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Torsion-free sheaves on nodal curves and triples

D. Avritzer*, H. Lange** and F.A. Ribeiro

Abstract. Let X be a reduced irreducible curve with at most nodes as singularities
with normalization 7 : X — X. We study the description of torsion free sheaves on X
in terms of vector bundles with an additional structure on X which was introduced by
Seshadri.
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1 Introduction

Let X be an irreducible reduced curve over an algebraically closed field with
at most ordinary double points as singularities and let 7 : X — X denote its
normalization. In [10, Ch. 8] Seshadri described torsion free sheaves on X in
terms of vector bundles on X with some additional structure. Let for simplicity
X just have one node x with 7=!'(x) = {py, p»}. Then Seshadri showed that
there is a canonical bijection between torsion free sheaves F on X and triples
(E, (A1, Ay), o) consisting of a vector bundle £ on )N(, a pair of vector subspaces
(A1, Ay) with A; C E(p;) and an isomorphism o : A} — A,. To the best of
our knowledge, this beautiful and clear result has not been applied very much
in the literature (apart from [11]and [1]). The main papers on vector bundles on
nodal curves apply different methods (see [2], [3], [4]).

The starting point of this paper was to understand Seshadri’s result. We give
a new proof and discuss the functoriality of this construction. We introduce
the notion of morphisms of such triples and show that the categories of torsion
free sheaves on X and the category of these triples on X are equivalent. More-
over, we define stability of triples over X using the corresponding notion for
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torsion free sheaves on X. Using this, we study the relation between the stability
of a torsion free sheaf F on X and the stability of the vector bundle £ occurring
in the corresponding triple.

To be more precise, assume that xy, ..., x, are exactly the nodes of X and
7' (x;) = {pi, q;} fori =1, ..., n. For any torsion free sheaf F of rank » on X
there are unique integers a;, 0 < a; < r such that F,, >~ Of & m’ . Moreover
there is a unique subsheaf £ C F of the form £ = w, E with E a vector bundle
of rank r on X fitting into an exact sequence

0>F—>F—>_ W, —>0

where ‘W, is the skyscraper sheaf on X with fibre a vector space W,, of dimen-
sion «; at the node x;. Starting with this exact sequence, the vector bundle £
is given by

E=n"E/T

where T denotes the torsion subsheaf of 7*(Z). We show then that there is a
canonical isomorphism

b = @d)ii Eth(@?:lWx,-a Zﬂ) _:)
= @7, (Homy (W, E(p:)) ® Homy (W, E(q:)))

(Note that this description of Ext! is different from the description in [10,
Ch. 8, Lemme 15].) Given an exact sequence as above, the vector spaces A;
and A, as well as the isomorphism ¢ are constructed out of the corresponding
homomorphisms W,, — E(p;) and W,, — E(q;) (see Remark 2.5).

In Section 3, we introduce morphisms of triples and prove the above men-
tioned equivalence of categories (see Theorem 3.2). Since the category of tor-
sion free sheaves on X admits kernels and images, so does the category of triples
on X. We describe them and give a criterion for a cokernel to exist.

In Section 4, we translate the notion of stability of torsion free sheaves to
the corresponding triples. This is used to relate the stability properties of F to
the stability of the vector bundle £. We show in particular that if £ is stable,
so are all triples (E, (A, Ay), o) which correspond to a vector bundle on X.
We also give an example of an unstable vector bundle on X admitting stable
triples. Finally in Section 5, we give some applications.

Notation: Let X be a curve over k. By an O y-module we always understand
a coherent O y-module. Similarly a torsion free @ y-module means a coherent
torsion free @ y-module. A point of X always means a closed point. If x € X
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is a point, m, denotes the maximal ideal of the local ring Oy, and m, denotes
the corresponding ideal sheaf in @ y. For any O y-module F and any x € X we
denote by T, its stalk and by F(x) = F./m, F, its fibre at the point x and we
abbreviate O, := Oy,.

2 Relation to vector bundles on the normalization
2.1 The setup

Let X be an irreducible reduced curve over an algebraically closed field £ with
at most ordinary double points as singularities. We assume that X admits ex-
actly n ordinary double points x, ..., x,.

According to [10, Ch. 8, Prop. 2], for any torsion-free O,,-module M of rank r
there is auniquely determined non-negative integer a; such that M >~ O @m'.~.
In particular, for any torsion-free sheaf F of rank » and degree d on X and any
i = 1,...,n there is an integer a;, uniquely determined with 0 < a; < r
such that

Fu E O Omi . (2.1)
This gives surjective homomorphisms
.Tx,- g Wx,- = k?j,

where k,, >~ k denotes the residue field at the point x;. If we denote by W, the
skyscraper sheaf concentrated at x; with fibre #,,, we have an exact sequence

0>F—>F—>_ W, —>0, (2.2)

where the kernel £ is uniquely determined by F, although the homomorphism
F — &!_,' W, itself is not. This implies that F is an extension of ®/_, W,, by
a torsion-free sheaf £ with

E, =m} and deg(F) =deg(F) — ) a;. (2.3)
i=1
Now consider the normalization map
T:X—> X

and denote the two points of 77! (x;) by p; and g;. According to [10, Ch. 8,
Prop. 10], for a torsion free sheaf E of rank r and degree d on X there is a
vector bundle £ on X such that

T = 7,.(E) (2.4)
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ifand only if Z,, = m/, foralli. In this case £ is uniquely determined by £ and
deg(E) = deg(E) — nr. (2.5)

(Note that [10, Ch. 8, Prop. 10] states that deg(£) = deg(Z) + nr. However
there is an error in the proof: the degree of 7,0 is considered to be —1).

We use the following two statements of [11].

Let k,, (respectively k,, and k,,) be the skyscraper sheaf on X (respectively
X) with fibre k at the point x; (respectively p; and ¢;). Then we have

Tory , (ky,. O%) = kp, @ kg, (2.6)

considered as sheaves on X. This a consequence of [11, Ch. II, Lemma 2.1].
There exists a locally free sheaf G of rank 7 and degree deg F +nr — > __, a;
on X such that

FCagq. (2.7)
and the quotient G/ ¥ is supported at the nodes x;. This is [11, Ch. II, Lem-
ma 2.3].

Proposition 2.1. Let ‘F be a torsion free sheaf of rank r on X satisfying (2.1)
and let T denote the torsion subsheaf of 7* F. Then

deg(n*j-"):degf+nr—2a,- and degT:Z(nr—Za,-).

i=1 i=1

Proof. Let G be the locally free sheaf of (2.7). Pulling back the exact sequence
00— F — G— G/F — 0by m, we get the exact sequence

0—>7T >n*F > n*'G—> a*(G/F) — 0.
with T = Tory, (G/F. Ox). Since
degG/F = nr — Za,»
i=1
we get deg m*(G/F) = 2 (nr — Y_;_, a;). This implies
deg(n*F/T) = degn*G —degn™(G/F)

= degf+nr—ia,»—2<nr—iai>
i=1 i=1
= deg ¥ — (nr—ia,)
i=1
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On the other hand, from (2.6) we deduce

degT:ZdegG/j—"=2<nr —Zal).

i=1
This implies also the first assertion. n
For the following corollary see [10, p.175, 1.3].
Corollary 2.2. Let F be a torsion free sheaf of rank r satisfying (2.1) and let
E = m,E its subsheaf as in (2.4). If T denotes the torsion subsheaf of m*E,

then we have
n*E/T ~ E.

Proof. As an immediate consequence of Proposition 2.1 and equation (2.5)
we get
deg (7*E/T) = degE. (2.8)

Now consider the canonical map 7*E — 7*E /7T . Adjunction gives a map
mE=F — 7, (n"E/T)

which is of maximal rank outside the nodes x;. Since E is a vector bundle on
X, we have

Hom (n*E, n*(ﬂ*f/’f)) = H° (n*E* Q@ (*E/T))
c H(n(E*®n*E/T))
~ HY(E*Q®n*E/T)
= Hom (E,n*E/T).

Hence we get a homomorphism £ — 7*E /T which clearly is of maximal rank.
Hence it is injective and thus an isomorphism by (2.8). O

2.2 [Extensions

Recall that the extensions 0 — £ — G — @', 'W,, — 0 are classified by
the group Ext'(@"_, W,,, F). The next proposition gives a characterization of
Ext! (@®!_, W,,, E). Since Ext! is additive, it suffices to do this for each node x;
separately. The following proposition appeared in [10, Ch. 8, Lemme 12] in a
slightly different form.
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Proposition 2.3. Let £ = 7. E with E a vector bundle of rank r on X. Then
there is a canonical isomorphism

b = @CI),»: Eth (@?:]in’ f) —:)
= er, (Homk(Wxi, E(pi)) ® Homy (W, E((]i)))

where W, is the skyscraper sheaf concentrated at x; with fibre Wy, = k3t for
integers a;, 0 <a; <r.

For the proof we need the following lemma.
Lemma 2.4. There is a canonical isomorphism
Homy, (m, , £) ~ Home; (O3, E(D;)).
where D; := p; + q; and as usual E(D;) == E @ Ox(D;).

Proof. Let7; denote the torsion subsheaf of 7 * (m,). Certainly the divisor D;
induces a canonical isomorphism

7 (m, ) /T; ~ Ox (=Dy).

Now the exact sequence 0 — 7; — n*(m,) — 7w (m,) /T; — 0 induces an
isomorphism

Homo, (n*(mxl_)/’fi, E) — Homy, (”*(ﬂx,-)» E)

since Homg, (T;, E) = 0. Using moreover adjunction, we finally get the fol-
lowing canonical isomorphisms

Homo, (m,, E) = Homg, (7*(m,,), E)
= Homoy (7*(m,,)/T;, E)
= Homp, (03(—D;), E)
= Homo, (03, E(D))).
Proof of Proposition 2.3. We may assume 4!(F) = 0, since tensorizing E

and ‘W, by a line bundle changes both sides of the equation only by a canonical
isomorphism. Using this, the exact sequence

0— Wy, @m, — W, ® Ox — Wy, —0
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induces an exact sequence

0 — Homg, (W, ® Ox, ) — Homo, (W, ® m,,E) —

2.9
— Ext'(W,,, £) — 0, @)

where the last 0 uses 4! (F) = 0.

The canonical sequence 0 — E — E(D;) — E(p;) ® E(g;) — 0 (here
we identify the fibres E(p;) and E (g;) with the corresponding skyscraper sheaf
concentrated at p; and g; respectively) induces an exact sequence

0— HomOX(Wxi ® O)’Z, E) e H0m05‘((Wx,‘ ® O’)V(a E(Dl)) -

2.10)
— Homgg (W, ® Ox, E(pi) ® E(qi)) — 0

WhereweusedExtl(Wx,. ®0%, E) =W, ®H1(5§, E) =W, QH'(X,E)=0.
Moreover, by adjunction we have a canonical isomorphism
Homg, (W, ® Ox, E) =~ Homg (7" (W,, ® Ox), E) = Home, (W, ® O%, E).

Using this, Lemma 2.4 and the exact sequences (2.9) and (2.10), we obtain the
following diagram with exact rows

0 — Homg, (W, ® Ox, E) — Homg, (W, ® m, E) — Ext'(W,,,E) - 0
ll2 Il2
0 — Homg, (W, ® O%, E) — Homg (W, ® Og, E(D;)) i (2.11)
0;
— Homgg (W, ® Ox, E(pi) ® E(g:)) — 0,
Since this diagram is certainly commutative, it induces a canonical isomorphism
Ext'(W,,, ) = Homog (W, ® Ox, E(p) @ E(g))).

Finally, observe that Homog (0%, E(p;)) = Homy(k, E(p;)) and similarly for
g;. Hence we can identify

Homog (W, ® Ox, E(pi) ® E(q:)) = Homy (W, E(p;)) @ Homy (W, E(g:)).

Combining both isomorphisms completes the proof of the proposition. U

Remark 2.5. According to the proof and in particular diagram (2.11), the image
of an extension (¢;): 0 > £ — F — W,, — 0 under the map ®; is given as
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follows: choose a preimage v, € Homg, (W, ®m ., E) of (¢;) € Ext! (W,,, E)
and consider it as an element in Homoy (W, ® Ox, £(D;)). Then

Di(e;) =0;(Ye,).

Conversely, given a pair («;, ;) € Homy(W,,, E(p;)) @ Hom;(W,,, E(g;)),
the corresponding extension CI>i_l (a;, Bi) € Extl(Wxi, F) is constructed as fol-
lows: choose a preimage v; of («;, B;) under the map 6;, considered as an
element of Homo, (Wy, ® m,,E). Then &, Yy, B;) is the push-out of the
canonical sequence defining W, by ¥;:

0—— Wx[®mxi4>Wxi®OX Wx,- 0
lw,- l
0 F Fi Wy, 0

It follows from Proposition 2.3 that ®; (e;) and @ ! (o;, B;) do not depend on the
choices of the preimages.

The extension ®~'((«1, B1), ..., (an, Bn)) € Extl(@;’:lwxi, T) is then the
sum of the extensions 0 — £ — F; — W,, — 0 in the group Ext! (@ W,,,E),
where Ext' (W,,, F) is considered as a subgroup of Ext' (&"_, W,,, E).

2.3 Torsion free extensions

Let x denote any of the nodes x; of X and let p and ¢ be the points of X above x.
Recall that we denote by W, a k,-vector space of dimensiona, 1 < a < r and by
W, the skyscraper sheaf on X with fibre W, at x. The ©,-module Ext(lgx ., Ey)
classifies the extensions 0 — £, — F, — W, — 0 of modules over the local
ring O,. The following lemma shows that every such module is the restriction
of a unique exact sequence 0 — £ — F — W, — 0.

Lemma 2.6. Thereis a canonical isomorphism Ext'(W,, E) ~ Ext(lgx (W, Ep).

Proof. The edge homomorphism of the local-global spectral sequence (see
[5, (4.2.7)]) is an isomorphism

Ext' (W, E) > H°(X, Exty, (W, E)),

since H' (X, Hom, (W,,E)) =0 fori = 1and 2. This implies the assertion,
since the sheaf @}DX (W,, E) is a skyscraper sheaf with fibre Ext(lox Wy, Ey)
concentrated at the point x. 0
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Combining the isomorphisms of Proposition 2.3 and Lemma 2.6, we get the
following description of the extensions of @,-modules of W, by Z,:
Let

~

0,:=0,Nn0,
(intersection in the function field of X) denote the normalization of O,. Itis a
semilocal ring with two maximal ideals m , and m, and we have
my =m,MNmgy.
Moreover we denote by
E,:=E®o, Ox and E(D),:= E(D)®o; O,

the 5x -modules defined by £ and E (D), where D denotes the divisor p + ¢ on
X. As in the proof of Proposition 2.3, the exact sequences 0 — W, ®; m, —
W, ®r Oy — Wy — 0and0 - E, — E(D), — E(p) ® E(q) — 0 induce
the following local version of diagram (2.11).

0— Hom(‘)x(Wx ® O)n Zﬂx) - HOIl’l(r)X(WX ®mx’ fx) - EXtEQX(WX7 :Ex) —- 0
Il Il

0 — Homg (W; ® Oy, E,) — Homg (W; ® Oy, E(D),) - (2.12)

% Homg, (W, ® Oy, E(p) & E(q)) — 0
2
Homy (W, E(p)) & Hom,(W,, E(q)).

Now consider («, 8) € Homy(W,, E(p)) ® Hom,(W,, E(q)). Let («, E) de-
note the corresponding element in Homg (W, ® 5;“ E(p) ® E(g)). Choose
a preimage ¥ of («, B) under the map 6 and consider it as an element of
Homg (W, ® my, E,). Then the extension in Ext(lgx (W,, Ey) corresponding
to («, B) is the pushout of the canonical sequence defining W, by :

0O—=W,@my —=W, 0y —= W, ——=0

P

(2.13)
0 E, T W 0.

Recall that £, >~ m’.. Hence, fixing isomorphisms £, >~ m’ and W, ®m, >~ m¢,
any homomorphism v : W, ® m, — E, is given by a matrix

A= (a;) e M@rxa,o,).
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We say that y has birank (by, b,),if tk 4 mod m, = by and tk 4 mod m, =
b,. This definition does not depend on the choice of the isomorphisms. Certainly
Y has birank (by, b,) if and only if rk @ = by and tk 8 = b;.

Proposition 2.7. Let 0 — E, — F. — W, — 0 be the extension correspond-
ing to the pair («, B) € Homy(W,, E(p)) @ Homy(W,, E(q)). The following
statements are equivalent:

(1) Fy is torsion-free,
Q) Fr=O0t®m ™,

(3) « and B are injective.

Proof. The equivalence of (1) and (2) is clear, we have already used it. We
have to show that (2) is equivalent to (3). Now « and 8 are injective if and only
if they are both of rank a. As we saw just before the proposition, this is the case
if an only if ¢ is of birank (a, a). Since W, is of dimension «, this is the case if
and only if i is injective. From diagram (2.13) we deduce that this is the case if
and only if the push-out W, ® O, — F, is injective. But this is injective if and
only if F, is torsion-free. g

As an immediate consequence we get,
Corollary 2.8. Let (¢): 0 > £ — F — @®!_| W,, — 0 be an extension as
in subsection 2.2 and let ®((e)) = ((a1, B1), ..., (o, By)) € ®/_,(Hom (W,,,

E(pi)) @ Hom(W,,, E(g;))) (see Proposition 2.3). Then the following condi-
tions are equivalent:

(1) F is torsion free;

(2) «; and B; are injective fori =1, ..., n.

2.4 Triples on X

In this subsection we outline the relation between torsion free sheaves on X and
vector bundles on X with an additional structure.

Given a torsion free sheaf ¥ on X, let £ = m,(F) be its subsheaf such that
0—>F — F — &'_, W,, — 0is exact, where @&/_, W,, is the torsion sheaf as
above. Let

(a1, Br), -, (an, Bn)) € & (Homy (W, E(p;)) ® Homy(Wy,, E(g:)))
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denote the corresponding element according to Proposition 2.3. Then by Corol-
lary 2.8 the homomorphisms «; and §; are all injective and we can consider the
following vector spaces:

Al :=Ima; C E(p;), AS:=ImB; C E(q),
Ay =@ A, Ay = @i, A
Combining the inverse of the isomorphism «; onto its image with 8; we obtain

an isomorphism
o =Bioa 'l Al — Al

Finally we denote the direct sum by
o=@ _,0;: Aj > Aj.

Summing up, we associated to the sheaf F on X the object (£, (A1, Aj), o) in
a canonical way. We call these objects triples on X in the sequel.
Conversely, given a triple (£, (A, Ay),0) on X, wedenote fori = 1,--- ,n

Wy, = A’i

and if o; : Wy, <> E(p;) is the natural inclusion, we define B;: A} — E(g;) to
be the composition
W, = A 5 AL E(g).

According to Proposition 2.3 there is a unique extension 0 — 7. E — F —

" W, — 0 associated to the n pairs ((a1, B1), ..., (&, Bn)), where F is
torsion free of rank » according to Corollary 2.8.

Summing up, we associated to the triple (£, (A, A,), o) the torsion free sheaf
F in a unique way. The following theorem is due to Seshadri (see [10, p. 178,
Theorem 17]).

Theorem 2.9. Given intergers ay, ..., a, andr such that 0 < a; <r, thereis a
canonical bijection between the sets:

(1) of isomorphism classes of torsion free sheaves F of rank r and degree d
on X such thatfori =1,--- ,n,

Fo Z 0,05 © & m,, (2.14)
and
(2) of isomorphism classes of triples (E, (A1, Ay), o), where
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e E is a vector bundle of degree d — nr — Y_:_, a; and rank r on X,
o forj =1land2, A;= @;’ZIA; with A} and A} vector subspaces
of dimension a; of E(p;) and E (q;) respectively,
o 0 = @/_ 0; with isomorphisms o;: A} — Ab.
Proof. It is easy to see that the maps of one set to the other set given above

are inverse to each other. The statement relating the degrees of £ and F is a
consequence of equations (2.3) and (2.5). O

As a direct consequence we get the following corollary.
Corollary 2.10. Let T correspond to the triple (E, (A1, Ay), o) as in Theo-
rem 2.9. Then F is a vector bundle if and only ifa; = --- = a, =r.
3 The functor W
Let (E, (A1, Az),0) and (£, (A], A}), ') be triples on X. A homomorphism

g: (Ev (Ala AZ)» U) - (E/v (A/lv A/z)’ G/)

of triples on X is by definition a homomorphism g: E — E’ of the under-
lying vector bundles satisfying g(p;)(A}) c Al and g(g;)(AL) C Aj for
i =1, ..., nsuch that the following diagram commutes

Ay = @A ——= Ay = @A)
@ig(pi)i l@ig(%') (3.1)

o’

A/l = @,‘Ali —_— A/Z = @ZAZl

With this notion of morphisms the set of triples on X forms a category which we
denote by TR.

Let /: F — F' denote a homomorphism of torsion free sheaves on X and
denote by

V(F) = (E, (A1, Ar),0) and W(F'):= (E, (A}, Ay),0))

the corresponding triples according to Theorem 2.9. Let £ C F and £ C F’
be the subsheaves defined in (2.2). It is easy to see that f maps Z into . We
then see from Corollary 2.2 that

7*(f|E)/torsion: E = n*E/T — n*E' /T = E’
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is a homomorphism of vector bundles. Moreover we have,

Lemma 3.1. The homomorphism f induces a homomorphism of triples

\I’(f) (E’ (Al’ A2)’ 0) - (E/s (A/’ A/Z)? OJ)

~

on X.

Proof. Consider the extension (2.2) defined by F and let0 — £’ — F' —
@,-W;i — 0 be the corresponding extension for ‘F’. Since f maps Z into E’ we
get the following commutative diagram

0 3 F ®&W,, —=0
l.f'lf Lf l@i.f&i (3.2)
0 F' F ® W, —0.

Let ((a1, B1)s - -, (@, Bn)) € ®i(Hom(W,,, E(p;)) ®Hom(W,,, E(g;))) and
similarly

((a/lv :31)9 cees (a:qs /8;;)) € Gai(Hom(W);i’ E/(pl)) @ HOITI(W;[, E/(%)))

denote the n-tuples of pairs of homomorphisms associated to the extensions of
diagram (3.2) according to Proposition 2.3. By definition the following diagrams
commute fori =1, ..., n:

; Bi
W, —= E(p:) W, —> E(g;)
fi l l\vm ) i l l‘W) @:)
, Oll/- / ﬁl/
le’ E/(pl) Wx,- E/(ql)

which implies W(f)(p;)(A}) € Al and W(f)(g;)(AL) € Aj fori=1,...,n.
It remains to show that the diagram (3.1) commutes, but this is straightfor-
ward using Proposition 2.7 and 0 = @;0;, = &; (ﬂi oo 1) and similarly
for o’. O

If 7S denotes the category of torsion free sheaves on X, then clearly W is a
functor from the category T S to the category T R of triples on X.

Theorem 3.2. The functor ¥: T S — T R is an equivalence of categories.
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Proof. According to Theorem 2.9 the functor W is a bijection on the ob-
jects. We have to show that it is a bijection on the sets of morphisms. So
let g: (E, (A, Ay),0) = (£, (A}, A}),o’) be a homomorphism of triples
on X. Let F and F’ denote the torsion free sheaves on X with W(F) =
(E, (A1, Ay),0) and W(F') = (E', (A}, A)), o).

Define Wy, := Aiv Waé,- = A/f. So «; and «; are its canonical inclusions into
E(p;) and E’(p;) respectively. Similarly 8; = 1; o 0; and ] = ¢} o o/, where (;
and ¢ are the canonical inclusions A5 <> E(g;) and A/Zi — E'(g;) respectively.

Then diagram (3.1) implies that the following diagrams are commutative

a; Bi
Wy, —— E(p:) Wy, —— E(q:)
g(pi)l lg(p;) g(p;)l lg(qi) (3-3)
W, —"=E'(p;) W, "~ E'(g)

fori=1,...,n.

Now choose for i = 1,...,n preimages v; and ¥/ of («;, B;) and («;, B))
under the map 6; of diagram (2.11) respectively and consider them as homo-
morphisms ¢; : Wy, ® m . — T = m,E and (/38 W);_ ®m, — T = nm.E'.
According to remark 2.5, F is given by the sum in Extl(EB?:lWxi, E) of the
push-outs 0 > £ — F; — W, — 0 by ¢; of the canonical exact sequences
0= W, Qm v Wy, ® Ox — W, — 0 defining the sheaf W,,. Similarly
F' is defined. For every i = 1,...,n we obtain the following commutative

diagram:
Wy ®my, C Wy; ® Oy Wy,
Wi, @my C Wi, ® 0y Wy,
|
Pas Fi Wx;
S |
/€ F! Wy,

where the left hand vertical maps are v; and v and the commutativity of the
left hand vertical square is a consequence of the commutativity of diagram (3.3).
The universal property of the push-out gives us a homomorphism

firFi—> Fi
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such that the whole diagram commutes. Finally, taking the sum of the lower
bottom diagrams we get a map Ext'(&"_, W,,, £) — Ext'(@"_ | W, E') given
by a diagram

0 F F LW, ——0
L]
0 E’ _T/ zr'l=lw;i 0

which defines f: F — F'.
It is easy to see that g = W( f) which completes the proof of the theorem. [

Since any morphism in the category 7 S admits a kernel and an image, so does
any morphism in the category 7 R. They are given in the following lemma the
proof of which we omit.

Lemma 3.3. Let g: (E, (A1, Ay),0) — (E', (A}, A}), 0') be a morphism of
triples on X with underlying map g : E — E’. Then
(@ Ker g = (Ker(g), (A4, Az g), 0|A1 )
with Ay g = f:lA’i’g and A"l’g = Al NKerg(p,) N ai_l(Kerg(qi)) and
Ay = @A), with A, , = 0; (A} NKer g(p;)) N Ker g(g;).

(b) Img = (Im(g), (A} ., A} ), o|A] )

where A’l’g = EB;’:IA/f,g with A/f,g = A/li N g(pi)(A"l) N cri,_l(g(qi)(Aé))
and Ny , = ®"_| AT with A} , = o/ (AT N g(p)(A})) N g(g:)(AD).
Proposition 3.4. Let f: F — F’ be a homomorphism of torsion free sheaves
and g = V(f) with underlying map of vector bundles g : E — E'. Then
(@) f: F — Flisinjective ifand only if g: E — E’ is injective.

(b) f: F — F'issurjectiveif and only if g: E — E'is surjective.

Proof.

(a) Itis clear from Corollary 2.2 that if f is injective, then so is g. So assume
g: E — E'isinjective. Since, for every i, the map fy,: W,, — W, can
be identified with a restriction of the injective map g(p;): E(p;) — E'(p;)
and g : E — E’is injective if and only if f|Z: E — Z’ is injective, the
map f: F — F’is injective by diagram (3.2).
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(b) Suppose f is surjective. We claim first that then also f|E: E — E'is
surjective. It suffices to show this over each node x; separately. We have
the following diagram of O,,-modules

r a; r—a; a;
0——=m, H(‘)x; & m Hkx; — >0

l (f1B)x; lfx,- lf(xi)

s b —b:
0——my, *)Ox,l @mil l

— ki —0.

Since fy, is surjective, so is f(x;). Hence the diagram implies that m’ ™ C
ker(f|E),, with equality if and only if 6; is surjective. The surjectivity of 6;
follows from its definition, i.e. from the definition of the of surjection in the top
sequence in the diagram. This implies that 6; is surjective, which in turn implies
that (f|E),, and thus f|Z is surjective. Now it follows from Corollary 2.2 and
the right exactness of 7* that g: £ — E’ is surjective. The proof of the converse
implication is similar to the corresponding proof in (a). O

The cokernel of a morphism of torsion free sheaves on X is not necessarily
torsion free. The following proposition works out what it means for the corre-
sponding triples that this is the case.

Proposition 3.5. Let f: F' — F be a morphism of torsion free sheaves on X
and g = V(f): (’?, (A, A)),0") = (E, (A, Ay), 0) be the corresponding
map of triples on X. Then the following conditions are equivalent

(1) F/fCF) is torsion fiee;

(2) E' is a vector subbundle of E, i.e. E/g(E') is a vector bundle on X
and fori = 1,...,n we have g(p)(A") = AL N g(p)(E'(pi)) and
g(g)(A") = Ay N glg)(E' ().

Proof. Suppose that F/f(F’) is torsion free with corresponding triple (E”,
(A}, AY),0”) on X. Pulling back the exact sequence 0 — F' — F —
F/fCF) — 0by n* and moding out the torsion parts, we get, applying Corol-
lary 2.2, the exact sequence

0> E S E—E" —0. (3.4)

which implies that £/g(E’) ~ E” is a vector bundle on X. As in the proof of
Proposition 3.4 we see that the map A ; — A; is surjective for j = 1 and 2. This
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implies that g(p,-)(A”‘l) = Ali Ng(p)(E'(p;)) fori = 1,...,n and similarly
for the points g;.

Conversely, suppose that £/g(E’) is a vector bundle and that g( p,-)(A”i) =
AL N g(p)(E'(p) and g(g;)(A"y) = A N g(qi)(E'(g;)) for all i. Then we
have the exact sequence (3.4) with E” = E’/g(E’). Defining A} := &;A"|
with A" = Al /g(p)(A'}) and Ay := @; A" with A"y = A} /g(g;)(A") for
i =1,...,n, the assumptions imply that A"} is a subspace of E”(p;) and A",
is a subspace of £”(g;). Denote by 6”: A{ — A’ the isomorphism induced by
o. Then, if F” denotes the torsion free sheaf on X corresponding to the triple
(E”, (A}, A)),0"), we have £” = m, E". So applying . to the exact sequence

(3.4), we get the exact sequence 0 — £’ EA F — E” — 0. Now consider the
diagram with exact rows

0 0

0 i F W, —0

0 F F i Wy —0

0 E’ F ?:1W)Z —0
0 0

By the assumption on the A’ ’] the right hand vertical sequence is exact. The
obvious morphisms of triples give us maps f: F' — Fand F — F”. Now the
exactness of the diagram gives us an exact sequnce 0 - F' — F — F’ — 0.
In particular F/f(F’) >~ F” is torsion free. O

4 Stability
4.1 Definitions

For any torsion free sheaf F on X we define the slope w(F) by

. deg F
w(F) = KT
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Recall F is called semistable, respectively stable, if

(@) = u(F), respectively u(G) < u(F),

for all proper subsheaves G of F. Theorem 3.2 suggests to translate these notions
to the category of triples on X.

Let (£, (A1, Ay),0) be a triple of rank » on X with A = GB?ZIA’i and
dim Ai1 = a;. If F denotes the corresponding torsion free sheaf on X, then
according to (2.3) and (2.5) the degrees of E and T are related by

degE:degj—“—nr—Zai. 4.1
i=1
Hence it makes sense to define the degree of the triple (E, (A1, A;), o) of rank
r by

n
deg(E. (A1, Ag). o) :=deg E+ Y a; +nr. (4.2)
i=1
If (E, (A1, Ay),0) is a triple of rank » and d := deg E, we call it a triple of
type (r,d, ay, ..., a,). Note that d is the degree of the vector bundle £, not the
degree of the triple. We then define the slope of this triple by

deg(E, (A1, Ay), o
/’L(E,(Al,Az),o') = g( ( 1 2) )
tk E

A subtriple of (E, (A1, Ay), o) is by definition a triple (£’, (A}, A}),o’) on
X such that E” C E is a subbundle, A C A; are vector subspaces respecting
the direct sums for i = 1 and 2 such that ¢’ = o |A|. With these definitions

the above notions translate as follows: A triple (£, (A, Az), o) on X is called
(semi-) stable if

W(E' (A}, A, o) 2 W(E, (A, Ay, o)

for all subtriples (E', (A}, A}), 0") of (E, (A1, Ay), 0).
It is convenient to define for any integer k£, 1 < k < r, the invariant s, of a
triple (£, (A1, Ay), 0) of type (v, d, ay, ..., a,) by

Sk(E’ (Al’ A2)’ 0) = kdeg(Es (Als AZ)! U)

/ - ] 4.3)
—rmax deg(E’, (A}, A),0')

where the maximum is taken over all subtriples (E’, (A}, A}), ¢’) of rank k of
the given triple. It is clear that this maximum exists and that (£, (A, Az), 0)
is stable, respectively semistable, if and only if s, (£, (A1, Az), o) > 0, respec-
tively > 0,for1 <k <tk F — 1.
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4.2 Relation to stability of £

In this subsection we want to compare the invariants s; (£, (A1, Aj), o) with the
corresponding invariants of the vector bundle £. Recall (see e.g. [7]) that for
any integer k, 1 < k < r — 1 the invariant s; of the vector bundle £ of rank r
on X is defined by

si(E) = kdeg E — r max deg E’ 4.4

where the maximum is taken over all subbundles E’ of rank k£ of E. Certainly
this maximum exists and £ is stable, respectively semistable, if and only if
sy (E) > 0, respectively > 0.

Proposition 4.1. Let (E, (A1, A3), 0) be a triple of type (r,d, ay, ...,a,) on
X. Then we have for 1 <k <vr
si(E (A Ag) o) +r ) al <= sE)+kY
i i
n
< si(E, (A1, Ay),0)+r Za;

i=1
where foralli =1, ...,n,
max(k +a; —r,0) < a. < min(a;, k) and

max(2k + a; — 2r, 0) < a < min(a;, k).

Proof. Suppose the subtriple (£, (A}, A}),o’) of type (k,d',a},...,a,)
takes the maximum in (4.3), i.e. sx(E, (A1, Aj),0) = kdeg(E, (A1, Ay),0) —
rdeg(E’, (A}, A}), o'). According to Proposition 3.5, £ is a subbundle of E.
This implies, applying (4.2),

si(E) < kd —rd

= k (deg(E, (A1, Ay),0) — nr — Za,-)
—r (deg(E/, (A, AY),0") —nk — Za£>

= sk(E,(Al,Az),a)—i—rZa; —kZa,-
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Since (E', (A, A)), o) is a subtriple of maximal degree, we must have
A/li = Ali N E/(Pi)

for all i. Considering A/{' as an intersection in E(p;), the dimension formula
implies the left hand inequalities for the a;. The right hand inequalities are
trivial.

Now suppose the subbundle £” C E of rank & takes the maximum in (4.4).
Then (E”, (A}, AY), 0”) with A7 = @; A} and Aj = @; A,’ such that

AT =E"(p)Nn A Nno™(E"(g)) and A) =o(A])

and
o" =o|A]

is a subtriple of rank £, not necessarily of maximal degree. This implies, denot-
ing a] = dim A and applying (4.2) again,

Sk(Es (Als AZ)? 0) = kdeg(Es (Ala A2)5 0) -r deg(E//7 (A/l/’ Alz/)a G//)
k(degE +nr + Zai) - r(degE” + nk + Za£’>
= si(E) +k2a,~ —rZa;’.

The right hand inequalities for a;’ is trivial. The left hand inequalities follow
from the definition of A/{[ considering it as an intersection in the 7-dimensional
vector space E(p;). O

As a direct consequence we obtain the following corollary.

Corollary 4.2. Let (E, (A1, Ay),0) be a triple of type (r,d,0,...,0) on X.
Then
sk(E, (Ay, Az),0) = s, (E)

for all k. In particular si(E, (A1, Ay), 0) is (semi-) stable if and only if E is
(semi-) stable.

Recall from Corollary 2.10 that ‘F is a vector bundle if and only if the cor-
responding triple (E, (A1, Ay), o) is of type (r,d,r,...,r). In this case the
inequality of Proposition 4.1 implies

sik(E) < si(E, (A1, Az), 0).
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This gives the following corollary.

Corollary 4.3. If E is (semi-) stable, so is any triple (E, (A1, Ay), 0) of type
(r,d,r,...,r).

The following proposition shows that the converse statement is not valid in
general.

Proposition 4.4. Let X be a rational curve with one node. So X is of arithmetic
genus 1 with X ~ P!, If

E=0_{0p(l)® Op,
then a general triple (E, (A1, Ay), 0) of type (r,v — 1, 1) is stable.

Proof. We have to show that for a general (£, (A, Ay), o) oftype (r, ¥ —1,7)
on X and all subtriples (E’, (A}, A}), 0’) of type (k,d’,a’), 1 < k < r the
number

Sk((Ev (Alv AZ)v G)v (E/v (A/ ) A/Z)a U/)) = kdeg(Ev (Ala A2)9 U)
—rdeg(E', (A}, A)), o)
is positive.
By (4.2) we have
sk (B, (A1, A2), 0), (E', (A}, Ap), o)

=k(r —1+2r)—r(degE +a +k)
=rk—degE') —k+rk—ad).

If deg E’ < k, then we have, since a’ < k,
si((E, (A1, Ay),0), (E', (A}, AY)),0") >r —k > 0.

Hence we may assume that deg £’ = k ,i.e. E/ =~ EBf.‘Zl Op1(1). Then we have

k
Sk((E’(A1’A2)’U)7(E/’ (A/I’A/Z)’U/)) >0 < a, <k—;

Suppose this is not the case. Then a’ > k — ’f > k — 1, which implies a’ = k
and thus

Ay =E'(p1) C A1, Ay =E'(q1) C Ay and o(E'(p1)) = E'(q1). (4.5
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Hence it suffices to show that there exists o : E(p;) — E(q;) such that for all
subbundles E’ of rank k of E,

o (E'(p1) # E'(q). (4.6)

Now the dimension of the space of subbundles of £ of rank and degree £ is less
or equal to

dim Hom (eaf;lopl ), @;;gopl(l)) —dim Aut (8, 0pi (1)) = k(r—1)— k.

Moreover, given a subbundle of rank and degree k, the space of isomorphisms
o:E(p))— E(q)) suchthat o (E'(p1)) = E’'(q,) is of dimension r (r — k) + k°.
But

kr =1 =k +rr—k+ k2 =r*—k <r’

Hence a general o: E(p;) — E(q;) satisfies (4.6) which completes the
proof. O

Proposition 4.5. Let X be of geometric genus g > 3 with one node x, and E
be a general stable vector bundle of rank r and degree d on X. Then any triple
(E, (A1, Ay), 0) on X is stable.

Proof. Let (7, d, a;) be the type of the triple (£, (A, A,), o) and k an integer
with 1 < k <r. Since E is general, we have by [8]:

si(E) = k(r —k)(g — D).
Using this, we get from Proposition 4.1

sk(E, (A, Ay), 0) si(E) + ka; — r min(a,, k)

>
; k(r —k)(g — 1) + ka; — r min(ay, k)
If a; < k, this gives
sk(E, (A1, Ay),0) = (r —k)(k(g — 1) —ay) > 0.
Ifa, > k, it gives
sk(E, (A1, Ag),0) = k(r —k)(g—2) >0

which completes the proof of the proposition. O
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For X of geometric genus 2 with one node the same proof gives that for
general stable £ on X any triple (£, (A}, Ay), o) is semistable. This is best
possible as the following example shows.

Example 4.6. Let X be of geometric genus g = 2 with one node and let £ be a
general stable vector bundle of rank 2 and degree 1 on X. So s (E)=1.1IfE’is
a line subbundle of maximal degree of £, we deduce from 1 = s5;(F) = deg £ —
2deg E’ that deg £/ = 0. Choose A} = A} = E'(p1) and A, = A, = E'(q1)
andleto = o': E(p;) — E’(q1). Then we have

SI(E9 (Alv A2)9 0) = deg(E’ (Ah Az)’ O—) - 2deg(E/a (A/la A/2)9 O./)
= (degE +a; —2)—2(degE +a;—1)
1+1-2)-20+1-1)=0.

Remark 4.7. It is not difficult to work out analogous results of Propositions
4.4 and 4.5 in the case of n nodes.

5 Applications

5.1 Sheaves of type (v, d, a1, ..., a,)

Let the notations be as above. In particular X is an irreducible curve, singu-
lar only at exactly » nodes x; with normalization X of genus g. So X is of
arithmetic genus p,(X) = g + n. We call a torsion free sheaf F on X of type

(r,d,ay,...,a,) ifitis of rank r, degree d and
Fu 2O Om (5.1)
fori =1,..., n. Since the degree of the corresponding triple

(E, (A1, Az),0) ==V (F)
equals by definition the degree of ¥, we conclude from (4.2),

Lemma 5.1. A4 forsion free sheaf F is of type (r,d, ay, ..., a,) if and only if
the corresponding triple (E, (A1, Ay), 0) is of type

<r,d— E a,-—nr,al,...,an>.
i
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According to [10, Ch. 8, Prop. 9] the stable torsion free sheaves of rank » and
degree d form an irreducible moduli space My (r, d). Forany a;, 0 < a; <r
fori =1, ..., n consider the subset

Mx(r,d,ay, ... ay) = {F € M@r,d) | F oftype (r,d,ai, ..., a,)}.
Lemma 5.2. Mx(r,d, ay, ..., a,) is a locally closed subset of Mx(r, d).

Proof. For the proof only note that the function d;: M(r,d) — Z, F +—
dim F(x;) is upper semi-continuous. O

Proposition 5.3.

(a) Forany type (r,d, ay, ..., a,) we have

dimMy(r,d,a;, ..., a,) < rz(g —1+1 +2rZa,~ — Zaf. (5.2)
i=1 i=1

(b) Iffor a general E € Mx(r,d — Y, a; — nr) all triples (E, (A1, Ay), o)

oftype (r,d — ) ;a; —nr,ay, ...,ay,) are stable, then we have equality
in (5.2).
Proof.
(a) Suppose F € Mx(r,d,ay,...,a,) with corresponding triple (£, (A,

Aj), 0). According to Lemma 5.1 we have

c?:zdegEzd—Za,-—nr.

1

Recall that an algebraic family "V of vector bundles of rank » degree d on X xS
is called effective, if for any point s € S there are at most finitely many points
s' € Ssuch that V|X x {s} >~ V|X x {s'}. It is well known (see [9, Prop. 2.6])
that any effective family of such vector bundles is of dimension < dim Mx(r, d').

Recall moreover that an isomorphism of triples g: (E, (A1, Ay),0) —
(E', (A}, A)),0’) is by definition an isomorphism g: £ — E’ satisfying
g(pi)(A1) = A} and g(g;)(A;) = A) for all i such that (3.1) commutes.

For a fixed E, the pairs (A1, Aj) vary over (x;Gr(a;,r)) X (x;Gr(a;,r)).
For each fixed pair (A1, A;), the isomorphism o varies over /so(A1, A;). More-
over, P(Aut E) acts on the set of triples with the underlying bundle £ by

2(A1, Ay, 0) := ((g(p)(A)D)i, (2(g)(AY))i, g(0):),
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where g(o;): g(pi)(A"l) — g(qi)(Aé) is the isomorphism induced by o;. The
quotient by this action is the variety of isomorphism classes of triples with the un-
derlying bundle E. Hence the isomorphism classes of triples with the underlying
bundle £ are determined by

(x;Gr(a;,r)) x (x;Gr(a;,r)) x (X,»k“lg)/IP’(Aut E).

This quotient has maximum dimension for stable vector bundles E.
Using Theorem 3.2, this implies

dim My (r,d,ay,...,a,) < dim Mzx(r, d~) —{—ZZdim Gr(a;,r) + Za?

i=1 i=1

= @-D+1+42) ar—a)+ Y a}
i=1 i=1

= rig—D+1+2r Xn:ai —Xn:af.
i=1

i=1

(b) Assume now that for a general £ € M x (7, c?) all triples (E, (A1, Ay), 0)
of type (r,d, ay, ..., a,) are stable. Then there is a non-empty open set
U of My (r, d) with this property.

The commutativity of (3.1) is automatically fullfilled for any o if E is stable,
since an automorphism of a stable bundle is a constant. This implies that

n n
dim My(r.d.ay, ... a,) > dim Mg(.d) +2 ) " dim Gr(a;.r) + Y _ a},
i=1 i=1
which by the same computation as above completes the proof of the propos-
ition. O

Remark 5.4. Note that r?(g — 1) + 1 +2> a4, — Y ,a? =r*(gx— D+ 1—
>..(r — a;)*, where gx denotes the genus of X. Thus Proposition 5.3 agrees
with the results of [2, Proposition 2.7].

The following corollary is well known (see e.g. [2]).

Corollary 5.5. The dimension of the moduli space of stable torsion free sheaves
of rank r and degree d on a curve X of genus g > 2 with n nodes is

dim My(r,d) =r*(g+n—1)+ 1.
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Proof. Since the functions d;: M(r,d) — Z, F +— dim F(x;) are upper
semi-continuous for all 7, there is an open dense set U in M x (n, d) parametrizing

vector bundles. Since the corresponding triples on X are of type (r, d, 7, ..., r),
Corollary 4.3 and Proposition 5.2 (b) imply dim My (r, d) = r*(g— 1) +r’*n+1
which completes the proof. O

5.2 Upper bounds for s;

Proposition 4.1 allows a cheap proof of an upper bound for the invariant
sp(E, (A1, Ay), o) which however is not best possible (see [2]).

Proposition 5.6. For any torsion free sheaf F of rank r and degree d on X and
any k, 1 <k <r —1we have

si(F) <kr(g+n—1)—k*(g—1)+r—1.

Proof. Let (£, (A1, Ay), o) be the triple corresponding to F. According to
the left hand inequality of Proposition 4.1 we have

sk(F) = sk(E, (A1, Ag),0) < se(E) +k ) ar.

Now according to [6], sx(F) < k(r — k)(g — 1) +r — 1. Moreover a; < r
for all i. This gives the assertion. g
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