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Torsion-free sheaves on nodal curves and triples

D. Avritzer*, H. Lange** and F.A. Ribeiro

Abstract. Let X be a reduced irreducible curve with at most nodes as singularities
with normalization π : X̃ → X . We study the description of torsion free sheaves on X
in terms of vector bundles with an additional structure on X̃ which was introduced by
Seshadri.
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1 Introduction

Let X be an irreducible reduced curve over an algebraically closed field with
at most ordinary double points as singularities and let π : X̃ → X denote its
normalization. In [10, Ch. 8] Seshadri described torsion free sheaves on X in
terms of vector bundles on X̃ with some additional structure. Let for simplicity
X just have one node x with π−1(x) = {p1, p2}. Then Seshadri showed that
there is a canonical bijection between torsion free sheaves F on X and triples
(E, (11,12), σ ) consisting of a vector bundle E on X̃, a pair of vector subspaces
(11,12) with 1i ⊂ E(pi ) and an isomorphism σ : 11 → 12. To the best of
our knowledge, this beautiful and clear result has not been applied very much
in the literature (apart from [11]and [1]). The main papers on vector bundles on
nodal curves apply different methods (see [2], [3], [4]).

The starting point of this paper was to understand Seshadri’s result. We give
a new proof and discuss the functoriality of this construction. We introduce
the notion of morphisms of such triples and show that the categories of torsion
free sheaves on X and the category of these triples on X̃ are equivalent. More-
over, we define stability of triples over X̃ using the corresponding notion for
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torsion free sheaves on X . Using this, we study the relation between the stability
of a torsion free sheaf F on X and the stability of the vector bundle E occurring
in the corresponding triple.

To be more precise, assume that x1, . . . , xn are exactly the nodes of X and
π−1(xi ) = {pi , qi } for i = 1, . . . , n. For any torsion free sheafF of rank r on X
there are unique integers ai , 0 ≤ ai ≤ r such thatFxi ' Oai

xi
⊕mr−ai

xi
. Moreover

there is a unique subsheaf E ⊂ F of the form E = π∗E with E a vector bundle
of rank r on X̃ fitting into an exact sequence

0 → E → F → ⊕n
i=1Wxi → 0

whereWxi is the skyscraper sheaf on X with fibre a vector space Wxi of dimen-
sion ai at the node xi . Starting with this exact sequence, the vector bundle E
is given by

E = π∗E/T

where T denotes the torsion subsheaf of π∗(E). We show then that there is a
canonical isomorphism

8 = ⊕8i : Ext1(⊕n
i=1Wxi ,E)

'
→

'
→ ⊕n

i=1(Homk(Wxi , E(pi ))⊕ Homk(Wxi , E(qi )))

(Note that this description of Ext1 is different from the description in [10,
Ch. 8, Lemme 15].) Given an exact sequence as above, the vector spaces 11

and 12 as well as the isomorphism σ are constructed out of the corresponding
homomorphisms Wxi → E(pi ) and Wxi → E(qi ) (see Remark 2.5).

In Section 3, we introduce morphisms of triples and prove the above men-
tioned equivalence of categories (see Theorem 3.2). Since the category of tor-
sion free sheaves on X admits kernels and images, so does the category of triples
on X̃. We describe them and give a criterion for a cokernel to exist.

In Section 4, we translate the notion of stability of torsion free sheaves to
the corresponding triples. This is used to relate the stability properties of F to
the stability of the vector bundle E . We show in particular that if E is stable,
so are all triples (E, (11,12), σ ) which correspond to a vector bundle on X .
We also give an example of an unstable vector bundle on X̃ admitting stable
triples. Finally in Section 5, we give some applications.

Notation: Let X be a curve over k. By an OX -module we always understand
a coherent OX -module. Similarly a torsion free OX -module means a coherent
torsion free OX -module. A point of X always means a closed point. If x ∈ X
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is a point, mx denotes the maximal ideal of the local ring OX,x and mx denotes
the corresponding ideal sheaf in OX . For any OX -module F and any x ∈ X we
denote by Fx its stalk and by F(x) = Fx/mxFx its fibre at the point x and we
abbreviate Ox := OX,x .

2 Relation to vector bundles on the normalization

2.1 The set up

Let X be an irreducible reduced curve over an algebraically closed field k with
at most ordinary double points as singularities. We assume that X admits ex-
actly n ordinary double points x1, . . . , xn .

According to [10, Ch. 8, Prop. 2], for any torsion-freeOxi -module M of rank r
there is a uniquely determined non-negative integer ai such that M ' Oai

xi
⊕mr−ai

xi
.

In particular, for any torsion-free sheaf F of rank r and degree d on X and any
i = 1, . . . , n there is an integer ai , uniquely determined with 0 ≤ ai ≤ r
such that

Fxi
∼= Oai

xi
⊕ mr−ai

xi
. (2.1)

This gives surjective homomorphisms

Fxi → Wxi := kai
xi
,

where kxi ' k denotes the residue field at the point xi . If we denote by Wxi the
skyscraper sheaf concentrated at xi with fibre Wxi , we have an exact sequence

0 → E → F → ⊕n
i=1Wxi → 0, (2.2)

where the kernel E is uniquely determined by F , although the homomorphism
F → ⊕n

i=1Wxi itself is not. This implies that F is an extension of ⊕n
i=1Wxi by

a torsion-free sheaf E with

Exi
∼= mr

xi
and deg(E) = deg(F)−

n∑

i=1

ai . (2.3)

Now consider the normalization map

π : X̃ → X

and denote the two points of π−1(xi ) by pi and qi . According to [10, Ch. 8,
Prop. 10], for a torsion free sheaf E of rank r and degree d on X there is a
vector bundle E on X̃ such that

E = π∗(E) (2.4)

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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if and only if Exi
∼= mr

xi
for all i . In this case E is uniquely determined by E and

deg(E) = deg(E)− nr. (2.5)

(Note that [10, Ch. 8, Prop. 10] states that deg(E) = deg(E) + nr . However
there is an error in the proof: the degree of π∗OX̃ is considered to be −1).

We use the following two statements of [11].
Let kxi (respectively kpi and kqi ) be the skyscraper sheaf on X (respectively

X̃) with fibre k at the point xi (respectively pi and qi ). Then we have

Tor1
OX

(
kxi ,OX̃

)
= kpi ⊕ kqi . (2.6)

considered as sheaves on X̃. This a consequence of [11, Ch. II, Lemma 2.1].
There exists a locally free sheaf G of rank r and degree degF + nr −

∑n
i=1 ai

on X such that
F ⊂ G. (2.7)

and the quotient G/F is supported at the nodes xi . This is [11, Ch. II, Lem-
ma 2.3].

Proposition 2.1. Let F be a torsion free sheaf of rank r on X satisfying (2.1)
and let T denote the torsion subsheaf of π∗F . Then

deg(π∗F) = degF + nr −
n∑

i=1

ai and degT = 2

(

nr −
n∑

i=1

ai

)

.

Proof. LetG be the locally free sheaf of (2.7). Pulling back the exact sequence
0 → F → G → G/F → 0 by π , we get the exact sequence

0 → T → π∗F → π∗G → π∗(G/F) → 0.

with T = Tor1
OX

(
G/F,OX̃

)
. Since

degG/F = nr −
n∑

i=1

ai

we get degπ∗(G/F) = 2
(
nr −

∑n
i=1 ai

)
. This implies

deg(π∗F/T ) = degπ∗G − degπ∗(G/F)

= degF + nr −
n∑

i=1

ai − 2

(

nr −
n∑

i=1

ai

)

= degF −

(

nr −
n∑

i=1

ai

)
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On the other hand, from (2.6) we deduce

degT = 2 degG/F = 2

(

nr −
n∑

i=1

ai

)

.

This implies also the first assertion. �

For the following corollary see [10, p.175, l.3].

Corollary 2.2. Let F be a torsion free sheaf of rank r satisfying (2.1) and let
E = π∗E its subsheaf as in (2.4). If T denotes the torsion subsheaf of π∗E,
then we have

π∗E/T ' E .

Proof. As an immediate consequence of Proposition 2.1 and equation (2.5)
we get

deg
(
π∗E/T

)
= deg E . (2.8)

Now consider the canonical map π∗E → π∗E/T . Adjunction gives a map

π∗E = E → π∗
(
π∗E/T

)

which is of maximal rank outside the nodes xi . Since E is a vector bundle on
X̃, we have

Hom
(
π∗E, π∗(π

∗E/T )
)

= H 0
(
π∗E∗ ⊗ π∗(π

∗E/T )
)

⊂ H 0
(
π∗(E

∗ ⊗ π∗E/T )
)

' H 0
(
E∗ ⊗ π∗E/T

)

= Hom
(
E, π∗E/T

)
.

Hence we get a homomorphism E → π∗E/T which clearly is of maximal rank.
Hence it is injective and thus an isomorphism by (2.8). �

2.2 Extensions

Recall that the extensions 0 → E → G → ⊕n
i=1Wxi → 0 are classified by

the group Ext1(⊕n
i=1Wxi ,E). The next proposition gives a characterization of

Ext1(⊕n
i=1Wxi ,E). Since Ext1 is additive, it suffices to do this for each node xi

separately. The following proposition appeared in [10, Ch. 8, Lemme 12] in a
slightly different form.
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Proposition 2.3. Let E = π∗E with E a vector bundle of rank r on X̃. Then
there is a canonical isomorphism

8 = ⊕8i : Ext1
(
⊕n

i=1Wxi ,E
) '

→
'
→ ⊕n

i=1

(
Homk(Wxi , E(pi ))⊕ Homk(Wxi , E(qi ))

)

where Wxi is the skyscraper sheaf concentrated at xi with fibre Wxi := kai
xi

for
integers ai , 0 ≤ ai ≤ r .

For the proof we need the following lemma.

Lemma 2.4. There is a canonical isomorphism

HomOX

(
mxi

,E
)

' HomOX̃

(
OX̃ , E(Di )

)
.

where Di := pi + qi and as usual E(Di ) := E ⊗ OX̃(Di ).

Proof. Let Ti denote the torsion subsheaf of π∗(mxi
). Certainly the divisor Di

induces a canonical isomorphism

π∗
(
mxi

)
/Ti ' OX̃ (−Di ) .

Now the exact sequence 0 → Ti → π∗(mxi
) → π∗(mxi

)/Ti → 0 induces an
isomorphism

HomOX̃

(
π∗(mxi

)/Ti , E
)

→ HomOX̃

(
π∗(mxi

), E
)

since HomOX̃
(Ti , E) = 0. Using moreover adjunction, we finally get the fol-

lowing canonical isomorphisms

HomOX (mxi
,E) ∼= HomOX̃

(
π∗(mxi

), E
)

∼= HomOX̃

(
π∗(mxi

)/Ti , E
)

∼= HomOX̃

(
OX̃ (−Di ), E

)

∼= HomOX̃

(
OX̃ , E(Di )

)
.

�

Proof of Proposition 2.3. We may assume h1(E) = 0, since tensorizing E
andWxi by a line bundle changes both sides of the equation only by a canonical
isomorphism. Using this, the exact sequence

0 → Wxi ⊗k mxi
→ Wxi ⊗k OX → Wxi → 0

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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induces an exact sequence

0 → HomOX (Wxi ⊗ OX ,E) → HomOX (Wxi ⊗ mxi
,E) →

→ Ext1(Wxi ,E) → 0,
(2.9)

where the last 0 uses h1(E) = 0.
The canonical sequence 0 → E → E(Di ) → E(pi ) ⊕ E(qi ) → 0 (here

we identify the fibres E(pi ) and E(qi ) with the corresponding skyscraper sheaf
concentrated at pi and qi respectively) induces an exact sequence

0 → HomOX̃
(Wxi ⊗ OX̃, E) → HomOX̃

(Wxi ⊗ OX̃, E(Di )) →

→ HomOX̃
(Wxi ⊗ OX̃, E(pi )⊕ E(qi )) → 0

(2.10)

where we used Ext1(Wxi ⊗OX̃, E) = Wxi ⊗ H 1(X̃, E) = Wxi ⊗ H 1(X,E) = 0.
Moreover, by adjunction we have a canonical isomorphism

HomOX (Wxi ⊗OX ,E) ' HomOX̃
(π∗(Wxi ⊗OX ), E) = HomOX̃

(Wxi ⊗OX̃, E).

Using this, Lemma 2.4 and the exact sequences (2.9) and (2.10), we obtain the
following diagram with exact rows

0 → HomOX (Wxi ⊗ OX ,E) → HomOX (Wxi ⊗ mxi
,E) → Ext1(Wxi ,E) → 0

‖o ‖o

0 → HomOX̃
(Wxi ⊗ OX̃, E) → HomOX̃

(Wxi ⊗ OX̃, E(Di ))
θi→ (2.11)

θi→ HomOX̃
(Wxi ⊗ OX̃, E(pi )⊕ E(qi )) → 0,

Since this diagram is certainly commutative, it induces a canonical isomorphism

Ext1(Wxi ,E) ' HomOX̃
(Wxi ⊗ OX̃, E(pi )⊕ E(qi )).

Finally, observe that HomOX̃
(OX̃, E(pi )) = Homk(k, E(pi )) and similarly for

qi . Hence we can identify

HomOX̃
(Wxi ⊗OX̃, E(pi )⊕ E(qi )) = Homk(Wxi , E(pi ))⊕Homk(Wxi , E(qi )).

Combining both isomorphisms completes the proof of the proposition. �

Remark 2.5. According to the proof and in particular diagram (2.11), the image
of an extension (ei ) : 0 → E → F → Wxi → 0 under the map 8i is given as
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follows: choose a preimageψei ∈ HomOX (Wxi ⊗mxi
,E) of (ei ) ∈ Ext1(Wxi ,E)

and consider it as an element in HomOX̃
(Wxi ⊗ OX̃, E(Di )). Then

8i (ei ) = θi (ψei ).

Conversely, given a pair (αi , βi ) ∈ Homk(Wxi , E(pi ))⊕ Homk(Wxi , E(qi )),
the corresponding extension 8−1

i (αi , βi ) ∈ Ext1(Wxi ,E) is constructed as fol-
lows: choose a preimage ψi of (αi , βi ) under the map θi , considered as an
element of HomOX (Wxi ⊗ mxi

,E). Then 8−1
i (αi , βi ) is the push-out of the

canonical sequence defining Wxi by ψi :

0 Wxi ⊗ mxi

ψi

Wxi ⊗ OX Wxi 0

0 E Fi Wxi 0

It follows from Proposition 2.3 that8i (ei ) and8−1
i (αi , βi ) do not depend on the

choices of the preimages.
The extension 8−1((α1, β1), . . . , (αn, βn)) ∈ Ext1(⊕n

i=1Wxi ,E) is then the
sum of the extensions 0→E→Fi →Wxi →0 in the group Ext1(⊕n

i=1Wxi ,E),
where Ext1(Wxi ,E) is considered as a subgroup of Ext1(⊕n

i=1Wxi ,E).

2.3 Torsion free extensions

Let x denote any of the nodes xi of X and let p and q be the points of X̃ above x .
Recall that we denote by Wx a kx -vector space of dimension a, 1 ≤ a ≤ r and by
Wx the skyscraper sheaf on X with fibre Wx at x . TheOx -module Ext1

Ox
(Wx ,Ex)

classifies the extensions 0 → Ex → Fx → Wx → 0 of modules over the local
ring Ox . The following lemma shows that every such module is the restriction
of a unique exact sequence 0 → E → F → Wx → 0.

Lemma 2.6. There is a canonical isomorphism Ext1(Wx ,E) ' Ext1
Ox
(Wx ,Ex).

Proof. The edge homomorphism of the local-global spectral sequence (see
[5, (4.2.7)]) is an isomorphism

Ext1(Wx ,E) ' H 0(X,Ext1
OX
(Wx ,E)),

since Hi (X,HomOX
(Wx ,E)) = 0 for i = 1 and 2. This implies the assertion,

since the sheaf Ext1
OX
(Wx ,E) is a skyscraper sheaf with fibre Ext1

Ox
(Wx ,Ex)

concentrated at the point x . �
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Combining the isomorphisms of Proposition 2.3 and Lemma 2.6, we get the
following description of the extensions of Ox -modules of Wx by Ex :

Let
Õx := Op ∩ Oq

(intersection in the function field of X ) denote the normalization of Ox . It is a
semilocal ring with two maximal ideals m p and mq and we have

mx = m p ∩ mq .

Moreover we denote by

Ex := E ⊗OX̃
Õx and E(D)x := E(D)⊗OX̃

Õx

the Õx -modules defined by E and E(D), where D denotes the divisor p + q on
X̃. As in the proof of Proposition 2.3, the exact sequences 0 → Wx ⊗k mx →
Wx ⊗k Ox → Wx → 0 and 0 → Ex → E(D)x → E(p)⊕ E(q) → 0 induce
the following local version of diagram (2.11).

0 → HomOx (Wx ⊗ Ox ,Ex) → HomOx (Wx ⊗ mx ,Ex) → Ext1
Ox
(Wx ,Ex) → 0

‖o ‖o

0 → HomÕx
(Wx ⊗ Õx , Ex) → HomÕx

(Wx ⊗ Õx , E(D)x)
θ

→ (2.12)

θ
→ HomÕx

(Wx ⊗ Õx , E(p)⊕ E(q)) → 0

‖o

Homk(Wx , E(p))⊕ Homk(Wx , E(q)).

Now consider (α, β) ∈ Homk(Wx , E(p)) ⊕ Homk(Wx , E(q)). Let (̃α, β̃) de-
note the corresponding element in HomÕx

(Wx ⊗ Õx , E(p) ⊕ E(q)). Choose
a preimage ψ of (̃α, β̃) under the map θ and consider it as an element of
HomOx (Wx ⊗ mx ,Ex). Then the extension in Ext1

Ox
(Wx ,Ex) corresponding

to (α, β) is the pushout of the canonical sequence defining Wx by ψ :

0 Wx ⊗ mx

ψ

Wx ⊗ Ox Wx 0

0 Ex Fx Wx 0.

(2.13)

Recall thatEx ' mr
x . Hence, fixing isomorphismsEx ' mr

x and Wx ⊗mx ' ma
x ,

any homomorphism ψ : Wx ⊗ mx → Ex is given by a matrix

A = (αi j ) ∈ M(r × a, Õx).
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We say that ψ has birank (b1, b2), if rk A mod m p = b1 and rk A mod mq =
b2. This definition does not depend on the choice of the isomorphisms. Certainly
ψ has birank (b1, b2) if and only if rk α = b1 and rk β = b2.

Proposition 2.7. Let 0 → Ex → Fx → Wx → 0 be the extension correspond-
ing to the pair (α, β) ∈ Homk(Wx , E(p)) ⊕ Homk(Wx , E(q)). The following
statements are equivalent:

(1) Fx is torsion-free,

(2) Fx ' Oa
x ⊕ mr−a

x ,

(3) α and β are injective.

Proof. The equivalence of (1) and (2) is clear, we have already used it. We
have to show that (2) is equivalent to (3). Now α and β are injective if and only
if they are both of rank a. As we saw just before the proposition, this is the case
if an only if ψ is of birank (a, a). Since Wx is of dimension a, this is the case if
and only if ψ is injective. From diagram (2.13) we deduce that this is the case if
and only if the push-out Wx ⊗Ox → Fx is injective. But this is injective if and
only if Fx is torsion-free. �

As an immediate consequence we get,

Corollary 2.8. Let (e) : 0 → E → F → ⊕n
i=1Wxi → 0 be an extension as

in subsection 2.2 and let8((e)) = ((α1, β1), . . . , (αn, βn)) ∈ ⊕n
i=1(Homk(Wxi ,

E(pi ))⊕ Homk(Wxi , E(qi ))) (see Proposition 2.3). Then the following condi-
tions are equivalent:

(1) F is torsion free;

(2) αi and βi are injective for i = 1, . . . , n.

2.4 Triples on X̃

In this subsection we outline the relation between torsion free sheaves on X and
vector bundles on X̃ with an additional structure.

Given a torsion free sheaf F on X , let E = π∗(E) be its subsheaf such that
0 → E → F → ⊕n

i=1Wxi → 0 is exact, where ⊕n
i=1Wxi is the torsion sheaf as

above. Let

((α1, β1), . . . , (αn, βn)) ∈ ⊕n
i=1(Homk(Wxi , E(pi ))⊕ Homk(Wxi , E(qi )))

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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denote the corresponding element according to Proposition 2.3. Then by Corol-
lary 2.8 the homomorphisms αi and βi are all injective and we can consider the
following vector spaces:

1i
1 := Im αi ⊂ E(pi ), 1i

2 := Im βi ⊂ E(qi ),

11 := ⊕n
i=11

i
1, 12 := ⊕n

i=11
i
2.

Combining the inverse of the isomorphism αi onto its image with βi we obtain
an isomorphism

σi = βi ◦ α−1
i : 1i

1 → 1i
2.

Finally we denote the direct sum by

σ := ⊕n
i=1σi : 11 → 12.

Summing up, we associated to the sheaf F on X the object (E, (11,12), σ ) in
a canonical way. We call these objects triples on X̃ in the sequel.

Conversely, given a triple (E, (11,12), σ ) on X̃, we denote for i = 1, ∙ ∙ ∙ , n

Wxi := 1i
1

and if αi : Wxi ↪→ E(pi ) is the natural inclusion, we define βi : 1i
2 → E(qi ) to

be the composition
Wxi = 1i

1
σi→ 1i

2 ↪→ E(qi ).

According to Proposition 2.3 there is a unique extension 0 → π∗E → F →
⊕n

i=1Wxi → 0 associated to the n pairs ((α1, β1), . . . , (αn, βn)), where F is
torsion free of rank r according to Corollary 2.8.

Summing up, we associated to the triple (E, (11,12), σ ) the torsion free sheaf
F in a unique way. The following theorem is due to Seshadri (see [10, p. 178,
Theorem 17]).

Theorem 2.9. Given intergers a1, . . . , an and r such that 0 ≤ ai ≤ r , there is a
canonical bijection between the sets:

(1) of isomorphism classes of torsion free sheaves F of rank r and degree d
on X such that for i = 1, ∙ ∙ ∙ , n,

Fxi
∼= ⊕ai

i=1Oxi ⊕ ⊕(r−ai )

i=1 mxi (2.14)

and

(2) of isomorphism classes of triples (E, (11,12), σ ), where

Bull Braz Math Soc, Vol. 41, N. 3, 2010
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• E is a vector bundle of degree d − nr −
∑n

i=1 ai and rank r on X̃ ,

• for j = 1 and 2, 1 j = ⊕n
i=11

i
j with 1i

1 and 1i
2 vector subspaces

of dimension ai of E(pi ) and E(qi ) respectively,

• σ = ⊕n
i=1σi with isomorphisms σi : 1i

1 → 1i
2.

Proof. It is easy to see that the maps of one set to the other set given above
are inverse to each other. The statement relating the degrees of E and F is a
consequence of equations (2.3) and (2.5). �

As a direct consequence we get the following corollary.

Corollary 2.10. Let F correspond to the triple (E, (11,12), σ ) as in Theo-
rem 2.9. Then F is a vector bundle if and only if a1 = ∙ ∙ ∙ = an = r .

3 The functor 9

Let (E, (11,12), σ ) and (E ′, (1′
1,1

′
2), σ

′) be triples on X̃. A homomorphism

g̃ : (E, (11,12), σ ) → (E ′, (1′
1,1

′
2), σ

′)

of triples on X̃ is by definition a homomorphism g : E → E ′ of the under-
lying vector bundles satisfying g(pi )(1

i
1) ⊂ 1

′i
1 and g(qi )(1

i
2) ⊂ 1

′i
2 for

i = 1, . . . , n such that the following diagram commutes

11 = ⊕i1
i
1

⊕i g(pi )

σ
12 = ⊕i1

i
2

⊕i g(qi )

1′
1 = ⊕i1

′i
1

σ ′

1′
2 = ⊕i1

′i
2 .

(3.1)

With this notion of morphisms the set of triples on X̃ forms a category which we
denote by TR.

Let f : F → F ′ denote a homomorphism of torsion free sheaves on X and
denote by

9(F) := (E, (11,12), σ ) and 9(F ′) := (E ′, (1′
1,1

′
2), σ

′)

the corresponding triples according to Theorem 2.9. Let E ⊂ F and E ′ ⊂ F ′

be the subsheaves defined in (2.2). It is easy to see that f maps E into E ′. We
then see from Corollary 2.2 that

π∗( f |E)/torsion : E = π∗E/T → π∗E ′/T ′ = E ′
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is a homomorphism of vector bundles. Moreover we have,

Lemma 3.1. The homomorphism f induces a homomorphism of triples

9( f ) : (E, (11,12), σ ) → (E ′, (1′
1,1

′
2), σ

′)

on X̃.

Proof. Consider the extension (2.2) defined by F and let 0 → E ′ → F ′ →
⊕iW

′
xi

→ 0 be the corresponding extension for F ′. Since f maps E into E ′ we
get the following commutative diagram

0 E

f |E

F

f

⊕iWxi

⊕i fxi

0

0 E ′ F ′ ⊕iW
′
xi 0.

(3.2)

Let ((α1, β1), . . . , (αn, βn)) ∈ ⊕i (Hom(Wxi , E(pi ))⊕Hom(Wxi , E(qi ))) and
similarly

((α′
1, β

′
1), . . . , (α

′
n, β

′
n)) ∈ ⊕i (Hom(W ′

xi
, E ′(pi ))⊕ Hom(W ′

xi
, E ′(qi )))

denote the n-tuples of pairs of homomorphisms associated to the extensions of
diagram (3.2) according to Proposition 2.3. By definition the following diagrams
commute for i = 1, . . . , n:

Wxi

fxi

αi E(pi )

9( f )(pi )

Wxi

fxi

βi E(qi )

9( f )(qi )

W ′
xi

α′
i E ′(pi ) W ′

xi

β ′
i E ′(qi ).

which implies 9( f )(pi )(1
i
1) ⊂ 1

′i
1 and 9( f )(qi )(1

i
2) ⊂ 1

′i
2 for i = 1, . . . , n.

It remains to show that the diagram (3.1) commutes, but this is straightfor-
ward using Proposition 2.7 and σ = ⊕iσi = ⊕i

(
βi ◦ α−1

i

)
and similarly

for σ ′. �

If T S denotes the category of torsion free sheaves on X , then clearly 9 is a
functor from the category T S to the category TR of triples on X̃.

Theorem 3.2. The functor 9 : T S → TR is an equivalence of categories.
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Proof. According to Theorem 2.9 the functor 9 is a bijection on the ob-
jects. We have to show that it is a bijection on the sets of morphisms. So
let g̃ : (E, (11,12), σ ) → (E ′, (1′

1,1
′
2), σ

′) be a homomorphism of triples
on X̃. Let F and F ′ denote the torsion free sheaves on X with 9(F) =
(E, (11,12), σ ) and 9(F ′) = (E ′, (1′

1,1
′
2), σ

′).

Define Wxi := 1i
1, W ′

xi
:= 1

′i
1 . So αi and α′

i are its canonical inclusions into
E(pi ) and E ′(pi ) respectively. Similarly βi = ιi ◦ σi and β ′

i = ι′i ◦ σ ′
i , where ιi

and ι′i are the canonical inclusions1i
2 ↪→ E(qi ) and1

′i
2 ↪→ E ′(qi ) respectively.

Then diagram (3.1) implies that the following diagrams are commutative

Wxi

g(pi )

αi E(pi )

g(pi )

Wxi

g(pi )

βi E(qi )

g(qi )

W ′
xi

α′
i E ′(pi ) W ′

xi

β ′
i E ′(qi )

(3.3)

for i = 1, . . . , n.
Now choose for i = 1, . . . , n preimages ψi and ψ ′

i of (αi , βi ) and (α′
i , β

′
i )

under the map θi of diagram (2.11) respectively and consider them as homo-
morphisms ψi : Wxi ⊗ mxi

→ E = π∗E and ψ ′
i : W ′

xi
⊗ mxi

→ E ′ = π∗E ′.
According to remark 2.5, F is given by the sum in Ext1(⊕n

i=1Wxi ,E) of the
push-outs 0 → E → Fi → Wxi → 0 by ψi of the canonical exact sequences
0 → Wxi ⊗ mxi

→ Wxi ⊗ OX → Wxi → 0 defining the sheaf Wxi . Similarly
F ′ is defined. For every i = 1, . . . , n we obtain the following commutative
diagram:

Wxi ⊗ mxi Wxi ⊗ OX Wxi

W ′
xi

⊗ mxi
W ′

xi
⊗ OX W ′

xi

E Fi Wxi

E′ F ′
i W ′

xi

where the left hand vertical maps are ψi and ψ ′
i and the commutativity of the

left hand vertical square is a consequence of the commutativity of diagram (3.3).
The universal property of the push-out gives us a homomorphism

fi : Fi → F ′
i
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such that the whole diagram commutes. Finally, taking the sum of the lower
bottom diagrams we get a map Ext1(⊕n

i=1Wxi ,E) → Ext1(⊕n
i=1W

′
xi
,E ′) given

by a diagram

0 E F

f

⊕n
i=1Wxi 0

0 E ′ F ′ ⊕n
i=1W

′
xi 0

which defines f : F → F ′.
It is easy to see that g̃ = 9( f ) which completes the proof of the theorem. �

Since any morphism in the category T S admits a kernel and an image, so does
any morphism in the category TR. They are given in the following lemma the
proof of which we omit.

Lemma 3.3. Let g̃ : (E, (11,12), σ ) → (E ′, (1′
1,1

′
2), σ

′) be a morphism of
triples on X̃ with underlying map g : E → E ′. Then

(a) Ker g̃ = (Ker(g), (11,g,12,g), σ |11,g)

with 11,g = ⊕n
i=11

i
1,g and 1i

1,g = 1i
1 ∩ Ker g(pi ) ∩ σ

−1
i (Ker g(qi )) and

12,g = ⊕n
i=11

i
2,g with 1i

2,g = σi (1
i
1 ∩ Ker g(pi )) ∩ Ker g(qi ).

(b) Im g̃ = (Im(g), (1′
1,g,1

′
2,g), σ |1′

1,g)

where 1′
1,g = ⊕n

i=11
′i
1,g with 1

′i
1,g = 1

′i
1 ∩ g(pi )(1

i
1) ∩ σ

′−1
i (g(qi )(1

i
2))

and 1′
2,g = ⊕n

i=11
′i
2,g with 1

′i
2,g = σ ′

i (1
′i
1 ∩ g(pi )(1

i
1)) ∩ g(qi )(1

i
2).

Proposition 3.4. Let f : F → F ′ be a homomorphism of torsion free sheaves
and g̃ = 9( f ) with underlying map of vector bundles g : E → E ′. Then

(a) f : F → F ′ is injective if and only if g : E → E ′ is injective.

(b) f : F → F ′ is surjective if and only if g : E → E ′ is surjective.

Proof.

(a) It is clear from Corollary 2.2 that if f is injective, then so is g. So assume
g : E → E ′ is injective. Since, for every i , the map fxi : Wxi → W ′

xi
can

be identified with a restriction of the injective map g(pi ) : E(pi ) → E ′(pi )

and g : E → E ′ is injective if and only if f |E : E → E ′ is injective, the
map f : F → F ′ is injective by diagram (3.2).
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(b) Suppose f is surjective. We claim first that then also f |E : E → E ′ is
surjective. It suffices to show this over each node xi separately. We have
the following diagram of Oxi -modules

0 mr
xi

( f |E)xi

Oai
xi

⊕ mr−ai
xi

fxi

kai
xi

f (xi )

0

0 ms
xi Obi

xi
⊕ ms−bi

xi
kbi

xi 0 .

Since fxi is surjective, so is f (xi ). Hence the diagram implies that mr−s
xi

⊂
ker( f |E)xi with equality if and only if θi is surjective. The surjectivity of θi

follows from its definition, i.e. from the definition of the of surjection in the top
sequence in the diagram. This implies that θi is surjective, which in turn implies
that ( f |E)xi and thus f |E is surjective. Now it follows from Corollary 2.2 and
the right exactness of π∗ that g : E → E ′ is surjective. The proof of the converse
implication is similar to the corresponding proof in (a). �

The cokernel of a morphism of torsion free sheaves on X is not necessarily
torsion free. The following proposition works out what it means for the corre-
sponding triples that this is the case.

Proposition 3.5. Let f : F ′ → F be a morphism of torsion free sheaves on X
and g̃ = 9( f ) : (E ′, (1′

1,1
′
2), σ

′) → (E, (11,12), σ ) be the corresponding
map of triples on X̃. Then the following conditions are equivalent

(1) F/ f (F ′) is torsion free;

(2) E ′ is a vector subbundle of E, i.e. E/g(E ′) is a vector bundle on X̃
and for i = 1, . . . , n we have g(pi )(1

′i
1) = 1i

1 ∩ g(pi )(E ′(pi )) and
g(qi )(1

′i
2) = 1i

2 ∩ g(qi )(E ′(qi )).

Proof. Suppose that F/ f (F ′) is torsion free with corresponding triple (E ′′,

(1′′
1, 1

′′
2), σ

′′) on X̃. Pulling back the exact sequence 0 → F ′ → F →
F/ f (F ′) → 0 by π∗ and moding out the torsion parts, we get, applying Corol-
lary 2.2, the exact sequence

0 → E ′ g
→ E → E ′′ → 0. (3.4)

which implies that E/g(E ′) ' E ′′ is a vector bundle on X̃. As in the proof of
Proposition 3.4 we see that the map1 j → 1′

j is surjective for j = 1 and 2. This
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implies that g(pi )(1
′i
1) = 1i

1 ∩ g(pi )(E ′(pi )) for i = 1, . . . , n and similarly
for the points qi .

Conversely, suppose that E/g(E ′) is a vector bundle and that g(pi )(1
′i
1) =

1i
1 ∩ g(pi )(E ′(pi )) and g(qi )(1

′i
2) = 1i

2 ∩ g(qi )(E ′(qi )) for all i . Then we
have the exact sequence (3.4) with E ′′ = E ′/g(E ′). Defining 1′′

1 := ⊕i1
′′i

1
with 1′′i

1 = 1i
1/g(pi )(1

′i
1) and 1′′

2 := ⊕i1
′′i

2 with 1′′i
2 = 1i

2/g(qi )(1
′i
2) for

i = 1, . . . , n, the assumptions imply that 1′′i
1 is a subspace of E ′′(pi ) and 1′′i

2
is a subspace of E ′′(qi ). Denote by σ ′′ : 1′′

1 → 1′′
2 the isomorphism induced by

σ . Then, if F ′′ denotes the torsion free sheaf on X corresponding to the triple
(E ′′, (1′′

1,1
′′
2), σ

′′), we have E ′′ = π∗E ′′. So applying π∗ to the exact sequence

(3.4), we get the exact sequence 0 → E ′ f
→ E → E ′′ → 0. Now consider the

diagram with exact rows

0 0

0 E ′ F ′ ⊕n
i=1W

′
xi 0

0 E F ⊕n
i=1Wxi 0

0 E ′′ F ′′ ⊕n
i=1W

′′
xi 0

0 0

By the assumption on the 1′i
j the right hand vertical sequence is exact. The

obvious morphisms of triples give us maps f : F ′ → F andF → F ′′. Now the
exactness of the diagram gives us an exact sequnce 0 → F ′ → F → F ′′ → 0.
In particular F/ f (F ′) ' F ′′ is torsion free. �

4 Stability

4.1 Definitions

For any torsion free sheaf F on X we define the slope μ(F) by

μ(F) :=
degF

rkF
.
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Recall F is called semistable, respectively stable, if

μ(G) ≤ μ(F), respectively μ(G) < μ(F),

for all proper subsheavesG ofF . Theorem 3.2 suggests to translate these notions
to the category of triples on X̃.

Let (E, (11,12), σ ) be a triple of rank r on X̃ with 11 = ⊕n
i=11

i
1 and

dim1i
1 = ai . If F denotes the corresponding torsion free sheaf on X , then

according to (2.3) and (2.5) the degrees of E and F are related by

deg E = degF − nr −
n∑

i=1

ai . (4.1)

Hence it makes sense to define the degree of the triple (E, (11,12), σ ) of rank
r by

deg(E, (11,12), σ ) := deg E +
n∑

i=1

ai + nr. (4.2)

If (E, (11,12), σ ) is a triple of rank r and d := deg E , we call it a triple of
type (r, d, a1, . . . , an). Note that d is the degree of the vector bundle E , not the
degree of the triple. We then define the slope of this triple by

μ(E, (11,12), σ ) :=
deg(E, (11,12), σ )

rk E
.

A subtriple of (E, (11,12), σ ) is by definition a triple (E ′, (1′
1,1

′
2), σ

′) on
X̃ such that E ′ ⊂ E is a subbundle, 1′

i ⊂ 1i are vector subspaces respecting
the direct sums for i = 1 and 2 such that σ ′ = σ |1′

1. With these definitions
the above notions translate as follows: A triple (E, (11,12), σ ) on X̃ is called
(semi-) stable if

μ(E ′, (1′
1,1

′
2), σ

′)
(≤)
< μ(E, (11,12), σ )

for all subtriples (E ′, (1′
1,1

′
2), σ

′) of (E, (11,12), σ ).
It is convenient to define for any integer k, 1 ≤ k ≤ r, the invariant sk of a

triple (E, (11,12), σ ) of type (r, d, a1, . . . , an) by

sk(E, (11,12), σ ) := k deg(E, (11,12), σ )

−r max deg(E ′, (1′
1,1

′
2), σ

′)
(4.3)

where the maximum is taken over all subtriples (E ′, (1′
1,1

′
2), σ

′) of rank k of
the given triple. It is clear that this maximum exists and that (E, (11,12), σ )

is stable, respectively semistable, if and only if sk(E, (11,12), σ ) > 0, respec-
tively ≥ 0, for 1 ≤ k ≤ rk E − 1.
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4.2 Relation to stability of E

In this subsection we want to compare the invariants sk(E, (11,12), σ )with the
corresponding invariants of the vector bundle E . Recall (see e.g. [7]) that for
any integer k, 1 ≤ k ≤ r − 1 the invariant sk of the vector bundle E of rank r
on X̃ is defined by

sk(E) = k deg E − r max deg E ′ (4.4)

where the maximum is taken over all subbundles E ′ of rank k of E . Certainly
this maximum exists and E is stable, respectively semistable, if and only if
sk(E) > 0, respectively ≥ 0.

Proposition 4.1. Let (E, (11,12), σ ) be a triple of type (r, d, a1, . . . , an) on
X̃. Then we have for 1 ≤ k ≤ r

sk(E, (11,12), σ )+ r
∑

i

a′′
i ≤ sk(E)+ k

∑

i

ai

≤ sk(E, (11,12), σ )+ r
n∑

i=1

a′
i

where for all i = 1, . . . , n,

max(k + ai − r, 0) ≤ a′
i ≤ min(ai , k) and

max(2k + ai − 2r, 0) ≤ a′′
i ≤ min(ai , k).

Proof. Suppose the subtriple (E ′, (1′
1,1

′
2), σ

′) of type (k, d ′, a′
1, . . . , a′

n)

takes the maximum in (4.3), i.e. sk(E, (11,12), σ ) = k deg(E, (11,12), σ )−
r deg(E ′, (1′

1,1
′
2), σ

′). According to Proposition 3.5, E ′ is a subbundle of E .
This implies, applying (4.2),

sk(E) ≤ kd − rd ′

= k

(

deg(E, (11,12), σ )− nr −
∑

i

ai

)

−r

(

deg(E ′, (1′
1,1

′
2), σ

′)− nk −
∑

i

a′
i

)

= sk(E, (11,12), σ )+ r
∑

i

a′
i − k

∑

i

ai
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Since (E ′, (1′
1,1

′
2), σ

′) is a subtriple of maximal degree, we must have

1
′i
1 = 1i

1 ∩ E ′(pi )

for all i . Considering 1
′i
1 as an intersection in E(pi ), the dimension formula

implies the left hand inequalities for the a′
i . The right hand inequalities are

trivial.
Now suppose the subbundle E ′′ ⊂ E of rank k takes the maximum in (4.4).

Then (E ′′, (1′′
1,1

′′
2), σ

′′) with 1′′
1 = ⊕i1

′′i
1 and 1′′

2 = ⊕i1
′′i
2 such that

1
′′i
1 = E ′′(pi ) ∩1i

1 ∩ σ−1(E ′′(qi )) and 1
′′i
2 = σ(1

′′i
1 )

and
σ ′′ = σ |1′′

1

is a subtriple of rank k, not necessarily of maximal degree. This implies, denot-
ing a′′

i = dim1′′
1 and applying (4.2) again,

sk(E, (11,12), σ ) ≤ k deg(E, (11,12), σ )− r deg(E ′′, (1′′
1,1

′′
2), σ

′′)

= k
(

deg E + nr +
∑

i

ai

)
− r

(
deg E ′′ + nk +

∑

i

a′′
i

)

= sk(E)+ k
∑

i

ai − r
∑

i

a′′
i .

The right hand inequalities for a′′
i is trivial. The left hand inequalities follow

from the definition of 1
′′i
1 considering it as an intersection in the r -dimensional

vector space E(pi ). �

As a direct consequence we obtain the following corollary.

Corollary 4.2. Let (E, (11,12), σ ) be a triple of type (r, d, 0, . . . , 0) on X̃.
Then

sk(E, (11,12), σ ) = sk(E)

for all k. In particular sk(E, (11,12), σ ) is (semi-) stable if and only if E is
(semi-) stable.

Recall from Corollary 2.10 that F is a vector bundle if and only if the cor-
responding triple (E, (11,12), σ ) is of type (r, d, r, . . . , r). In this case the
inequality of Proposition 4.1 implies

sk(E) ≤ sk(E, (11,12), σ ).
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This gives the following corollary.

Corollary 4.3. If E is (semi-) stable, so is any triple (E, (11,12), σ ) of type
(r, d, r, . . . , r).

The following proposition shows that the converse statement is not valid in
general.

Proposition 4.4. Let X be a rational curve with one node. So X is of arithmetic
genus 1 with X̃ ' P1. If

E = ⊕r−1
i=1OP1(1)⊕ OP1,

then a general triple (E, (11,12), σ ) of type (r, r − 1, r) is stable.

Proof. We have to show that for a general (E, (11,12), σ ) of type (r, r −1, r)
on X̃ and all subtriples (E ′, (1′

1,1
′
2), σ

′) of type (k, d ′, a′), 1 ≤ k < r the
number

sk((E, (11,12), σ ), (E
′, (1′

1,1
′
2), σ

′)) := k deg(E, (11,12), σ )

−r deg(E ′, (1′
1,1

′
2), σ

′)

is positive.

By (4.2) we have

sk
(
(E, (11,12), σ ), (E

′, (1′
1,1

′
2), σ

′)
)

= k(r − 1 + 2r)− r(deg E ′ + a′ + k)

= r(k − deg E ′)− k + r(k − a′).

If deg E ′ < k, then we have, since a′ ≤ k,

sk((E, (11,12), σ ), (E
′, (1′

1,1
′
2), σ

′)) > r − k > 0.

Hence we may assume that deg E ′ = k , i.e. E ′ ' ⊕k
i=1OP1(1). Then we have

sk((E, (11,12), σ ), (E
′, (1′

1,1
′
2), σ

′)) > 0 ⇔ a′ < k −
k

r

Suppose this is not the case. Then a′ ≥ k − k
r > k − 1, which implies a′ = k

and thus

1′
1 = E ′(p1) ⊂ 11, 1

′
2 = E ′(q1) ⊂ 12 and σ(E ′(p1)) = E ′(q1). (4.5)
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Hence it suffices to show that there exists σ : E(p1) → E(q1) such that for all
subbundles E ′ of rank k of E ,

σ(E ′(p1)) 6= E ′(q1). (4.6)

Now the dimension of the space of subbundles of E of rank and degree k is less
or equal to

dim Hom
(
⊕k

i=1OP1(1),⊕r−1
j=1OP1(1)

)
−dim Aut

(
⊕k

i=1OP1(1)
)

= k(r −1)−k2.

Moreover, given a subbundle of rank and degree k, the space of isomorphisms
σ : E(p1)→ E(q1) such that σ(E ′(p1)) = E ′(q1) is of dimension r(r − k)+ k2.
But

k(r − 1)− k2 + r(r − k)+ k2 = r2 − k < r2.

Hence a general σ : E(p1) → E(q1) satisfies (4.6) which completes the
proof. �

Proposition 4.5. Let X be of geometric genus g ≥ 3 with one node x1 and E
be a general stable vector bundle of rank r and degree d on X̃. Then any triple
(E, (11,12), σ ) on X̃ is stable.

Proof. Let (r, d, a1) be the type of the triple (E, (11,12), σ ) and k an integer
with 1 ≤ k ≤ r . Since E is general, we have by [8]:

sk(E) ≥ k(r − k)(g − 1).

Using this, we get from Proposition 4.1

sk(E, (11,12), σ ) ≥ sk(E)+ ka1 − r min(a1, k)

≥ k(r − k)(g − 1)+ ka1 − r min(a1, k)

If a1 ≤ k, this gives

sk(E, (11,12), σ ) ≥ (r − k)(k(g − 1)− a1) > 0.

If a1 > k, it gives

sk(E, (11,12), σ ) ≥ k(r − k)(g − 2) > 0

which completes the proof of the proposition. �
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For X of geometric genus 2 with one node the same proof gives that for
general stable E on X̃ any triple (E, (11,12), σ ) is semistable. This is best
possible as the following example shows.

Example 4.6. Let X be of geometric genus g = 2 with one node and let E be a
general stable vector bundle of rank 2 and degree 1 on X̃. So s1(E) = 1. If E ′ is
a line subbundle of maximal degree of E , we deduce from 1 = s1(E) = deg E −
2 deg E ′ that deg E ′ = 0. Choose 11 = 1′

1 = E ′(p1) and 12 = 1′
2 = E ′(q1)

and let σ = σ ′ : E(p1) → E ′(q1). Then we have

s1(E, (11,12), σ ) ≤ deg(E, (11,12), σ )− 2 deg(E ′, (1′
1,1

′
2), σ

′)

= (deg E + a1 − 2)− 2(deg E ′ + a′
1 − 1)

= (1 + 1 − 2)− 2(0 + 1 − 1) = 0.

Remark 4.7. It is not difficult to work out analogous results of Propositions
4.4 and 4.5 in the case of n nodes.

5 Applications

5.1 Sheaves of type (r, d, a1, . . . , an)

Let the notations be as above. In particular X is an irreducible curve, singu-
lar only at exactly n nodes xi with normalization X̃ of genus g. So X is of
arithmetic genus pa(X) = g + n. We call a torsion free sheaf F on X of type
(r, d, a1, . . . , an) if it is of rank r , degree d and

Fxi ' Oai
xi

⊕ mr−ai
xi

(5.1)

for i = 1, . . . , n. Since the degree of the corresponding triple

(E, (11,12), σ ) := 9(F)

equals by definition the degree of F , we conclude from (4.2),

Lemma 5.1. A torsion free sheaf F is of type (r, d, a1, . . . , an) if and only if
the corresponding triple (E, (11,12), σ ) is of type

(

r, d −
∑

i

ai − nr, a1, . . . , an

)

.
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According to [10, Ch. 8, Prop. 9] the stable torsion free sheaves of rank r and
degree d form an irreducible moduli space MX (r, d). For any ai , 0 ≤ ai ≤ r
for i = 1, . . . , n consider the subset

MX (r, d, a1, . . . , an) :=
{
F ∈ M(r, d) | F of type (r, d, a1, . . . , an)

}
.

Lemma 5.2. MX (r, d, a1, . . . , an) is a locally closed subset of MX (r, d).

Proof. For the proof only note that the function di : M(r, d) → Z, F 7→
dimF(xi ) is upper semi-continuous. �

Proposition 5.3.

(a) For any type (r, d, a1, . . . , an) we have

dimMX (r, d, a1, . . . , an) ≤ r2(g − 1)+ 1 + 2r
n∑

i=1

ai −
n∑

i=1

a2
i . (5.2)

(b) If for a general E ∈ MX̃(r, d −
∑

i ai − nr) all triples (E, (11,12), σ )

of type (r, d −
∑

i ai − nr, a1, . . . , an) are stable, then we have equality
in (5.2).

Proof.

(a) Suppose F ∈ MX (r, d, a1, . . . , an) with corresponding triple (E, (11,

12), σ ). According to Lemma 5.1 we have

d̃ := deg E = d −
∑

i

ai − nr.

Recall that an algebraic family V of vector bundles of rank r degree d̃ on X̃ ×S
is called effective, if for any point s ∈ S there are at most finitely many points
s ′ ∈ S such that V |X × {s} ' V |X × {s ′}. It is well known (see [9, Prop. 2.6])
that any effective family of such vector bundles is of dimension ≤ dimMX̃(r, d ′).

Recall moreover that an isomorphism of triples g̃ : (E, (11,12), σ ) →
(E ′, (1′

1,1
′
2), σ

′) is by definition an isomorphism g : E → E ′ satisfying
g(pi )(11) = 1′

1 and g(qi )(12) = 1′
2 for all i such that (3.1) commutes.

For a fixed E , the pairs (11,12) vary over (×i Gr(ai , r)) × (×i Gr(ai , r)).
For each fixed pair (11,12), the isomorphism σ varies over I so(11,12). More-
over, P(Aut E) acts on the set of triples with the underlying bundle E by

g(11,12, σ ) := ((g(pi )(1
i
1))i , (g(qi )(1

i
2))i , g(σi )i ),
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where g(σi ) : g(pi )(1
i
1) → g(qi )(1

i
2) is the isomorphism induced by σi . The

quotient by this action is the variety of isomorphism classes of triples with the un-
derlying bundle E . Hence the isomorphism classes of triples with the underlying
bundle E are determined by

(×i Gr(ai , r))× (×i Gr(ai , r))× (×i k
a2

i )/P(Aut E).

This quotient has maximum dimension for stable vector bundles E .
Using Theorem 3.2, this implies

dimMX (r, d, a1, . . . , an) ≤ dimMX̃(r, d̃)+ 2
n∑

i=1

dim Gr(ai , r)+
n∑

i=1

a2
i

= r2(g − 1)+ 1 + 2
n∑

i=1

ai (r − ai )+
n∑

i=1

a2
i

= r2(g − 1)+ 1 + 2r
n∑

i=1

ai −
n∑

i=1

a2
i .

(b) Assume now that for a general E ∈ MX (r, d̃) all triples (E, (11,12), σ )

of type (r, d̃, a1, . . . , an) are stable. Then there is a non-empty open set
U of MX (r, d̃) with this property.

The commutativity of (3.1) is automatically fullfilled for any σ if E is stable,
since an automorphism of a stable bundle is a constant. This implies that

dimMX (r, d, a1, . . . , an) ≥ dimMX̃(r, d̃)+ 2
n∑

i=1

dim Gr(ai , r)+
n∑

i=1

a2
i ,

which by the same computation as above completes the proof of the propos-
ition. �

Remark 5.4. Note that r2(g − 1)+ 1 + 2
∑

i ai −
∑

i a2
i = r2(gX − 1)+ 1 −∑

i (r − ai )
2, where gX denotes the genus of X . Thus Proposition 5.3 agrees

with the results of [2, Proposition 2.7].

The following corollary is well known (see e.g. [2]).

Corollary 5.5. The dimension of the moduli space of stable torsion free sheaves
of rank r and degree d on a curve X of genus g ≥ 2 with n nodes is

dimMX (r, d) = r2(g + n − 1)+ 1.
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Proof. Since the functions di : M(r, d) → Z, F 7→ dimF(xi ) are upper
semi-continuous for all i , there is an open dense set U inMX (n, d) parametrizing
vector bundles. Since the corresponding triples on X̃ are of type (r, d, r, . . . , r),
Corollary 4.3 and Proposition 5.2 (b) imply dimMX (r, d) = r2(g−1)+r2n +1
which completes the proof. �

5.2 Upper bounds for sk

Proposition 4.1 allows a cheap proof of an upper bound for the invariant
sk(E, (11,12), σ ) which however is not best possible (see [2]).

Proposition 5.6. For any torsion free sheaf F of rank r and degree d on X and
any k, 1 ≤ k ≤ r − 1 we have

sk(F) ≤ kr(g + n − 1)− k2(g − 1)+ r − 1.

Proof. Let (E, (11,12), σ ) be the triple corresponding to F . According to
the left hand inequality of Proposition 4.1 we have

sk(F) = sk(E, (11,12), σ ) ≤ sk(E)+ k
∑

i

ai .

Now according to [6], sk(E) ≤ k(r − k)(g − 1) + r − 1. Moreover ai ≤ r
for all i . This gives the assertion. �

Acknowledgments. We would like to thank Usha Bhosle for pointing out an
error in a first version of this paper.

References

[1] U.N. Bhosle. Generalized parabolic bundles and applications to torsionfree
sheaves on nodal curves. Ark. Mat., 30 (1992), 187–215.

[2] U.N. Bhosle. Maximal subsheaves of torsion-free sheaves on nodal curves.
Journ. London Math. Soc., 74 (2006), 59–74.

[3] I. Burban and Y. Drozd. Coherent sheaves on rational curves with simple double
points and transversal intersections. Duke Math. J., 121 (2004), 189–229.

[4] I. Burban, Y. Drozd and G.-M. Greuel. Vector bundles on singular projective
curves. Kluwer Acad. Publ., NATO Sci. Ser. II, Math. Phys. Chem., 36 (2001),
1–15.

Bull Braz Math Soc, Vol. 41, N. 3, 2010



“main” — 2010/8/20 — 13:13 — page 447 — #27

TORSION-FREE SHEAVES ON NODAL CURVES AND TRIPLES 447

[5] A. Grothendieck. Sur quelques points d’algèbre homologique. Tohoku Math. J.,
9 (1957), 119–221.

[6] A. Hirschowitz. Problème de Brill-Noether en rang supérieur. Preprint 91,
Université de Nice (1986).

[7] H. Lange. Zur Klassifikation von Regelmannigfaltigkeiten. Math. Ann., 262
(1083), 447–459

[8] S. Mukai and F. Sakai. Maximal subbundles of vector bundles on a curve.
Manuscr. Math., 52 (1985), 251–256.

[9] M.S. Narasimhan and S. Ramanan. Deformations of the moduli space of vector
bundles over an algebraic curve. Ann. of Math., 101 (1975), 391–417.

[10] C.S. Seshadri. Fibrés vectoriels sur les courbes algébriques. Astérisque, 96
(1982).

[11] S. Sundaram. Special divisors and vector bundles. Tohoku Math. J., 39 (1987),
175–213.

D. Avritzer
Departamento de Matemática
Universidade Federal de Minas Gerais
Av. Antonio Carlos 6627
30161-970 Belo Horizonte, MG
BRAZIL

E-mail: dan@mat.ufmg.br

H. Lange
Mathematisches Institut
Universität Erlangen-Nüremberg
Bismarckstrasse 1 1/2
91054 Erlangen
GERMANY

E-mail: lange@mi.uni-erlangen.de

F.A. Ribeiro
Departamento de Matemática
Universidade Federal de Juiz de Fora
ICE Campus Universitario, B. Martelos
36036-330 Juiz de Fora, MG
BRAZIL

E-mail: flaviana.ribeiro@ufjf.edu.br

Bull Braz Math Soc, Vol. 41, N. 3, 2010


