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On the deformation theory of Calabi-Yau
structures in strongly pseudo-convex manifolds

Alireza Bahraini

Abstract. We study the deformation theory of Calabi-Yau structures in strongly
pseudo-convex manifolds with trivial canonical bundles. Our approach could be con-
sidered as an alternative proof for a theorem of H. Laufer on the deformation of strongly
pseudo-convex surfaces.
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1 Introduction

There are traditionally two main approaches for the study of the deformation
theory of complex closed manifolds: The algebraic method based on Çech co-
homology and the analytic method which uses Hodge theory [5]. The theory
which is known in the literature as Kodaira-Spencer theory shows that the first
order infinitesimal deformations of a complex manifold M is characterized by
H 1(M,T ′) and the obstruction to formally extending the deformation to higher
orders is determined by H 2(M,T ′) where T ′ denotes the holomorphic tangent
sheaf to M .

One of the most fundamental families of complex manifolds for which lo-
cal and global deformation theory are extensively studied and very well under-
stood is the special case of K3 surfaces. By definition K3 surfaces are simply
connected compact complex surfaces with trivial canonical bundles. It can be
seen that for these types of surfaces the above mentioned obstruction vanishes
and so the moduli of complex structures form a smooth manifold of dimen-
sion dim H 1,1(M). This is a well-known theorem in the literature, named local
Torelli theorem for K3 surfaces. Local Torelli theorem can also be proved by

Received 28 November 2009.



“main” — 2010/8/20 — 13:11 — page 410 — #2

410 ALIREZA BAHRAINI

a third method using an observation of Andereotti. We recall that K3 surfaces
are topologically unique and their variation is associated to different complex
structures on this unique background. Suppose that a K3 surface is described by
a complex structure I on the differentiable manifold M . We write X = (M, I ).
The holomorphic 2-form σ which is unique upto scaling can be viewed as a
complex two form σ ∈ A2

C(M). The complex form σ obviously satisfies
the following three conditions:

i) σ is closed i.e. dσ = 0, ii) σ ∧ σ = 0, and iii) σ ∧ σ̄ > 0.

The two form σ is also called the holomorphic volume form or the Calabi-Yau
structure of X = (M, I ). The observation of Andereotti is that the converse
also holds. Indeed, any complex two form σ ∈ A2

C(M) satisfying i)-i i i) is
induced by a complex structure in the above sense. More precisely, one defines
T 0,1 M as the kernel of σ : TCM → T ∗

CM and T 1,0 M as its complex conju-
gate. Conditions i i) and i i i) ensure that this results in a decomposition of
TCM which defines an almost complex structure. This almost complex struc-
ture is integrable due to i). Thus the space of complex structures on M can be
identified with the space of complex two forms σ on M satisfying the condi-
tions i)-i i i) up to natural equivalences. This description of complex structures
is the basis of a third method for studying the deformation theory of complex
structures on K3 surfaces [4].

In this note we would like to extend this method into strongly pseudo-convex
surfaces with trivial canonical bundles. The deformation theory of strongly
pseudo-convex surfaces has already been studied by H. Laufer [8] using algebraic
methods. The theorem we prove can also be deduced from the following theorem
of Laufer, but as far as we know no analytic method has yet been developed for
the deformation theory in this case:

Theorem 1.1 ([8]). Let M be a strongly pseudo-convex surface with trivial
canonical bundle. Then there exists a versal deformation ω : M → Q of
M = ω−1(0), where Q is a complex manifold and the Kodaira-Spencer map
ρ0 : T0,Q → H 1(M,T ′) is an isomorphism.

K3 surfaces constitute the two dimensional examples of Calabi-Yau mani-
folds (the definition is quite similar). CY manifolds have been the subject of
extensive studies and several conjectures since more than 3 decades ago. The
generalization of local Torelli theorem showing the non-obstruction for defor-
mation theory of higher dimensional CY manifolds was proved by Tian-Todorv-
Bogomolov in [11].
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As far as we know the existence of Ricci flat metrics on strongly pseudo-
convex manifolds with trivial canonical bundles (which we also call strongly
pseudo-convex CY manifolds) has been confirmed in some special cases [1, 2].
The theorem of Laufer gives another evidence for the existence of similarities
between strongly-pseudoconvex CY surfaces and K3 surfaces. The moduli of
complex structures play an important role in establishing the so-called dualities
in superstring theories and one might hope that strongly pseudo-convex CY
manifolds can also be studied in the context of string theory. Strongly pseudo-
convex surfaces with trivial canonical bundles benefit a wider range of topologies
than K3 surfaces and thus their study is much more complicated. An important
class of examples for these manifolds that have been extensively studied can be
obtained by considering neighborhoods of zero section in negative line bundles
on complex varieties [9]. By using the adjunction formula one can also see that
neighborhoods of zero section in the canonical bundle of a complex curve with
genus g ≥ 2 are complex surfaces with trivial canonical bundles and so provide
a CY pseudo-convex manifold. We would like to give in this note a new proof
for the following theorem:

Theorem 1.2. If (M,M ′) is a strongly pseudo-convex CY manifold then the
space of C̃Y structures on M upto natural equivalences is locally isomorphic to
H (1,1)(M).

Here the word “natural” refers to two types of equivalence groups acting on
CY structures: 1) the group of diffeomorphisms of M and 2) the group of now-
here zero holomorphic functions in M acting by multiplication on σ .

In sections 2 and 3 we provide some preliminaries and review some known
results about strongly pseudo convex manifolds. Section 4 develops formal de-
formation theory and section 5 treats the convergence of the associated formal
series.

2 Preliminaries

In this section we briefly review some standard definitions regarding strongly
pseudo-convex manifolds.

Let M ′ be a complex manifold and M be an open submanifold of M ′ with the
following properties:

(a) M , the closure of M , is compact.

(b) ∂M , the boundary of M , is a C∞ submanifold of M ′.
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(c) If p ∈ ∂M , there exists local coordinates t1, . . . , t2n−1, r on an open
neighborhood U of the point p in M ′ s.t. r(Q) < 0 if Q ∈ U ∩ M and
r(Q) > 0 for Q ∈ U ∩ (M ′ − M).

We call such a pair (M,M ′) a finite manifold. Let Ap,q denote the space of C∞

(p, q)-forms on M and Ȧ p,q be the space of (p, q)-forms which are restrictions
of (p, q)-forms on M ′. We also define:

Ȧ p,q
0 =

{
α ∈ Ȧ p,q s.t. α = 0 on ∂M

}

A finite manifold {M,M ′} is called strongly pseudo-convex if for each holo-
morphic coordinate system on a domain U ⊂ M ′ there exists a C∞ function
f ∈ C∞(U ) s.t.

(a) f (p) < 0 if p ∈ M and f (p) > 0 if p ∈ U ∩ (M ′ − M).

(b) (d f )p 6= 0 if p ∈ ∂M .

(c) If (a1, . . . , an) ∈ Cn and
∑

fzi (p)ai = 0 for a p ∈ ∂M then
∑

fzi z j (p)ai a j > 0.

We also have the following cohomology groups:

H p,q(M) =
Z p,q

B p,q
Ḣ p,q(M) =

Ż p,q

Ḃ p,q

where Z and Ż (resp. B and Ḃ) denote the space of ∂-closed (resp. ∂-exact)
forms in A and Ȧ. By introducing a Hermitian metric G on M ′ we can also de-
fine the space H (p,q) ⊂ Ȧ p,q consisting of harmonic (p, q) forms with respect
to G (see theorem 3.2 for the relation between different cohomology groups
defined above).

Definition 2.1. By a Calabi-Yau strongly pseudoconvex surface we mean a
strongly pseudo-convex finite surface (M,M ′) with a trivial canonical bundle
KM ′ .

Definition 2.2. Let σ be a smooth complex 2-form defined in a neighborhood
of M . We say that σ defines a Calabi-Yau structure if and only if the following
conditions are satisfied:

1) σ ∧ σ = 0, 2) dσ = 0, and 3) σ ∧ σ > 0.

We use the notation C̃Y for the space of Calabi-Yau structures on M .
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3 A review on the theory of Kohn and Rossi

In this section we briefly review the Hodge theory developed by Kohn and Rossi
for strictly pseudo-convex complex manifolds [KR]. Let ϕ,ψ ∈ Ȧ p,q , then the
usual inner product (ϕ, ψ) and the norm |ϕ|2 are defined as follows:

(ϕ, ψ) =
∫

M
ϕ ∧ ∗ψ , |ϕ|22 = (ϕ, ϕ).

The operator δ : Ap,q −→ Ap,q−1 is defined by

δϕ = − ∗ ∂ ∗ ϕ .

Let Lp,q denote the Hilbert space obtained by completing Ȧ p,q under the above
inner product and denote by T : Dp,q

T −→ Lp,q+1 the closure of ∂ , i.e.,

D
p,q
T =

{
ϕ ∈ Lp,q | ∃(ϕk), ϕk ∈ Ȧ p,q s.t. ϕ = lim ϕk and (∂ϕk) is Cauchy

}
,

and T is defined by Tϕ = lim ∂ϕk . Also the operator T ∗ : Dp,q
T ∗ −→ Lp,q−1

denotes the Hilbert space adjoint of T , where

D
p,q
T ∗ =

{
ϕ ∈ Lp,q | ∃θ ∈ Lp,q−1 such that

(ϕ, Tα) = (θ, α) for all α ∈ Dp,q−1
T

}
,

and T ∗ is defined by T ∗ϕ = θ . Further we define L : Dp,q
L −→ Lp,q by

L = T T ∗ + T ∗T

and

D
p,q
L =

{
ϕ ∈ Dp,q

T ∩Dp,q
T ∗ | Tϕ ∈ Dp,q−1

T ∗ and T ∗ϕ ∈ Dp,q
T

}
.

Finally the space H p,q is defined as

H p,q =
{
ϕ ∈ Dp,q

L |Lϕ = 0
}
,

and it can be seen that

H p,q =
{
ϕ ∈ Dp,q

T ∩Dp,q
T ∗ | Tϕ = T ∗ϕ = 0

}
.

In [9] it is proved that L is self-adjoint and that we have the weak decompo-
sition:

Lp,q =
[
LDp,q

L

]
⊕H p,q ,

where [S] denotes the closure of S in Lp,q .
The following theorem is proved in [9]:

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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Theorem 3.1. If M ⊂ M ′ is strongly pseudo convex then there exists a bounded
operator N : Lp,q −→ Lp,q such that:

(a) NLp,q ⊂ D
p,q
L , and we have the strong orthogonal decomposition:

Lp,q = L NLp,q ⊕H p,q .

(b) If H : Lp,q −→ H p,q is the orthogonal projection on H , then H N =
N H = 0. If ϕ ∈ Dp,q

L , then T Nϕ = N Tϕ, if ϕ ∈ Dp,q
T ∗ , then T ∗Nϕ =

N T ∗ϕ and , if ϕ ∈ Dp,q
L , then L Nϕ = N Lϕ.

Moreover we have

|T Nφ|2 + |T ∗Nφ|2 + |Nφ|2 ≤ c|φ|2

(c) N and H preserve differentiability up to the boundary, i.e., N ( Ȧ p,q) ⊂
Ȧ p,q and H( Ȧ p,q) ⊂ Ȧ p,q .

The following theorem establishes the relation between different cohomology
groups defined in the introduction:

Theorem 3.2 ([K]). If M ⊂ M ′ is strongly pseudo convex then H p,q(M) ∼=
H p,q and if q 6= 0 then Ḣ p,q(M) ∼= H p,q(M) ∼= H p,q .

4 Formal deformation of Calabi-Yau structures

In this section we will show that the space of formal deformations of a Calabi-
Yau structure upto natural equivalences is isomorphic to H 1,1(M).

4.1 A primary characterization for H 1,1(M)

In this section we give a characterization of the cohomology group H 1,1(M) in
terms of special subspaces of differential forms which will be used in the proof
of theorem 1. We will frequently use the following lemmas through the next
two sections:

Proposition 4.1 ([KR]). If M is a finite manifold then H (p,n)(M) = 0.

Using the extension theorem of Kohn and Rossi in [KR] one can easily
show that for each strongly pseudo convex finite manifold we have H 0,1

0 (M) =
0. Applying the duality between H n−p,n−q

0 (M) and H p,q
0 (M) established in

[KR] for strongly pseudo convex finite manifolds one can deduce the follow-
ing lemma:

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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Lemma 4.1. Let M be a strongly pseudo convex finite manifold of complex
dimension n. If M satisfies H 0,1(M) = 0 then we have H n,n−1(M) = 0.

Assume now that W and W ′ be defined as follows:

W =
{
α ∈ Ȧ2,0 ⊕ Ȧ1,1 | dα = 0

}
, W ′ = W ∩

{
dβ + γ 2,0|γ 2,0 ∈ Ż2,0

}
.

Lemma 4.2. If (M ′,M) is a Calabi-Yau strongly pseudo-convex finite surface
then H 1,1(Ṁ,C) ∼= W

W ′ .

Proof. Let α be an element in W with the decomposition α = α2,0 +α1,1 where
α1,1 ∈ Ȧ1,1 and α2,0 ∈ Ȧ2,0. We define the application φ as follows:

φ : W −→ H 1,1 , φ(α) = [α1,1] .

We first show that φ is surjective. Let [β1,1] ∈ H 1,1(M) where β1,1 ∈
A1,1(M). For surjectivity we should find a (2, 0)-form β2,0 such that d(β2,0 +
β1,1) = 0 or equivalently by writing d = ∂ + ∂ we should have ∂β2,0 + ∂β1,1 =
0. To show the existence of β2,0 we first note that [∂β1,1] ∈ H 2,1(M) and
according to lemma 4.1 we have H 2,1(M) = 0 so there exist a (2,0)-form γ 2,0

which satisfies ∂β1,1 = ∂γ 2,0 thus β2,0 = −γ 2,0 is exactly what we need to
derive the surjectivity of φ.

We now prove that K er(φ) = W ′. Let α = α2,0 + α1,1 ∈ Ker(φ). This means
that [α1,1] = 0 and so there exists a (1, 0)-form β1,0 ∈ A1,0(M) for which
we have α1,1 = ∂β1,0. Now if we define γ 2,0 := α2,0 − ∂β1,0 then by using
the relation dα = 0 one can easily see that ∂γ 2,0 = 0 and therefore we have
α2,0 + α1,1 = γ 2,0 + dβ ∈ W ′. This shows that Ker(φ) ⊂ W ′. Conversely let
dβ + γ 2,0 ∈ W ′ and let β = β1,0 + β0,1 be the decomposition of β into (1, 0)
and (0, 1) parts. According to the definition of W ′ we should have ∂β0,1 = 0.
On the other hand we know that H 0,1(M) = 0 so there exists a C∞ function f
s.t. β0,1 = ∂ f and therefore

φ
(
dβ + γ 2,0

)
=

[
∂β1,0 + ∂β0,1

]
=

[
∂β0,1

]
=

[
∂∂ f

]
=

[
− ∂∂ f

]
= 0

this shows that W ′ ⊂ Ker(φ) and the proof of the lemma is completed. �

4.2 Infinitesimal deformation

Let (M ′,M) be a Calabi-Yau strongly pseudo-convex finite manifold and let
σ be a Calabi-Yau structure on M ′ (c.f. definition 2.2 in §2). Consider the

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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formal deformation σ(t) =
∑∞

i=0 σi t i of σ0 with σi ∈ Ȧ2 , i ≥ 1. We say that
σ(t) ∈ C̃Y defines a formal Calabi-Yau structure if and only if the following
two conditions are satisfied:

1) σi ∈ Ż2,

2)
∑i

k=0 σk ∧ σi−k = 0 , ∀i ≥ 0.

Note that if the formal series σ(t) is convergent then the above two conditions
lead to a Calabi-Yau structure in M . For i = 1 condition (2) implies that
dσ1 = 0 and σ1 ∧ σ0 = 0 thus σ1 ∈ A1,1(M)⊕ A2,0(M) and we obtain σ1 ∈ W .
In fact we have the following proposition:

Proposition 4.2. If Tσ0C̃Y denotes the tangent space at σ0 of the space of
Calabi-Yau structures then we have Tσ0C̃Y = W .

Proof. Let σ(t) =
∑∞

i=0 σi t i be a first order deformation and σi ∈ Ȧ2 for
i ≥ 0 satisfy the two conditions mentioned above. For i = 1 the conditions
dσ1 = 0 and σ1 ∧ σ0 = 0 imply that σ1 ∈ W .

Conversely we prove that given σ1 ∈ W one can construct a formal Calabi-
Yau deformation series for σ0 with first order term σ1. To prove this we use
the induction on i . Assume that sequence of differential complex 2-forms like
{σk}

i−1
k=1 satisfy conditions (1) and (2) above. Let the complex 2-form σi be

decomposed as follows:

σi = fiσ 0 + α
1,1
i + β

2,0
i

Clearly the condition (2) for the sequence {σk}i
k=1 is equivalent to

σi ∧ σ0 = −
i−1∑

k=1

σk ∧ σi−k

thus by using the decomposition of σi we get:

fi σ0 ∧ σ0 = −
i−1∑

k=1

σk ∧ σi−k

the unique inductive solution of this equation is given by

fi =
−

∑i−1
k=1 σk ∧ σi−k

σ 0 ∧ σ0
.

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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Now we should find α1,1
i and β2,0

i in such a way that condition (1) is satisfied
i.e. dσi = 0. Using the decomposition d = ∂ + ∂ we obtain: (∂α1,1

i + ∂β
2,0
i )+

(∂ f ∧ σ 0 + ∂α
1,1
i ) = 0 so the condition (1) is equivalent to the following two

equations:
∂ fi ∧ σ 0 + ∂α

1,1
i = 0 (4.1)

∂α
1,1
i + ∂β

2,0
i = 0 (4.2)

Now we can use the following ∂̄-Neumann lemma to obtain α1,1
i and β2,0

i from
the above system of equations.

Lemma 4.3 ([7]). The equation ∂α = γ is solvable for α if and only if ∂γ = 0.

Remark 4.1. Note that the above equations are not well defined unless other
supplementary conditions are added. We will impose the local condition
∂̄∗α

1,1
i = 0 and a boundary condition for the equation 4.2 in the last section.

4.3 Action of the group of isomorphisms

There exist two groups of isomorphisms acting on the space of Calabi-Yau struc-
tures C̃Y :

1) The group of diffeomorphisms of M : Let Diff(M) be the group of dif-
feomorphisms of M and let G1 = Diff0(M) be the connected component
of the identity. The action of the group G1 on the space C̃Y (M) can be
described as follows:

φ : G1 × C̃Y (M) −→ C̃Y (M)

φ( f, σ ) = f ∗σ .

It can be easily verified that the tangent space to the orbit passing through
σ0 of the action of the group G1 on C̃Y is equal to

S1 = W ∩
{
divσ0 | v ∈ 0(T M)

}
= W ∩

{
dα | α ∈ Ȧ1,0

}
(4.3)

2) The group of the isomorphisms of the canonical bundle: Let G2 be the
group of nonzero holomorphic functions on M , i.e. G2 = { f : M −→
C× | f ∈ �0(M)}. This can be considered as a multiplicative group acting
by multiplication on the space of Calabi-Yau structures C̃Y . The tangent
space to the orbit of this action can be identified to

S2 = W ∩
{
γ ∈ Ȧ2,0 | ∂γ = 0

}
(4.4)

Now we can easily prove the following theorem:

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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Theorem 4.1. Tσ0C̃Y /S1 + S2 ' H 1,1(M)

Proof. According to proposition 4.2 we know that Tσ0C̃Y = W . Now us-
ing the relations (4.3) and (4.4) and lemma 4.2 the proof of the theorem will
follow. �

5 Convergence

Now we would like to show that the formal deformation series of σ(t) defined
in the previous section is convergent for small values of t and defines a smooth
complex structure on M . To this end we will prove that σ(t) ∈ H s

2 (M) for s ∈ R
great enough and for sufficiently small values of t , where H s

2 (M) denotes the
Sobolev space of 2-forms in M . We begin by the following lemma:

Lemma 5.1. Let {ai }∞i=0 be a sequence of positive real numbers and let
c ∈ R+ be a given constant s.t.

ai = c
k=i−1∑

k=1

akai−k

then the sequence f (t) =
∑∞

i=0 ai t i is convergent for small values of t .

Proof. To prove this lemma consider the following formal calculation:

(
f (t)− a0

)2
=

(
∑

i=1

ai t
i

)2

=
∞∑

i=2

(
k=i−1∑

k=1

akai−k

)

t i

=
1

c

∞∑

i=2

ai t
i =

1

c

(
f (t)− a0 − a1t

)

The solution of this functional equation leads to

f (t) = A ±
√

Bt + C

for appropriate values of A, B and C and this shows that the formal series defin-
ing f is in fact convergent for small values of t . �

Now according to the special solutions of the equations 4.1 and 4.2 (see the
remark 4.1) and using the theorem 3.1 one can easily deduce that

|α1,1
i |2 = |∂̄∗N (∂ fi ∧ σ0)|2 ≤ c|∂ fi ∧ σ0|2 (5.1)

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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Writing β2,0
i = giσ0 the equation 4.2 reduces to an equation for gi :

∂̄gi =
∂α

1,1
i

σ0
(5.2)

As is standard in the literature from the equation 4.1 along with (∂̄∗)2 = 0 it
follows that:

|∇α1,1
i |2 ≤ c

(
|∂̄α1,1

i |2 + |∂̄∗α
1,1
i |2 + |α1,1

i |2
)

= c
(
|∂̄α1,1

i |2 + |α1,1
i |2

)

where the constant c depends only on the properties of the domain M . From this
inequality and the equations (4.1), (4.2), (5.1) and (5.2) we can deduce that:

|σi |1,2 ≤ c| fi |1,2

using the inductive definition of fi one can also see that:

| fi |1,2 ≤ c
i−1∑

k=1

|σk |1,2|σi−k |1,2 ≤ c
i−1∑

k=1

| fk |1,2| fi−k |1,2 (5.3)

Now from lemma (5.1) and the inequalities (5.1) and (5.3) it follows that for
small values of t we have:

∞∑

i=0

|σi |1,2t i < ∞

The same argument can be applied to show that σ(t) ∈ H s
2 (M) for s ∈ Z

arbitrarily large and for t small enough. It is not difficult to see that the constant
c in the inequality (5.3) can be chosen to work uniformly for all values of s and
thus an identical radius of convergence is found for all the series

∑∞
i=0 |σi |1,s t i

with different values of s. On the other hand by the well-known Sobolev lemma,
we have:

H s+2n
2 (M) ⊂ Cs

2(M)

Here Cs
2(M) denotes the space of s-times continuously differentiable 2-forms

on M . This shows that the induced complex structure is in fact C∞ and thus
analytic. �
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