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Hölder norm estimate for the Hilbert transform
in Clifford analysis

Ricardo Abreu-Blaya and Juan Bory-Reyes

Abstract. Let � ⊂ Rn be a Jordan domain with d-summable boundary 0. The
main gol of this paper is to estimate the Hölder norm of a fractal version of the Hilbert
transform in the Clifford analysis context acting from Hölder spaces of Clifford algebra
valued functions defined on 0. The explicit expression for the upper bound of the norm
provided here is given in terms of the Hölder exponents, the diameter of 0 and certain
d-sum (d > d) of the Whitney decomposition of �. The result obtained is applied to
standard Hilbert transform for domains with left Ahlfors-David regular surface.
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1 Introduction

Standard Clifford analysis is a higher dimensional function theory offering both
a generalization of holomorphic functions theory in the complex plane and at the
same time a refinement of classical harmonic analysis. Its roots go back as early
as the 1930’s. For a classical account of this function theory we refer e.g. to the
monograph [7].

Recently, making heavy use of the interaction between harmonic analysis and
geometric measure theory, Clifford analysis has emerged as yet a particularly
suitable framework for the treatment of higher-dimensional boundary values
phenomena for domains with highly irregular boundaries, see [2, 3, 4, 5, 6].

Hence, this can be regarded of as a good motivation for finding conditions
on the boundary, which give boundedness of certain singular integral operators,
such as the Hilbert transform when the boundary is permitted to be fractal. This
is the question we shall be concerned in this work.
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2 Preliminaries

2.1 Clifford algebras and monogenic functions

The real Clifford algebra associated with Rn endowed with the Euclidean metric
is the minimal enlargement of Rn to a real linear associative algebra R0,n with
identity such that x2 = −|x |2, for any x ∈ Rn .

It thus follows that if {e j }n
j=1, is the standard basis of Rn , then we must have

that
ei e j + e j ei = −2δi j .

Every element a ∈ R0,n is of the form a =
∑

A⊆N aAeA, N = {1, . . . , n},
aA ∈ R, where e∅ = e0 = 1, e{ j} = e j , and eA = eα1 ∙ ∙ ∙ eαk for A = {α1, . . . , αk}
where α j ∈ {1, . . . , n} and α1 < ∙ ∙ ∙ < αk .

The conjugation is defined by a :=
∑

A aAeA, where

eA = (−1)keik ∙ ∙ ∙ ei2ei1, if eA = ei1ei2 ∙ ∙ ∙ eik .

Notice that for x ∈ Rn , we thus have that

x x = x x = |x |2.

By means of the conjugation, a norm |a| may be defined for each a ∈ R0,n by
putting

|a|2 =
∑

A

|aA|2.

A function defined in some subset E of Rn with values in the Clifford algebra
R0,n is a map u : E → R0,n of the form

u(x) =
∑

A

u A(x)eA, x ∈ E,

where u A are real components of u, then notions of continuity and differentiabil-
ity of u are introduced by means of those corresponding for its real components.

If E ⊂ Rn is a compact set, then C0,α(E), 0 < α < 1 stands for the class of all
Hölder continuous R0,n-valued functions u of exponent α (see [10]), for which

|u|α,E := sup
x,y∈E; x 6=y

|u(x) − u(y)|

|x − y|α

is finite and define
‖u‖α,E = max

x∈E
|u(x)| + |u|α,E.
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For a thorough treatment we refer the reader to [16].
Clifford analysis focuses on the null solutions of various special partial differ-

ential operators arising naturally with the Clifford algebras language, the most
important of them being the so-called Dirac operator in Rn given by

D :=
n∑

i=1

ei
∂

∂xi
.

It is a first order elliptic operator whose fundamental solution is given by

e(x) =
1

σn

x

|x |n
, x 6= 0,

where σn is the area of the unit sphere in Rn .
If � is open in Rn and u ∈ C1(�), then u is said to be monogenic (left) in �

if D u = 0 in �.
In closing this introductory subsection let us remember that a Whitney ex-

tension (see [15]) of u ∈ C0,α(E), E being compact, is a compactly supported
function ũ ∈ C∞(Rn \ E) ∩ C0,α(Rn) such that ũ|E = u and

|Dũ(x)| ≤ c |u|α,E(dist(x, E))α−1 for x ∈ Rn \ E.

It is worth remarking that c > 0 depends only on α and n.

2.2 Some geometry

By definition, presented in [11], a set E ⊂ Rn is said to be d-summable if the
improper integral

1∫

0

NE(τ )τ d−1dτ

converges.
Here and subsequently, NE(τ ) stands for the least number of τ -balls needed

to cover E.
The diameter of E ⊂ Rn will be denoted by |E|.
It should be noted that if E is d-summable, then it is also (d + ε)-summable

for every ε > 0.
In all that follows, � ⊂ Rn denotes a Jordan domain, what means a bounded

oriented connected open subset of Rn whose boundary 0 is a compact topo-
logical surface. When looked at the case n = 2 this leads to that usual Jordan
domain in the plane.
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The following lemma reveals the specific importance of the notion of d-
summability applied to the boundary 0 of a Jordan domain � and relating to
the Whitney decomposition W of � by binary cubes, see [15] for more details.

Lemma 2.1 [11]. If � is a Jordan domain of Rn and 0 is d-summable, then
the d-sum

∑
Q∈W |Q|d of the Whitney decomposition W of � is finite.

For simplicity of notation, we let s(d) stand for the d-sum of a Jordan domain
� with d-summable boundary.

An important special case is when 0 is assumed to be left Ahlfors-David regular
((l) AD-regular for short), which is understood to mean that it has Hausdorrf
(n − 1)-measure finite (H (0) < ∞) and there exists a constant c0 such that

c0 rn−1 ≤ H (0 ∩ B(x, r)) for x ∈ 0, 0 < r ≤ |0|, (1)

where B(x, r) denotes the closed ball with center x and radius r (see [3, 4, 5]).
A nice link between this geometric notion, introduced in [3], and that of d-

summability is given by the following lemma. Precisely, under (l) AD-regular
assumption the (n − 1 + ε)-sum is bounded above by a constant timesH (0)/ε.

Lemma 2.2. If 0 is (l) AD-regular, then it is (n − 1 + ε)-summable for any
ε > 0 and ∑

Q∈W

|Q|n−1+ε ≤ c
H (0)

ε
, (2)

where c depend only on n and c0.

Proof. The proof of the (n − 1 + ε)-summability easily follows by noticing
that

N0(τ ) ≤ P0

(τ

2

)
,

where P0( τ
2 ) is the greatest number of disjoint τ

2 -balls with centers in 0, pre-
cisely what is the well-known packing number of 0 (see for instance [13]).

Then, in accordance with (1) we have

c0

τ n−1

2n−1
P0

(τ

2

)
≤ H (0)

and hence that
N0(τ ) ≤ cH (0)τ 1−n,

where the constant c depends on n and c0.
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Consequently,

1∫

0

N0(τ )τ n−1+ε−1dτ ≤ cH (0)

1∫

0

τ ε−1dτ = c
H (0)

ε
, (3)

which establishes the (n − 1 + ε)-summability of 0.
We can now proceed analogously to the proof of Lemma 2 in [11], which,

together with (3), gives (2). �

More generally, the above proof reveals that if 0 is a d-set (0 < d ≤ n)
i.e., a regular set with dimension d in the sense of [8, 13], then it is (d + ε)-
summable for any ε > 0.

3 Hilbert transform on d-summable surfaces

The inspiration for the following definition is the Cauchy type formula estab-
lished in [1], Theorem 3.1.

Definition 3.1. Let 0 be d-summable with d ∈ (n − 1, n]. If α > d + 1 − n,
then we define the Cauchy transform of a function u ∈ C0,α(0) by

(C∗
0u)(x) := ũ(x)χ�(x) +

∫

�

e(y − x)Dũ(y)dy, x ∈ Rn \ 0, (4)

where ũ stands for a Whitney extension of u and χ�(x) denotes the characteris-
tic function of �.

A trivial verification shows that C∗
0u, being monogenic in Rn \ 0, vanishes

at infinity. Meanwhile, when 0 is sufficiently regular (e.g. (l) AD-regular), the
Cauchy transform (4) becomes the more standard one defined by

(C0u)(x) :=
∫

0

e(y − x)ν0(y)u(y)dH (y), x /∈ 0,

where ν0(y) is the outward pointing unit normal to 0 introduced in [9].

For a deeper discussion of higher dimensional analogue of the Plemelj So-
khotzki formula in Clifford analysis setting, where the existence of the boun-
dary limits of the last-mentioned Cauchy transform is satisfactory can be found
in [3, 5, 6].

Bull Braz Math Soc, Vol. 41, N. 3, 2010



“main” — 2010/8/20 — 13:06 — page 394 — #6

394 RICARDO ABREU-BLAYA and JUAN BORY-REYES

Definition 3 is legitimate, because the right member of (4) exists for any
x ∈ Rn \ 0 and its value does not depend on the particular choice of ũ. The
proof of this last assertion can be found in [1], Proposition 3.2.

A natural question to ask is whether C∗
0u has a continuous extension to � :=

� ∪ 0. It is generally a highly nontrivial question. However, on the positive
side, the next theorem sheds some light on the answer and one can therefore also
introduce the following “fractal" multidimensional Hilbert transform

(H∗
0u)(x) = 2(C∗

0u)+(x) − u(x), x ∈ 0.

Here (C∗
0u)+ denotes the trace on 0 of the continuous extension of C∗

0u to �.
This approach is an alternative to the more conventional Hilbert transform

in Clifford analysis, which is defined to be the Cauchy principal value singular
integral

(H0u)(x) :=
∫

0

e(y − x)ν0(u(y) − u(x))dH (y) + u(x), x ∈ 0. (5)

For a recent account of the description of Hölder-boundedness of (5) we refer
the reader to [4].

In case of Lipschitz domains the Hilbert transform H0u can be rewriten as

(H0u)(x) :=
∫

0

e(y − x)ν0u(y)dH (y) +



1 −
∫

0

e(y − x)ν0dH (y)



 u(x),

where the second term depends on the interior angle of each corner point of 0,
see [14] for more details.

Theorem 3.1. Let 0 be d-summable and α > d
n . Then C∗

0u has continuous
extension to �. Furthermore, H∗

0u ∈ C0,β(0) whenever β < nα−d
n−d .

Proof. Our proof starts with the observation that from α > d
n it follows that

n < n−d
1−α

. Then, we are at liberty to choose p such that n < p < n−d
1−α

.

The next claim is that Dũ ∈ L p(�). Indeed,
∫

�

|Dũ(y)|pdy =
∑

Q∈W

∫

Q

|Dũ(y)|pdy ≤ c |u|α,0

∑

Q∈W

∫

Q

(dist(y, 0))p(α−1)dy

≤ c|u|α,0

∑

Q∈W

|Q|p(α−1)|Q|n = c|u|α,0

∑

Q∈W

|Q|n−p(1−α).
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The finiteness of the last sum follows from the d-summability of 0 together
with the fact that n − p(1 − α) > d .

From what has already been proved it follows that the integral term of (4),
which will be denoted by

U (x) :=
∫

�

e(y − x)Dũ(y)dy

represents a continuous function in Rn (see [10], for instance).
This clearly forces (C∗

0u)(x) to has continuous extension to �. Moreover,

U ∈ C0,
p−n

p (Rn), combined with β < nα−d
n−d , implies that H∗

0u ∈ C0,β(0). �

3.1 Hölder norm estimate for H∗
0

Theorem 3 gains in interest if we realize that the Hilbert transform H∗
0 acts

from C0,α(0) into C0,β(0) whenever

0 < β <
nα − d

n − d
< 1. (6)

We next show that H∗
0 is bounded between these spaces and present upper

bound for its norm.

Theorem 3.2. Let 0 be d-summable and suppose (6) occurs. Then H∗
0 is

bounded from C0,α(0) into C0,β(0) and

‖H∗
0‖ ≤ 1 + |0|α−β + c1(s(d))

1−β
n + c2(s(d))

1−β
n |0|β, (7)

where d := n α−β

1−β
and c1, c2 depend only on α, β and n.

Proof. We begin by choosing p = n
1−β

. A brief inspection of the proof of
Theorem 3 reveals that

∫

�

|Dũ(y)|pdy ≤ c |u|p
α,0

∑

Q∈W

|Q|n−p(1−α)

= c |u|p
α,0

∑

Q∈W

|Q|p(α−β)

= c |u|p
α,0 s(p(α − β)) = c |u|p

α,0 s(d).
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Since d > d , we have

‖Dũ‖L p ≤ c1/p |u|α,0(s(d))1/p.

At this stage we appeal to Proposition 8.1 in [10] to deduce that

|U (x)| ≤ c‖Dũ‖L p |0|
p−n

p = c‖Dũ‖L p |0|β ≤ c1 |u|α,0(s(d))1/p|0|β,

and
|U |β,Rn ≤ c‖Dũ‖L p ≤ c2 |u|α,0(s(d))1/p.

Consequently, for any x ∈ 0

|H∗
0u(x)| ≤ |u(x)| + 2|U (x)|

≤ |u(x)| + c1 |u|α,0(s(d))1/p|0|β

≤ (1 + 2c1(s(d))1/p|0|β)‖u‖α,0,

|H∗
0u|β,0 ≤ |u|β,0 + 2|U |β,Rn

≤ |0|α−β |u|α,0 + 2c2 |u|α,0(s(d))1/p

= (|0|α−β + 2c2(s(d))1/p)|u|α,0.

This finally yields

‖H∗
0u‖β,0≤(1+|0|α−β +c1(s(d))

1−β
n +c2(s(d))

1−β
n |0|β)‖u‖α,0,

which completes the proof. �

Remark 3.1. Note that in the proof of both Theorems 3 and 3.1 we have used
the d-summability of 0 just to ensure the finiteness of some (d + ε)-sum. In the
following section we exploit this argument when the surface is assumed to be (l)
AD-regular.

3.2 The case of (l) AD-regular boundary

Theorem 3.3. Let 0 be (l) AD-regular. Then the Hilbert transform H0 is
bounded from C0,α(0) into C0,β(0), whenever 0 < β < nα + 1 − n < 1.
Moreover,

‖H0‖ ≤ 1 + c1[H (0)]
α−β
n−1 + c2[H (0)]

1−β
n + c3[H (0)]

n−1+β
n(n−1) , (8)

where c1, c2 and c3 depend on α, β, n and c0.
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Proof. Let us take p = n
1−β

. By assumption we have 1 − p(1 − α) > 0.
Lemma 2.2 now shows that the (n − p(1 − α))-sum is finite.

Then, according to Remark 3.1, the estimate (7) follows by the same method
as in the proof of Theorem 3.1.

The proof is now completed by the following observations:

i) |0| ≤ (c0)− 1
n−1 [H (0)]

1
n−1 , which is clear from (1).

ii) Lemma 2.2, taking ε = 1 − p(1 − α) gives

s(p(α − β)) ≤ c
H (0)

1 − p(1 − α)
. �

Remark 3.2. Employing a more intrinsic strategy, the Hölder boundedness of
H0 was carried out in [4]. Much to our surprise, this permitted to show that H0

is precisely bounded from C0,α(0) into C0,nα+1−n(0). However, the technique
employed there does not seem to be available anymore for fractal domains.

3.3 Rectifiable Jordan curves in R2

An especially interesting case occurs when 0 is a rectifiable closed Jordan curve
inR2. Since the (l) AD-regularity condition is automatic for such a boundaries, it
follows that the constants in (8) depend only on α and β. This particular situation
was early considered in [12] for piecewise smooth curves. Our approach offers
certain improvement to the main result obtained there.
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