U :=
C2 \ (0, 0), let m ≥ 1 and let g : U → U be an automorphism of U defined by

g(z, w) := (αz + twm, βw)

such that
(αm − β)t = 0

Now one can check [16] (p. 695) that the cyclic group 〈g〉 is properly discontin-
uous and the quotient space U/〈g〉 is a compact surface.

(1) Assume that t 6= 0. Then

g(z, w) = (αz + twm, αmw)

Now let Hα,t,m := U/〈g〉. Then one can check that

b1(Hα,t,m) = 1 and

b2(Hα,t,m) = a(Hα,t,m) = 0

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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where bi () are the ith Betti numbers. Furthermore the puncture line U ∩
{w = 0} is invariant under g, so it is mapped by the projection π : U →
Hα,t,m onto a non singular compact elliptic curve γα := C∗/〈α〉 which is
the only compact curve in Hα,t,m . Also we have γ 2

α = 0.

From now on Hα,t,m will be referred to as the non elliptic Hopf surface of
Type (I).

(2) Assume that t = 0 and α p 6= βq for any p, q ∈ Z+. Now let Hα,β :=
U/〈g〉. Then one can check that

b1(Hα,β) = 1 and

b2(Hα,β) = a(Hα,β) = 0

In this case, the puncture line U ∩ {z = 0} which is also invariant under g
is mapped by π onto a non singular compact elliptic curve γβ := C∗/〈β〉.
Also one can check that γα and γβ are the only compact curves in Hα,β .
Furthermore, one has γ 2

β = 0. From now on, Hα,β will be referred to as
the non elliptic Hopf surface of Type (II).

3.14. It was first shown in [9] that, for any α ∈ C∗, m ≥ 1 and t ∈ C∗ one has

Hα,t,m\γα ' Ť

3.15. By following the program which was initiated by Kodaira, remarkable
constructions of non algebraic surfaces M of class V I I0 i.e. compact surfaces
with b1(M) = 1, besides non elliptic Hopf surfaces, as mentioned in Defini-
tion 3.13, were explicitly exhibited in [4].

Indeed, based on special constructions by Inoue [14] and Kato [15], for any
fixed α ∈ C with 0 < |α| < 1, 1 ≤ k ∈ Z and t ∈ Ck , Enoki [4] exhibited a
series of compact surfaces, denoted by Mα,k,t which have the following crucial
properties:

b1(Mα,k,t) = 1 ≤ k = b2(Mα,k,t). (3.15.1)

It follows from (3.15.1) that, automatically, one has

a(Mα,k,t) = 0

FurthermoreMα,k,t contains a connected compact curve, say Dk , withDk
2 = 0

such that its configuration is as follows:

(1) D1 is a rational curve with a single node.

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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(2) D2 = γ1 ∪ γ2 such that, for i = 1 or 2:

• γ 2
i = −2;

• γi ' P1;

• The γi intersect transversally at exactly 2 points.

(3) If k ≥ 3, then Dk = ∪1≤ j≤kγ j where γi ' P1, γ 2
i = −2 for any i with

1 ≤ i ≤ k, and

γi .γ j =






−2 if i = j
1 if |i − j | = 1 or k − 1
0 otherwise

Lemma 3.16. [4] If t 6= 0 then Dk is the only compact curve in Mα,k,t. On the
other hand, Mα,k,0 contains only 2 compact curves: Dk and an elliptic curve τ̃

such that τ̃ 2 = −k.

Remark 3.17. In the literature, Mα,k,0 are referred to as Parabolic Inoue sur-
faces.

In parallel with Theorem 3.11 and Corollary 3.12, one has:

Theorem 3.18. [4] Let M be an non algebraic compactification of Ak,α,t

and let 0 := M\Ak,α,t. Then

(1) 02 = 0.

(2) M ' Mk,α,t if t 6= 0.

(3) M ' Mk,α,0 if t = 0.

Corollary 3.19. [15] For any 0 6= t 6= t′ 6= 0, one has

M1,α,t ' M1,α,t′

From these results, we infer that Problem 3.1 is completely settled by the fol-
lowing: (see also [30] Theorem 3).

Theorem 3.20. Let M be a non algebraic compact surface, let 0 ⊂ M be a
compact analytic subvariety and let X := M\0. Then the following conditions
are equivalent:

(1) X is Stein.

(2) X ' Ť (resp. X ' Ak,α,t for some k, α and t 6= 0) if b2(M) = 0 (resp.
b2(M) = k).

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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(3) X admits affine structure.

Corollary 3.21. Any compactifiable Stein surface is quasi-projective.

Corollary 3.22. Any compactification M of a Stein surface X is projective
algebraic, provided X 6∼= Aν

α for some ν ≤ 0 and 0 < |α| < 1.

Remark 3.23. Theorem 3.20 does hold for (non minimal) non algebraic com-
pact surfaces. Indeed, let M , 0 and X be as in Theorem 3.20 with M being an
arbitrary non algebraic compact surface.

Claim: If γ ⊂ M is an exceptional compact curve of the first kind, then
necessarily γ ⊂ 0.

Assume the contrary. Let 00 ⊂ M be an exceptional curve of the first kind
such that 00 6⊂ 0. Let ∪i0i with i ≥ 1 be an irreducible decomposition of 0.
Let 0′ := 0 ∪ 00 and let X ′ := M \ 0′. Then certainly X ′ ' X \ (00 ∩ X)

is Stein, since X is. On the other hand, since M is non algebraic, it follows
readily that the intersection matrix A′ := (ai j ) where ai j := 0i .0 j , with i and j
≥ 0, is negative semi-definite. Consequently A := (ai j ) with i and j ≥ 1 (see
e.g. [4] (Lemma 1.1)) is negative definite. In view of Hartog’s Theorem, this
will contradict the fact that X is Stein. Hence our claim is proved.

4 The uniqueness issue

4.1. As noticed earlier, one has, for any α and β:

Hα,t,m \ γα ' Ť ' Hβ,s,m \ γβ (4.1.1)

On the other hand, one can check that

Hα,t,m is bimeromorphic to Hβ,t,m iff α = β (4.1.2)

Hence complementing Remark 2.3(2), we infer from (4.1.1) and (4.1.2) that
Ť admits infinitely many different (i.e. non bimeromorphically equivalent) non
algebraic structures. Hence one would like to raise the following

Problem 4.2. Up to biholomorphism, is Ť the only compactifiable Stein surface
which admits non algebraic (resp. algebraic) compactifications which are not
bimeromorphically equivalent?

Our main purpose here is, on the basis of Theorem 1.4, to provide an affirma-
tive answer to this Problem, namely
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Theorem 4.3. [Main Theorem] Let X be a given compactifiable Stein surface.

Then all algebraic compactifications of X are birationally equivalent pro-
vided X 6∼= Ť.

The proof of this result will be given in the next section. We would like to
exhibit here a special but practical version of Theorem 4.3 as an illustration which
has special interest in its own right. But first of all, few basic ingredients are
in order.

Definition 4.4. [13] Let D be a non singular algebraic curve and let C be its
non singular compactification (which exists and is unique). Hence there exists
finitely many points {q j } ∈ C such that D ' C \ ∪i qi . Now let g := genus of C
and n := card |q j |. Then we say that D is of type (g, n).

Theorem 4.5. [13] (Theorem 5) Let X be a Stein surface. Assume that there
exist a non singular algebraic curve R and a surjective mapping π : X → R.
Assume that

(1) π is of maximal rank for any x ∈ X.

(2) each fibre D := π−1(t) for any t ∈ R is a non singular algebraic curve
of type (g, n) such that

2g + n > 2

Then X only admits algebraic compactifications which are birationally equiv-
alent.

We are now ready to state a special case of Theorem 4.3.

Proposition 4.6. Theorem 4.3 holds if one assumes that X is a product of two
non singular algebraic curves, namely X ' A1 × A2.

Proof. Notice that any non singular algebraic curveD does satisfy the assump-
tion (2) in Theorem 4.5 with 2 exceptions, namely: C and C∗. Consequently, it
follows readily that our Proposition does hold, with possibly 3 exceptions:

(1) C2 or

(2) C× C∗ or

(3) C∗ × C∗.

However, we infer from results in [17] (resp. in [27]) that the only compact-
ifications of C2 (resp. C× C∗) are rational compact surfaces. Hence our proof
is complete. �
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5 The intrinsic behavior of Ť

The main purpose of this section is to devote to a complete proof of Theorem 4.3
above. But first of all, few basic ingredients are in order:

Definition 5.1. Let M be an analytic compactification of a C-analytic manifold
X , let 0 := M \ X and let KM be the canonical bundle of M . From the vector
space V := H 0(M,O(mKM + (m − 1)0), let us consider a basis {φ1, . . . , φN }
which gives rise to a well defined meromorphic map:

8m : M −→ PN ,

z 7→ 8m(z) := [φ0, . . . , φN ].

where N := dim V − 1.

Following [21], let N (X) := {m > 0| dim V > 0} and let us define

ka(X) =
{

maxm
{

dim 8m(M)
}

if N (X) 6= ∅
−∞ if N (X) = ∅

(5.1.1)

Notice that ka(X) which will be referred to as the analytic Kodaira dimension
of X , is a bimeromorphically invariant. On the other hand, we have

Definition 5.2. [11] From the above formula (5.1.1), if one replaces the vec-
tor space V by W := H 0(M,O(m(KM + 0)), then one obtains the so called
logarithmic Kodaira dimension of X which we shall denote from now on by
kl(X).

Remark 5.3. Although kl(X) is a birational invariant, it is, unlike ka(X),
not even biholomorphically invariant (see e.g. Example 5.4 below), an aspect
which will be fully exploited later on in our strategy.

Also, it is obvious from the definition that, in the special case where 0 = ∅,
ka(X) and kl(X) will coincide with the standard notion of Kodaira dimension
k(M) for compact manifold M [12]. Now in general, if M is a compactification
of a C-analytic manifold X , then one has [21]:

−∞ ≤ k(M) ≤ ka(X) ≤ kl(X) ≤ dimC M

Example 5.4. Let X1 = P2 \ 0 where 0 consists of 3 lines in general position.
By using the same convention as in 3.7, let X2 := Rα

0 \ 40. Then one can check
that:
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(1) X1 ' X2 ' Ť;

(2) kl(X1) = 0 and kl(X2) = −∞;

(3) ka(X1) = ka(X2) = −∞.

Proposition 5.5. [21] (Proposition 2.2) One has

ka(X) = dimC X iff kl(X) = dimC X.

Proposition 5.6. [21] Let 0 be a compact curve of degree d in P2 and let
X := P2 \ 0. Then

ka(X) =
{

2 if d > 3
−∞ otherwise

As far as Stein surfaces X with ka(X) < 2 are concerned, we have the follow-
ing crucial result:

Theorem 5.7. [29] (Lemma 2) Let M be an algebraic compactification of a
Stein surface X.

Assume that ka(X) < 2. Then M is a ruled surface.

Complementing Theorem 5.7, a main result in [22] Theorem 3.4 (which
does hold even for non minimal algebraic compactifications), provides us the
following:

Theorem 5.8. Let π : Rg → Cg with g ≥ 1 be an irrational ruled surface and
let 0 ⊂ Rg be a connected compact curve.

Assume that X := Rg \ 0 is Stein and admits non birationally equivalent
algebraic compactifications. Then

• g = 1 i.e. π : R1 → C1 is necessarily an elliptic ruled surface. Further-
more

• 0 is either:

(1) a section, or

(2) an irreducible 2-section, or

(3) a reducible 2-section, C ∪D where C(resp.D) is a section.

Notation 5.9. From now on, the surface X := R1 \ 0 in Theorem 5.8 will be
denoted by XI (resp. XI I , resp. XI I I ) if 0 is of type (1) (resp. (2), resp (3))
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of Theorem 5.8. Also from now on, let us adhere to the following notation:
R1 = P(V) for some rank 2 bundle V over C1 with invariant e.

Definition 5.10. [5] Let π : M → C be a ruled surface and let 0 ⊂ M be a
compact curve. Then X := M\0 is said to admit a C∗-fibration if 0 ∙ F = 2 for
generic fibre F in M . From now on aC∗-fibration structure on X will be denoted
by f : X → C where f := π |X .

By taking Proposition 5.5 into account, we have the following alternatives:

Theorem 5.11. [21] Let X be a quasi-projective surface. Assume that kl(X) =
2. Then all algebraic compactifications of X are bimeromorphically equivalent.

Theorem 5.12. [6] (see also Sakai, F. Math. ann. 254, (1980) Theorem 3.15 (i)
p. 104).

Let X be an affine surface. Assume that kl(X) = 1.
Then X admits a structure of a C∗-fibration f : X → C which is uniquely

determined.
Precisely, if g = X → C′ is anotherC∗-fibration, then there exists an isomor-

phism σ : C ' C′ such that g = σ ◦ f .

Theorem 5.13. Let M be a compactification of a Stein surface X. Assume that
kl(X) = 0. Then M is a rational surface provided X 6∼= Ť.

Proof. In view of Theorem 5.7, M is a ruled surface. Assume that M = Rg is
an irrational surface with g ≥ 1. It follows from our assumption that,

K + 0 ≡ 0 (5.13.1)

where K is the canonical bundle of Rg and 0 = Rg \ X . In view of Theo-
rem 5.8, one can assume that 0 is free of fibre components.

(1) Assume that 0 is irreducible. Hence from (5.13.1) and [8] (Corollary
V.2.11) we have that

02 = K2

= 8(1 − g) ≤ 0

Since X is Stein, so necessarily

02 = 0 i.e. g = 1 (5.13.2)

In this situation, one has 3 alternatives for the elliptic ruled surface R1 :=
P(V).
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(a) V is a decomposable rank 2 bundle with e = 0.

In this case, its canonical section 0 will satisfy (5.13.2). From the
decomposability assumption of V, it follows that R1 also contains
compact curves 2 with 2 ∙ 0 = 0, i.e. 2 ⊂ X , contradicting the
fact that X is Stein.

(b) V is an indecomposable rank 2 bundle with invariant e = −1. Then
the curve

0 ≡ 24 − F (5.13.3)

which is an elliptic curve, will satisfy (5.13.2). But it was shown [20]
(Lemma 6.8) that in this situation, X also contains compact curves.
That will contradict the Steiness of X . In fact, in [26], by realizing
R1 as an hyperelliptic surface over P1, (at least) 3 disjoint compact
curves of type (5.13.3) in X were explicitly exhibited. Consequently,
this case can not occur.

(c) V is an indecomposable rank 2 bundle with invariant e = 0.

In this case, we infer readily from Example 5.4 that R1 ' Rα
0 and

0 = 40. Consequently, X ' Rα
0 \ 40 ' Ť.

(2) Assume that 0 := R1 \ X is reducible. Then, let 3 ⊂ 0 be an irreducible
component. As mentioned earlier, one can assume that 0 is free of fibre
components; hence 3 ∙ F > 0 for any fibre F ⊂ R1. Hence

0 = 3 ∙ (K + 0) = 32 +K ∙ 3 + 3 ∙ (0 \ 3)

= 2g(3) − 2 + 3 ∙ (0 \ 3).

Hence g(3) = 1 and 3 ∙ (0 \ 3) = 0 i.e. 3 is isolated in 0. But X is Stein, so
3 = 0 and the same argument as above will apply. �

Remark 5.14.

• It follows from the arguments in (1) (c) of the proof of Theorem 5.13, we
infer that the surfaces X := Xm where m = I I or I I I are affine.

• A complete list of rational surfaces satisfying Theorem 5.13 can be found
in [10] (proposition 6 and 16).

We are now in a position to provide a complete proof of the Main Theorem.

Proof. We are going to show that all algebraic compactifications of X = Xm

where m = I or I I or I I I , are birationally equivalent, unless X ' Ť.
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Step 1: Assume that

X = Xm with m = I or I I. (5.14.1)

Let us assume that X admits a rational compactification say M. So let us con-
sider the following exact sequence of homology groups with C-coefficients

0 = H3(M) → H3(M,3) → H2(3) → H2(M)

→ H2(M,3) → H1(3) → H1(M) = 0
(5.14.2)

where 3 := M \ X .
On the one hand, in view of the hypothesis (5.14.1), one can check that:

b1(X) = 2 and b2(X) = 1. (5.14.3)

On the other hand, by duality, we have:

H3(M,3) = H 1(X) and H2(M,3) = H 2(X). (5.14.4)

Since dimC H 2(3) =: μ(3) is equal to the number of irreducible components
of 3, by combining (5.14.2), (5.14.3) and (5.14.4), one can check that:

(1) If M = Fn then μ(3) = 4, 3 consists of 2 sections and 2 fibres and
X ' Ť;

(2) If M = P2, then μ(3) = 3, 3 consists of 3 lines in general position and
X ' Ť.

Step 2: As notice earlier, Ť has a structure of an affine C-bundle of degree
0 over an elliptic curve; so let R1 be a compactification of Ť. Then it follows
readily that 0 := R1 \ Ť is a section with 02 = 0. We infer readily from Step
1, that XI I does not admit any rational compactification; meanwhile XI admits
a rational compactification iff XI ' Ť.

Step 3: In step 1, assume that

X = XI I I (5.14.5)

Since C andD are sections and since b1(X) = 0 for i ≥ 3, the topological Euler
number χ(X) of X can be expressed as follows:

χ(X) = b0(X) − b1(X) + b2(X)

= χ(RI ) − χ(3)

= ν > 0

(5.14.6)
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where ν := Card(C ∪D). In view of [5] (Lemma 7.10), one has

b1(X) = 2 or 3 (5.14.7)

Now let us assume that X admits a rational compactification, say M with 3 :=
M \ X .

(1) Assume that all the components of 3 are projective lines. By excluding
the case where X ' Ť, one has the following alternatives:

(a) If M = P2, then one can check that [11] (Example 3, on p. 176)
M is either the product of 2 affine curves or ka(X) = 2. Therefore
Theorem 4.5 or Theorem 5.11 will exclude this possibility for X .

(b) On the other hand, let us assume that M = Fn . Then some care-
ful calculations (see e.g. [5] Lemma 7.9) shows us that, in view
of (5.14.2) and under the constraints (5.14.7), 3 must consist of 1
section and 3 fibres (resp. 1 section and 4 fibres). Now one has

χ(X) = χ(Fn) − χ(3)

= 4 − (1 − 0 + μ(3))

= −1(resp. − 2)

which in either case, will contradict (5.14.6). Hence a rational com-
pactification M of XI I I is not possible.

(2) Otherwise, at least one irreducible component of 3 say θ is either:

• an irrational curve (with possible singularities), or

• a rational curve with one node.

Also, one can assume that 3 \ θ= union of fibres of M.

(a) If M = P2, Proposition 5.6 tells us that ka(X) = 2. Hence
Theorem 5.11 tells us that such a rational compactification M can-
not occur.

(b) On the other hand if M = Fn with n = e ≥ 0, it follows from [8]
that

θ = a4 + bF with a ≥ 1 and b ≥ ae (5.14.8)

where 4 (resp. F) is a canonical section (resp. a fibre) of M with
42 = −e.
In view of the argument in Step 2 and the minimality of M, one can
assume that both a and n > 1.
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(i) If a = 2, clearly X is affine and kl(X) = 0 or 1. Then Theo-
rem 5.13 (resp. Theorem 5.12) tells us that this is not possible,
in view of the existence of the elliptic ruled surface R1 which
is a compactification of XI I I .

(ii) Assume that a > 2. SinceKM ≡ −24 + (−2 − e)F [8] where
KM is the canonical bundle of M, we have:

KM + 3 > KM + θ ≡ (a − 2)4 + (b − 2 − e)F

We infer from equation (5.14.8) that KM + 3 is an ample divi-
sor [8] (Corollary V.2.18). Thus kl(X) = 2.
Consequently such a rational compactification for M cannot
occur.

Step 4: Let us use the same conventions as in 5.7. Assume that X = XI admits
another elliptic ruled surface, say E1 → D1 as its compactification, i.e. there
exists a compact curve θ ⊂ E1 such that

σ : X ' X ′ := E1\θ (5.14.9)

where E1 = P(W) for some rank 2 bundle W on D1 with invariant e′.
Since one excludes the case where X ' Ť, one can assume that:

02 = k > 0 (5.14.10)

Consequently X is an affine surface, where 0 := R1 \ X . In view of The-
orem 5.8, we can assume that 2 has no fibre components. Now by using,
Mumford-Ramanujam theory (see e.g. [4]), one can show (see e.g. Lemma
1.5 [4]), in view of the isomorphism (5.14.9), that ∂U is homotopically equiva-
lent to ∂V where U (resp. V ) is some tubular neighborhood of 0 (resp. 2); we
infer from (5.14.10) that θ2 = k.

Case 1: Assume that V is decomposable. Hence R1 admits a canonical sec-
tion 4 such that 42 = −ε < 0. From the isomorphism (5.14.9), it follows read-
ily that σ(4 \ (4 ∪ 0)) =: E ⊂ E1 is an algebraic curve. Since dimC E = 1,
it admits a unique algebraic structure [25]. So let 4′ be the compactification
of E. Then one deduces from (5.14.9), that 4 ' 4′ and 4′2 = 42 = −ε < 0.
Since E1 is an elliptic ruled surface, this will imply [8] (V.2) that W is also
decomposable rank 2 bundle. Consequently E1 will admit 4′ as its canonical
section. Now by identifying the base curve of the elliptic ruled surface with
its canonical section, we infer readily that C1 ' D1 and e = e′ = ε > 0.
Consequently R1 ' E1.

Bull Braz Math Soc, Vol. 41, N. 3, 2010



“main” — 2010/8/20 — 13:03 — page 376 — #22

376 VO VAN TAN

Case 2: Assume that V is indecomposable. Then the same argument as above
will tell us that W must be also indecomposable. Hence (5.14.9) is actually an
isomorphism of affine C-bundle of degree 6= 0. As noted earlier, Theorem 3.1
(see also [15]), each affine C-bundle A of degree −k < 0, over an elliptic curve
τ̃ , is completely determined by its linear part L which is a line bundle over τ̃

such that c1(L) = −k; however from Lemma 3.10, the total space of L is in fact
a properly 1-convex surface which is completely determined by its exceptional
set S which in turn is the canonical section of the elliptic ruled surface. Again,
by identifying the base curve with its canonical section, we infer readilly that
C1 ' D1; hence R1 ' E1.

5.14.1. Remark. This result is an analogue of Theorem 5.12 for affine sur-
faces X which admit a C-fibration structure over some elliptic curve τ̃ and which
satisfy the condition kl(X) = −∞.

Step 5: We stay in the same situation as in Step 4 but with

X = XI I or XI I I .

Assume that kl(X ′) = −∞. Since X ′ is Stein then θ got to be a section
without any fibre components. The argument in Step 4 shows us that this is not
possible. Otherwise, one can check that kl(X ′) ≥ 0. Then we infer from Theo-
rem 5.13 that kl(X ′) > 0 . On the other hand if kl(X ′) = 1 (resp. = 2) we infer
from Theorem 5.12 (resp. Theorem 5.11) that all algebraic compactifications
of X are birationally equivalent.

Step 6: Assume that Xm with m = I or I I or I I I admits an irrational ruled
surfaceRg with g > 1 as its compactification. Clearly this case cannot occur in
view of Theorem 5.8. �

From theorem A in [28] and Theorem 4 in [31], we derive the following

Corollary 5.15. Let X be a compactifiable 1-convex surface.

Then the algebraic compactifications of X are birationally equivalent iff
X 6∼= Ť.

Corollary 5.16. Let X be a compactifiable Stein surface.

Then the following conditions are equivalent:

(1) X 6∼= Aν
α, with ν ≤ 0.

(2) X only admits algebraic compactifications which are birationally equiva-
lent.
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6 The affine structures

As far as affine surfaces are concerned, we have the following:

Proposition 6.1. [30, 31] Let X be an affine surface.

Then ka(X) = −∞ or 2.

In parallel to Proposition 6.1, we have

Theorem 6.2. Let X be a compactifiable Stein surface.

Then ka(X) = −∞ or 2.

Proof. Let M be a compactification of X and let 0 := M \ X .

Case 1: Assume that M = P2. Then our conclusion will follow from Propo-
sition 5.6.

Case 2: Assume that M is a ruled surface. Then a main result in [32] tells us
that X is biholomorphic to, either

(a) an affine surface, or

(b) P(V) \ 0 where V is an indecomposable rank 2 bundle over a compact
curve Cg with g > 0 with invariant e < 0 and where 0 is a section with
02 = 0.

For (a) Proposition 6.1 will apply. As far as (b) is concerned, one has:

Claim: If 0 ⊂ P(V) is a section, then ka(X) = −∞ where X := P(V) \ 0.

Proof of the claim: Assume that kl(X) ≥ 0. Let us consider the linear system
|m(KM + 0| for any integer m > 0 where KM is the canonical bundle of M .
Since 0 is a section, KM + 0 ≡ −4 + kF for some integer k. Hence one can
find at least one effective element D ∈ |m(KM + 0)|. But D ∙ F = −m < 0.
Contradiction. Hence our claim is proved.

Consequently kl(X) and a fortiori, ka(X) is equal to −∞.

Case 3: Assume that M is algebraic and k(M) ≥ 0. Then it follows from [29]
that ka(X) = 2.

Case 4: Assume that M is a non algebraic surface. Then it follows from
Theorem 3.20 that X is biholomorphic to either:

(1) Ť which, as an affine line bundle of degree 0, admits an elliptic ruled
surface as its compactification such that 0 is a section with 02 = 0. Thus,
from the above Claim, one has ka(X) = −∞, or
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(2) Ak,α,t which, as affine C-bundle of degree −k , will admit an elliptic ruled
surface as its compactification such that 0 is a section with 02 = k. Hence
again ka(X) = −∞. �

Remark 6.3.

(1) In [30] a proof of Theorem 6.2 was also given. However, it was incom-
plete.

(2) As notice in Remark 2.3 (resp. Lemma 3.10), the toric surface Ť (resp. the
affine C-bundles Ak,α,t with t 6= 0) admits affine structures. On the other
hand, as previously noticed, the analytic Kodaira dimension is bimero-
morphically invariant; hence the above results naturally lead us to the
following:

Problem 6.4. Do compactifiable Stein surfaces X always admit some affine
structure?

6.5. Counterexample. Let Vg be an indecomposable rank 2 bundle on some
non singular compact curve of genus g ≥ 1 with invariant e = 0. Then one can
check that the ruled surface Rg := P(Vg) carries a section 0 such that

02 = −e = 0 (6.5.1)

On the other hand, it was shown in [32] that Xg := Rg \0 is indeed Stein. Notice
that X1 ' Ť. We deduce from (6.5.1) that Xg are not affine. Then it follows
readily from Theorem 4.3 that, in contrast to X1, all compactifications of Xg for
g > 1, are birationally equivalent: therefore Xg do not admit any affine structure
if g > 1.

6.6. Notice that ka(Xg) = −∞. In [31] it was anticipated that Problem 6.4
might have an affirmative answer, provided ka(X) = 2; unfortunately, it was
merely a wishful thinking, as shown by the following:

6.7. Counterexample. Step 1: Here we follow closely an idea in [2]. For
any g ≥ 1, let us select a sufficiently ample divisor, say δ ⊂ Rg such that:

(1) KRg + δ is very ample, where KRg is the canonical bundle of Rg, and

(2) |2δ| contains an effective smooth divisor, say 1.
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Let π : Mg → Rg be a double cover of Rg, ramified along 1. Then from the
Leray spectral sequence, one has

H 0(Mg,KMg ) ' H 0(Rg,KRg ) ⊕ H 0(Rg,KRg + δ) (6.7.1)

whereKMg is the canonical bundle ofMg. SinceRg is a ruled surface, the first
summand in (6.7.1) is zero. Furthermore (1) and (2) will guarantee that Mg is a
surface of general type.

Step 2: Let 2 := π∗(0). It follows readilly from (6.5.1) that

22 = 0 (6.7.2)

Furthermore, Ug := Mg \ 2, being a finite cover of the Stein surface Rg, is
itself Stein. Since Mg is of general type, it follows readily that ka(Ug) = 2. In
view of (6.7.2), Ug is not affine. Since ka(Ug) = 2, Theorem 5.11 tells us that
analytic compactifications of Ug are biholomorphic. We infer readily that Ug do
not admit any affine structure.

Remark 6.8. Notice that the above construction applies mutatis mutandis in
order to provide a negative answer to Problem 4 in [29].

7 Some further prospects

7.0.1. The above constructions provide us concrete examples of compact alge-
braic surfaces M which are ruled (resp. of general type) namely Rg (resp. Mg)
for any g > 1 (resp. any g > 0) such that M is the compactification of a Stein
surface X , namely Xg (resp. Ug) which do not admit any affine structure. Such
a construction was motivated by a question raised by Hartshorne, namely

Problem 7.1. [7] (Problem 3.4 p. 235) Let M be an arbitrary compact surface,
let 0 ⊂ M be an irreducible compact curve and let X := M \ 0.

Assume that X is free of compact curves.
Is X always Stein, provided 02 ≥ 0.

7.1.1. Digression. From the analysis by Ogus and a construction by Arnold,
it is known that Problem 7.1 admits a negative answer if M is non minimal,
see [34] for precise references (see also [20] p. 37); indeed, Arnold constructed
non minimal rational surfaces M with an embedded non singular elliptic curve
0 ⊂ M admitting a tubular neighborhood U ⊂ M such that:

(1) 02 = 0;
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(2) N0/M , the normal bundle of 0 in M is non torsion;

(3) X := M \ 0 is free of compact curves.

Then Ogus’ argument will imply that X is not Stein. Notice that since M is
rational, the technique in 6.7 will apply in order to produce new counterex-
amples for Problem 7.1 where the compact surfaces M can be selected to be
of general type. So let us take this opportunity to discuss further new chal-
lenges which we’ll encounter, when non minimal compactifications are taking
into account.

In fact, in [19] a family of algebraic surfaces Å was exhibited such that:

(1) the algebraic cohomology groups H 1Å,�p) vanish for any p ≥ 0;

(2) Å are not affine;

(3) kl(Å) = −∞;

(4) Å admits non minimal rational compactifications Ñ;

(5) 0 :=Ñ\Å consisted of 9 components.

Consequently, one would like to raise the following:

7.2. Problem. Is Å always Stein?

• If the answer to 7.2 is negative, Å will provide us a second counterexam-
ple to Problem 7.1, if the irreducibility assumption for 0 is dropped; then
in view of Remark 3.23 one has the following:

7.3. Question. Does Å admit a non algebraic compactification?

This will direct us to the follow up:

7.4. Question. Do the analytic cohomology groups H 1(Å,�p) also van-
ish for for p ≥ 0?

A positive answer to 7.4, will reinforce our belief that the assumption of
minimality for compact surfaces in [32] is crucial. On the other hand, a
negative answer to 7.4 will tell us, once again, the limitations of GAGA
principle even in dimension 2, in view of (1) in 7.1.1.

• If the answer to 7.2 is positive, then it will direct us to the follow up:
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7.5. Question.

(1) Does Å admit some non rational compactification?

(2) Does Å always admit some affine structure?

Remark 7.6. Similarly, since Ñ is rational, one can construct a series of alge-
braic surfaces, say Ã with similar properties as Å, but with a single exception,
namely kl(Ã)= 2.

Now let us get back to our initial framework, i.e. minimal compactifications.
Then in [33] an affirmative answer to Problem 7.1 was given, provided k(M) =
−∞; concisely, one has

Theorem 7.7. Let M be a compactification of some surface X.

Assume that k(M) = −∞.

(1) Assume that M is non algebraic.

Then X is Stein iff either X ' Aν
α for some ν ≤ 0 and α ∈ C with

0 < |α| < 1.

(2) Assume that M is algebraic.

Then X is Stein iff X is affine or X ' Xg for any g > 0.

Complementing this result, it is not very hard to prove the following

Theorem 7.8. Let M be a compact algebraic surface, let 0 ⊂ M be a compact
analytic subvariety and let X := M \ 0. Assume that k(M) = 0 or 1.

Then X is Stein iff X is affine.

Thus, in order to complete this picture, one naturally would like to raise the
following:

Problem 7.9. Are Mg, for any g > 0, up to biholomorphism, the only compact
surfaces of general type which compactify Stein surfaces which are not affine,
namely Ug?

For further generalizations, let us introduce the following:

7.10. Proposition-Definition. Let 0 := ∪i0i be a connected compact curve
in a given compact surface M , where 0i are the irreducible components of 0.
Let ai, j := 0i ∙ 0 j and let A := (ai j ) be the intersection matrix. Then one of the
following three alternatives will occur: either
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• A has at least one positive eigenvalue. Then one can select ri ∈ Z such
that D2 > 0 where D :=

∑
i ri0i . In this case, 0 is said to be topologically

of positive type, or

• A is negative definite. Then 0 is said to be topologically of negative type,
or

• A is negative semi-definite. Then one can find s j ∈ Z such that D′2 = 0
where D′ :=

∑
j s j0 j ; in which case, 0 is said to be topologically of zero

type.

Now, in order to round off this discussion, we would like to provide some appli-
cations of Theorem 4.3 to another aspect of Problem 1.7 above, namely:

Problem 7.11. Let Mi be given compact surfaces and let 0i ⊂ Mi be compact
connected curves, with i = 1 or 2. Assume that Xi := Mi \0i are biholomorphic.

Are Mi bimeromorphically equivalent if 0i are topologically of the same type?

In this direction, we have the following:

Theorem 7.12. Problem 7.11 admits an affirmative answer, provided

(♠) both 0i are topologically of negative (resp. positive) type.

Proof.

(1) Assume that both 0i are topologically of negative type. Grauert’s cri-
terion tells us that there exist 2-dimensional normal compact C-analytic
spaces, say Yi with one isolated singular point {γi } and morphisms πi :
Mi → Yi inducing biholomorphisms

Xi = Mi \ 0i ' Yi \ {γi } (7.12.1)

Since Yi are normal, Hartogs extension Theorem implies that the isomor-
phism X1 ' X2 will extend to a biholomorphism Y1 ' Y2; consequently,
M1 ' M2 since they are non singular resolutions of the same space.

(2) Assume that 0i are both topologically of positive type. Then one deduces
from Chow-Kodaira Theorem that Mi are projective algebraic. Also we
infer from [29] that Xi are 1-convex with exceptional set Si .

(a) Assume that dimC Si > 0. Then Theorem 4 and 5 in [29] tell us that
Mi are biholomorphic.
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(b) Assume that dimC Si = 0, i.e. Xi are Stein. Then we have 2 alter-
natives:

• Assume that Xi ' Ť. Since 0i are topologically of positive
type, Mi are necessarily rational surfaces. Thus we are done.

• Assume that Xi 6∼= Ť. Then Theorem 4.3 tells us that Mi are
bimeromorphically equivalent. �

Corollary 7.13. Theorem 7.12 will hold if one replaces the hypothesis (♠) by

(♣) none of the 0i are topologically of zero type.

Proof.

(1) Assume that 01 is topologically of negative type. It follows readily from
(7.7.1) and Hartogs extension theorem that

0(X1,OX1) = C (7.13.1)

Now if 02 is topologically of positive type, then X2 is 1-convex, i.e.

dimC 0(X2,OX2) = ∞ (7.13.2)

in view of Definition 3.8. Therefore (7.13.1) and (7.13.2) will contradict
the hypothesis that X1 ' X2. Thus 02 must also topologically of negative
type. Hence our conclusion will follow from Theorem 7.12.

(2) Assume that 01 is topologically of positive type. Then the same argument
as above will tell us that 02 also must be of positive type. Again our
conclusion will follow from Theorem 7.12. �

7.14. Question. Does Problem 7.11 admit a positive answer if both 0i are
topologically of zero type?

Obviously, the answer is “No”. However, our current study shows that, dras-
tically, an answer to Question 7.14 is still negative, even if one assumes, further-
more that

(1) Mi are both algebraic (resp. both non algebraic), and

(2) Xi are Stein.

However on the positive side, we have
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Proposition 7.15. Question 7.14 admits a positive answer, provided, either

(1) X1 ' X2 =: X is Stein and X 6∼= Ť; or

(2) X1 ' X2 =: X is properly 1-convex.

Proof.

(1) Step 1: Assume that M1 is non algebraic. Since 02
1 = 0, it follows from

Theorem 3.20 that X ' Ak,α,t with t 6= 0. Assume that M2 is algebraic.
Since X2 ' Ak,α,t and 02

2 = 0, Lemma 3.10 tells us that this is not
possible. Hence M2 got to be non algebraic. We infer from Theorem 1.4
that M1 ' M2.

Step 2: Assume that M1 is algebraic. Since 02
1 = 0, it follows from

Theorem 3.20 that X 6∼= Ak,α,t and, by hypothesis , X 6∼= Ť. Assume that
M2 is non algebraic. Then Corollary 3.22 tells us that this is not possible.
Consequently M2 is also algebraic. Since X 6∼= Ť, the Main Theorem will
apply and our conclusion will follow.

(2) Assume that M1 is non algebraic. We infer from Theorem B in [29] that

(♦) X ' Ak,α,0

Now if M2 is algebraic, then in view of (♦) and 02
2 = 0, Lemma 3.10

tells us that this is not possible. Hence M2 is also non algebraic and our
conclusion will follow from Theorem 4 in [29].

Now assume that M1 is algebraic. Then following Theorem B in [29], for
any k ≥ 1 and α ∈ C, one has

(♥) X 6∼= Ak,α,0

On the other hand, if M2 is non algebraic, it follows from Theorem B in
[29] and 02

2 = 0 that, for some k ≥ 1 and α ∈ C with 0 < |α| < 1,
X ' Ak,α,0. This certainly contradicts (♥). Hence M2 is also algebraic
and our conclusion again will follow from Theorem B in [29]. �

Remark 7.16. Notice that Proposition 7.15 is false if X is not assumed to be
1-convex.

Indeed, let us use the same notations as in Definition 3.13. Let M1 := Hα,ω1

and let M2 := Hα,ω2 be non elliptic Hopf surfaces of type (II). Now let X1 :=
M1 \ γω1 and let X2 := M2 \ γω2 . Then one can check that
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(1) X1 ' X2 =: X ;

(2) γω1 and γω2 are of zero type.

However M1 and M2 are bimeromorphically equivalent iff ω1 = ω2. In fact, one
can check that [34] X is topologically (but not analytically) a trivial line bundle,
say L on the elliptic curve γα and 0(X,OX ) = C.

Consequently, X also admits a third compactification which is projective al-
gebraic, say M3 where

M3 := Sα
e ' P(E)

where e = 0 and E is the trivial extension of

0 −→ Oγα
−→ E −→ L −→ 0
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