

Torsion-free sheaves on nodal curves and triples

D. Avritzer*, H. Lange** and F.A. Ribeiro

Abstract. Let X be a reduced irreducible curve with at most nodes as singularities with normalization $\pi: \widetilde{X} \to X$. We study the description of torsion free sheaves on X in terms of vector bundles with an additional structure on \widetilde{X} which was introduced by Seshadri.

Keywords: torsion-free sheaves, moduli vector bundles.

Mathematical subject classification: 14H60, 14F05.

1 Introduction

Let X be an irreducible reduced curve over an algebraically closed field with at most ordinary double points as singularities and let $\pi : \tilde{X} \to X$ denote its normalization. In [10, Ch. 8] Seshadri described torsion free sheaves on X in terms of vector bundles on \tilde{X} with some additional structure. Let for simplicity X just have one node x with $\pi^{-1}(x) = \{p_1, p_2\}$. Then Seshadri showed that there is a canonical bijection between torsion free sheaves \mathcal{F} on X and triples $(E, (\Delta_1, \Delta_2), \sigma)$ consisting of a vector bundle E on \tilde{X} , a pair of vector subspaces (Δ_1, Δ_2) with $\Delta_i \subset E(p_i)$ and an isomorphism $\sigma : \Delta_1 \to \Delta_2$. To the best of our knowledge, this beautiful and clear result has not been applied very much in the literature (apart from [11]and [1]). The main papers on vector bundles on nodal curves apply different methods (see [2], [3], [4]).

The starting point of this paper was to understand Seshadri's result. We give a new proof and discuss the functoriality of this construction. We introduce the notion of morphisms of such triples and show that the categories of torsion free sheaves on X and the category of these triples on \tilde{X} are equivalent. Moreover, we define stability of triples over \tilde{X} using the corresponding notion for

Received 19 August 2009.

^{*}Partially supported by CNPq-Grant 301618/2008-9, DAAD-FAPEMIG.

^{**}Partially supported by DAAD-FAPEMIG cooperation agreement.

torsion free sheaves on X. Using this, we study the relation between the stability of a torsion free sheaf \mathcal{F} on X and the stability of the vector bundle E occurring in the corresponding triple.

To be more precise, assume that x_1, \ldots, x_n are exactly the nodes of X and $\pi^{-1}(x_i) = \{p_i, q_i\}$ for $i = 1, \ldots, n$. For any torsion free sheaf \mathcal{F} of rank r on X there are unique integers a_i , $0 \le a_i \le r$ such that $\mathcal{F}_{x_i} \simeq \mathcal{O}_{x_i}^{a_i} \oplus m_{x_i}^{r-a_i}$. Moreover there is a unique subsheaf $\mathcal{E} \subset \mathcal{F}$ of the form $\mathcal{E} = \pi_* E$ with E a vector bundle of rank r on \tilde{X} fitting into an exact sequence

$$0 \to \mathcal{E} \to \mathcal{F} \to \bigoplus_{i=1}^n \mathcal{W}_{x_i} \to 0$$

where W_{x_i} is the skyscraper sheaf on X with fibre a vector space W_{x_i} of dimension a_i at the node x_i . Starting with this exact sequence, the vector bundle E is given by

$$E = \pi^* \mathcal{E} / \mathcal{T}$$

where \mathcal{T} denotes the torsion subsheaf of $\pi^*(\mathcal{I})$. We show then that there is a canonical isomorphism

$$\Phi = \bigoplus \Phi_i \colon \operatorname{Ext}^1(\bigoplus_{i=1}^n \mathcal{W}_{x_i}, \mathcal{E}) \xrightarrow{\simeq} \\ \xrightarrow{\simeq} \bigoplus_{i=1}^n (\operatorname{Hom}_k(\mathcal{W}_{x_i}, E(p_i)) \oplus \operatorname{Hom}_k(\mathcal{W}_{x_i}, E(q_i)))$$

(Note that this description of Ext¹ is different from the description in [10, Ch. 8, Lemme 15].) Given an exact sequence as above, the vector spaces Δ_1 and Δ_2 as well as the isomorphism σ are constructed out of the corresponding homomorphisms $W_{x_i} \to E(p_i)$ and $W_{x_i} \to E(q_i)$ (see Remark 2.5).

In Section 3, we introduce morphisms of triples and prove the above mentioned equivalence of categories (see Theorem 3.2). Since the category of torsion free sheaves on X admits kernels and images, so does the category of triples on \tilde{X} . We describe them and give a criterion for a cokernel to exist.

In Section 4, we translate the notion of stability of torsion free sheaves to the corresponding triples. This is used to relate the stability properties of \mathcal{F} to the stability of the vector bundle E. We show in particular that if E is stable, so are all triples $(E, (\Delta_1, \Delta_2), \sigma)$ which correspond to a vector bundle on X. We also give an example of an unstable vector bundle on \widetilde{X} admitting stable triples. Finally in Section 5, we give some applications.

Notation: Let X be a curve over k. By an \mathcal{O}_X -module we always understand a coherent \mathcal{O}_X -module. Similarly a torsion free \mathcal{O}_X -module means a coherent torsion free \mathcal{O}_X -module. A point of X always means a closed point. If $x \in X$

is a point, m_x denotes the maximal ideal of the local ring $\mathcal{O}_{X,x}$ and \underline{m}_x denotes the corresponding ideal sheaf in \mathcal{O}_X . For any \mathcal{O}_X -module \mathcal{F} and any $x \in X$ we denote by \mathcal{F}_x its stalk and by $\mathcal{F}(x) = \mathcal{F}_x/m_x \mathcal{F}_x$ its fibre at the point x and we abbreviate $\mathcal{O}_x := \mathcal{O}_{X,x}$.

2 Relation to vector bundles on the normalization

2.1 The set up

Let X be an irreducible reduced curve over an algebraically closed field k with at most ordinary double points as singularities. We assume that X admits exactly n ordinary double points x_1, \ldots, x_n .

According to [10, Ch. 8, Prop. 2], for any torsion-free \mathcal{O}_{x_i} -module M of rank r there is a uniquely determined non-negative integer a_i such that $M \simeq \mathcal{O}_{x_i}^{a_i} \oplus m_{x_i}^{r-a_i}$. In particular, for any torsion-free sheaf \mathcal{F} of rank r and degree d on X and any $i = 1, \ldots, n$ there is an integer a_i , uniquely determined with $0 \le a_i \le r$ such that

$$\mathcal{F}_{x_i} \cong \mathcal{O}_{x_i}^{a_i} \oplus m_{x_i}^{r-a_i}. \tag{2.1}$$

This gives surjective homomorphisms

$$\mathcal{F}_{x_i} \to W_{x_i} := k_{x_i}^{a_i},$$

where $k_{x_i} \simeq k$ denotes the residue field at the point x_i . If we denote by \mathcal{W}_{x_i} the skyscraper sheaf concentrated at x_i with fibre W_{x_i} , we have an exact sequence

$$0 \to \mathcal{F} \to \mathcal{F} \to \bigoplus_{i=1}^{n} \mathcal{W}_{x_i} \to 0, \qquad (2.2)$$

where the kernel \mathcal{E} is uniquely determined by \mathcal{F} , although the homomorphism $\mathcal{F} \to \bigoplus_{i=1}^{n} \mathcal{W}_{x_i}$ itself is not. This implies that \mathcal{F} is an extension of $\bigoplus_{i=1}^{n} \mathcal{W}_{x_i}$ by a torsion-free sheaf \mathcal{E} with

$$\mathcal{E}_{x_i} \cong m_{x_i}^r$$
 and $\deg(\mathcal{E}) = \deg(\mathcal{F}) - \sum_{i=1}^n a_i.$ (2.3)

Now consider the normalization map

$$\pi: \widetilde{\mathbf{X}} \to X$$

and denote the two points of $\pi^{-1}(x_i)$ by p_i and q_i . According to [10, Ch. 8, Prop. 10], for a torsion free sheaf \mathcal{E} of rank r and degree d on X there is a vector bundle E on \widetilde{X} such that

$$\mathcal{E} = \pi_*(E) \tag{2.4}$$

if and only if $\mathcal{E}_{x_i} \cong m_{x_i}^r$ for all *i*. In this case *E* is uniquely determined by \mathcal{E} and

$$\deg(E) = \deg(\mathcal{E}) - nr. \tag{2.5}$$

(Note that [10, Ch. 8, Prop. 10] states that $\deg(E) = \deg(\mathcal{E}) + nr$. However there is an error in the proof: the degree of $\pi_*\mathcal{O}_{\widetilde{X}}$ is considered to be -1).

We use the following two statements of [11].

Let k_{x_i} (respectively k_{p_i} and k_{q_i}) be the skyscraper sheaf on X (respectively \widetilde{X}) with fibre k at the point x_i (respectively p_i and q_i). Then we have

$$\underline{\operatorname{Tor}}_{\mathcal{O}_{X}}^{1}\left(k_{x_{i}},\mathcal{O}_{\widetilde{X}}\right)=k_{p_{i}}\oplus k_{q_{i}}.$$
(2.6)

considered as sheaves on \tilde{X} . This a consequence of [11, Ch. II, Lemma 2.1].

There exists a locally free sheaf G of rank r and degree deg $\mathcal{F} + nr - \sum_{i=1}^{n} a_i$ on X such that

$$\mathcal{F} \subset \mathcal{G}.\tag{2.7}$$

and the quotient G/\mathcal{F} is supported at the nodes x_i . This is [11, Ch. II, Lemma 2.3].

Proposition 2.1. Let \mathcal{F} be a torsion free sheaf of rank r on X satisfying (2.1) and let \mathcal{T} denote the torsion subsheaf of $\pi^* \mathcal{F}$. Then

$$\deg(\pi^*\mathcal{F}) = \deg\mathcal{F} + nr - \sum_{i=1}^n a_i \quad and \quad \deg\mathcal{T} = 2\left(nr - \sum_{i=1}^n a_i\right).$$

Proof. Let *G* be the locally free sheaf of (2.7). Pulling back the exact sequence $0 \rightarrow \mathcal{F} \rightarrow \mathcal{G} \rightarrow \mathcal{G}/\mathcal{F} \rightarrow 0$ by π , we get the exact sequence

$$0 \to \mathcal{T} \to \pi^* \mathcal{F} \to \pi^* \mathcal{G} \to \pi^* (\mathcal{G}/\mathcal{F}) \to 0$$

with $\mathcal{T} = \underline{\mathrm{Tor}}^{1}_{\mathcal{O}_{X}} (\mathcal{G}/\mathcal{F}, \mathcal{O}_{\widetilde{X}})$. Since

$$\deg G/\mathcal{F} = nr - \sum_{i=1}^{n} a_i$$

we get deg $\pi^*(G/\mathcal{F}) = 2(nr - \sum_{i=1}^n a_i)$. This implies

$$deg(\pi^* \mathcal{F}/\mathcal{T}) = deg \pi^* \mathcal{G} - deg \pi^* (\mathcal{G}/\mathcal{F})$$

= $deg \mathcal{F} + nr - \sum_{i=1}^n a_i - 2\left(nr - \sum_{i=1}^n a_i\right)$
= $deg \mathcal{F} - \left(nr - \sum_{i=1}^n a_i\right)$

On the other hand, from (2.6) we deduce

$$\deg \mathcal{T} = 2 \deg \mathcal{G}/\mathcal{F} = 2 \left(nr - \sum_{i=1}^{n} a_i \right)$$

This implies also the first assertion.

For the following corollary see [10, p.175, 1.3].

Corollary 2.2. Let \mathcal{F} be a torsion free sheaf of rank r satisfying (2.1) and let $\mathcal{E} = \pi_* E$ its subsheaf as in (2.4). If \mathcal{T} denotes the torsion subsheaf of $\pi^* \mathcal{E}$, then we have

$$\pi^* \mathcal{E}/\mathcal{T} \simeq E.$$

Proof. As an immediate consequence of Proposition 2.1 and equation (2.5) we get

$$\deg\left(\pi^*\mathcal{E}/\mathcal{T}\right) = \deg E. \tag{2.8}$$

Now consider the canonical map $\pi^* \mathcal{E} \to \pi^* \mathcal{E} / \mathcal{T}$. Adjunction gives a map

$$\pi_* E = \mathcal{E} \to \pi_* \left(\pi^* \mathcal{E} / \mathcal{T} \right)$$

which is of maximal rank outside the nodes x_i . Since *E* is a vector bundle on \widetilde{X} , we have

$$\operatorname{Hom}\left(\pi_{*}E, \pi_{*}(\pi^{*}\mathcal{E}/\mathcal{T})\right) = H^{0}\left(\pi_{*}E^{*} \otimes \pi_{*}(\pi^{*}\mathcal{E}/\mathcal{T})\right)$$
$$\subset H^{0}\left(\pi_{*}(E^{*} \otimes \pi^{*}\mathcal{E}/\mathcal{T})\right)$$
$$\simeq H^{0}\left(E^{*} \otimes \pi^{*}\mathcal{E}/\mathcal{T}\right)$$
$$= \operatorname{Hom}\left(E, \pi^{*}\mathcal{E}/\mathcal{T}\right).$$

Hence we get a homomorphism $E \to \pi^* \mathcal{E}/\mathcal{T}$ which clearly is of maximal rank. Hence it is injective and thus an isomorphism by (2.8).

2.2 Extensions

Recall that the extensions $0 \to \mathcal{E} \to \mathcal{G} \to \bigoplus_{i=1}^{n} \mathcal{W}_{x_i} \to 0$ are classified by the group $\operatorname{Ext}^1(\bigoplus_{i=1}^{n} \mathcal{W}_{x_i}, \mathcal{E})$. The next proposition gives a characterization of $\operatorname{Ext}^1(\bigoplus_{i=1}^{n} \mathcal{W}_{x_i}, \mathcal{E})$. Since Ext^1 is additive, it suffices to do this for each node x_i separately. The following proposition appeared in [10, Ch. 8, Lemme 12] in a slightly different form.

Proposition 2.3. Let $\mathcal{E} = \pi_* E$ with E a vector bundle of rank r on \widetilde{X} . Then there is a canonical isomorphism

$$\Phi = \bigoplus \Phi_i \colon \operatorname{Ext}^1 \left(\bigoplus_{i=1}^n \mathcal{W}_{x_i}, \mathcal{E} \right) \xrightarrow{\simeq} \\ \xrightarrow{\simeq} \bigoplus_{i=1}^n \left(\operatorname{Hom}_k(W_{x_i}, E(p_i)) \oplus \operatorname{Hom}_k(W_{x_i}, E(q_i)) \right)$$

where W_{x_i} is the skyscraper sheaf concentrated at x_i with fibre $W_{x_i} := k_{x_i}^{a_i}$ for integers a_i , $0 \le a_i \le r$.

For the proof we need the following lemma.

Lemma 2.4. There is a canonical isomorphism

$$\operatorname{Hom}_{\mathcal{O}_{X}}\left(\underline{m}_{x_{i}}, \mathcal{E}\right) \simeq \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}\left(\mathcal{O}_{\widetilde{X}}, E(D_{i})\right).$$

where $D_i := p_i + q_i$ and as usual $E(D_i) := E \otimes \mathcal{O}_{\widetilde{X}}(D_i)$.

Proof. Let \mathcal{T}_i denote the torsion subsheaf of $\pi^*(\underline{m}_{x_i})$. Certainly the divisor D_i induces a canonical isomorphism

$$\pi^*\left(\underline{m}_{x_i}\right)/\mathcal{T}_i\simeq\mathcal{O}_{\widetilde{X}}\left(-D_i\right).$$

Now the exact sequence $0 \to \mathcal{T}_i \to \pi^*(\underline{m}_{x_i}) \to \pi^*(\underline{m}_{x_i})/\mathcal{T}_i \to 0$ induces an isomorphism

$$\operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}\left(\pi^{*}(\underline{m}_{x_{i}})/\mathcal{T}_{i}, E\right) \to \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}\left(\pi^{*}(\underline{m}_{x_{i}}), E\right)$$

since $\operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(\mathcal{T}_i, E) = 0$. Using moreover adjunction, we finally get the following canonical isomorphisms

$$\begin{split} \operatorname{Hom}_{\mathcal{O}_{X}}(\underline{m}_{x_{i}}, \mathcal{E}) &\cong \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}\left(\pi^{*}(\underline{m}_{x_{i}}), E\right) \\ &\cong \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}\left(\pi^{*}(\underline{m}_{x_{i}})/\mathcal{T}_{i}, E\right) \\ &\cong \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}\left(\mathcal{O}_{\widetilde{X}}(-D_{i}), E\right) \\ &\cong \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}\left(\mathcal{O}_{\widetilde{X}}, E(D_{i})\right). \end{split}$$

Proof of Proposition 2.3. We may assume $h^1(\mathcal{E}) = 0$, since tensorizing \mathcal{E} and \mathcal{W}_{x_i} by a line bundle changes both sides of the equation only by a canonical isomorphism. Using this, the exact sequence

$$0 \to W_{x_i} \otimes_k \underline{m}_{x_i} \to W_{x_i} \otimes_k \mathcal{O}_X \to \mathcal{W}_{x_i} \to 0$$

induces an exact sequence

$$0 \to \operatorname{Hom}_{\mathcal{O}_{X}}(W_{x_{i}} \otimes \mathcal{O}_{X}, \mathcal{E}) \to \operatorname{Hom}_{\mathcal{O}_{X}}(W_{x_{i}} \otimes \underline{m}_{x_{i}}, \mathcal{E}) \to \to \operatorname{Ext}^{1}(W_{x_{i}}, \mathcal{E}) \to 0,$$

$$(2.9)$$

where the last 0 uses $h^1(\mathcal{E}) = 0$.

The canonical sequence $0 \to E \to E(D_i) \to E(p_i) \oplus E(q_i) \to 0$ (here we identify the fibres $E(p_i)$ and $E(q_i)$ with the corresponding skyscraper sheaf concentrated at p_i and q_i respectively) induces an exact sequence

$$0 \to \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_{i}} \otimes \mathcal{O}_{\widetilde{X}}, E) \to \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_{i}} \otimes \mathcal{O}_{\widetilde{X}}, E(D_{i})) \to \to \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_{i}} \otimes \mathcal{O}_{\widetilde{X}}, E(p_{i}) \oplus E(q_{i})) \to 0$$

$$(2.10)$$

where we used $\operatorname{Ext}^{1}(W_{x_{i}} \otimes \mathcal{O}_{\widetilde{X}}, E) = W_{x_{i}} \otimes H^{1}(\widetilde{X}, E) = W_{x_{i}} \otimes H^{1}(X, \mathcal{E}) = 0.$ Moreover, by adjunction we have a canonical isomorphism

$$\operatorname{Hom}_{\mathcal{O}_X}(W_{x_i}\otimes \mathcal{O}_X, \mathcal{E}) \simeq \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(\pi^*(W_{x_i}\otimes \mathcal{O}_X), E) = \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_i}\otimes \mathcal{O}_{\widetilde{X}}, E).$$

Using this, Lemma 2.4 and the exact sequences (2.9) and (2.10), we obtain the following diagram with exact rows

$$0 \to \operatorname{Hom}_{\mathcal{O}_X}(W_{x_i} \otimes \mathcal{O}_X, \mathcal{E}) \to \operatorname{Hom}_{\mathcal{O}_X}(W_{x_i} \otimes \underline{m}_{x_i}, \mathcal{E}) \to \operatorname{Ext}^1(\mathcal{W}_{x_i}, \mathcal{E}) \to 0$$

$$\|\wr \qquad \|\wr \qquad \|$$

$$0 \to \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_{i}} \otimes \mathcal{O}_{\widetilde{X}}, E) \to \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_{i}} \otimes \mathcal{O}_{\widetilde{X}}, E(D_{i})) \xrightarrow{\theta_{i}}$$
(2.11)

$$\stackrel{_{\mathcal{O}_i}}{\to} \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_i} \otimes \mathcal{O}_{\widetilde{X}}, E(p_i) \oplus E(q_i)) \to 0,$$

Since this diagram is certainly commutative, it induces a canonical isomorphism

$$\operatorname{Ext}^{1}(\mathcal{W}_{x_{i}}, \mathcal{E}) \simeq \operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_{i}} \otimes \mathcal{O}_{\widetilde{X}}, E(p_{i}) \oplus E(q_{i})).$$

Finally, observe that $\operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(\mathcal{O}_{\widetilde{X}}, E(p_i)) = \operatorname{Hom}_k(k, E(p_i))$ and similarly for q_i . Hence we can identify

$$\operatorname{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_i} \otimes \mathcal{O}_{\widetilde{X}}, E(p_i) \oplus E(q_i)) = \operatorname{Hom}_k(W_{x_i}, E(p_i)) \oplus \operatorname{Hom}_k(W_{x_i}, E(q_i)).$$

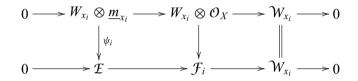
Combining both isomorphisms completes the proof of the proposition. \Box

Remark 2.5. According to the proof and in particular diagram (2.11), the image of an extension $(e_i): 0 \to \mathcal{F} \to \mathcal{F} \to \mathcal{W}_{x_i} \to 0$ under the map Φ_i is given as

follows: choose a preimage $\psi_{e_i} \in \text{Hom}_{\mathcal{O}_X}(W_{x_i} \otimes \underline{m}_{x_i}, \mathcal{E})$ of $(e_i) \in \text{Ext}^1(\mathcal{W}_{x_i}, \mathcal{E})$ and consider it as an element in $\text{Hom}_{\mathcal{O}_{\widetilde{X}}}(W_{x_i} \otimes \mathcal{O}_{\widetilde{X}}, E(D_i))$. Then

$$\Phi_i(e_i) = \theta_i(\psi_{e_i}).$$

Conversely, given a pair $(\alpha_i, \beta_i) \in \text{Hom}_k(W_{x_i}, E(p_i)) \oplus \text{Hom}_k(W_{x_i}, E(q_i))$, the corresponding extension $\Phi_i^{-1}(\alpha_i, \beta_i) \in \text{Ext}^1(W_{x_i}, \mathcal{E})$ is constructed as follows: choose a preimage ψ_i of (α_i, β_i) under the map θ_i , considered as an element of $\text{Hom}_{\mathcal{O}_X}(W_{x_i} \otimes \underline{m}_{x_i}, \mathcal{E})$. Then $\Phi_i^{-1}(\alpha_i, \beta_i)$ is the push-out of the canonical sequence defining W_{x_i} by ψ_i :



It follows from Proposition 2.3 that $\Phi_i(e_i)$ and $\Phi_i^{-1}(\alpha_i, \beta_i)$ do not depend on the choices of the preimages.

The extension $\Phi^{-1}((\alpha_1, \beta_1), \dots, (\alpha_n, \beta_n)) \in \operatorname{Ext}^1(\bigoplus_{i=1}^n \mathcal{W}_{x_i}, \mathcal{E})$ is then the sum of the extensions $0 \to \mathcal{E} \to \mathcal{F}_i \to \mathcal{W}_{x_i} \to 0$ in the group $\operatorname{Ext}^1(\bigoplus_{i=1}^n \mathcal{W}_{x_i}, \mathcal{E})$, where $\operatorname{Ext}^1(\mathcal{W}_{x_i}, \mathcal{E})$ is considered as a subgroup of $\operatorname{Ext}^1(\bigoplus_{i=1}^n \mathcal{W}_{x_i}, \mathcal{E})$.

2.3 Torsion free extensions

Let x denote any of the nodes x_i of X and let p and q be the points of \widetilde{X} above x. Recall that we denote by W_x a k_x -vector space of dimension a, $1 \le a \le r$ and by W_x the skyscraper sheaf on X with fibre W_x at x. The \mathcal{O}_x -module $\operatorname{Ext}^1_{\mathcal{O}_x}(W_x, \mathcal{E}_x)$ classifies the extensions $0 \to \mathcal{E}_x \to \mathcal{F}_x \to W_x \to 0$ of modules over the local ring \mathcal{O}_x . The following lemma shows that every such module is the restriction of a unique exact sequence $0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{W}_x \to 0$.

Lemma 2.6. There is a canonical isomorphism $\operatorname{Ext}^1(\mathcal{W}_x, \mathcal{E}) \simeq \operatorname{Ext}^1_{\mathcal{O}_x}(\mathcal{W}_x, \mathcal{E}_x).$

Proof. The edge homomorphism of the local-global spectral sequence (see [5, (4.2.7)]) is an isomorphism

$$\operatorname{Ext}^{1}(\mathcal{W}_{x}, \mathcal{E}) \simeq H^{0}(X, \operatorname{\underline{Ext}}^{1}_{\mathcal{O}_{Y}}(\mathcal{W}_{x}, \mathcal{E})),$$

since $H^i(X, \underline{\text{Hom}}_{\mathcal{O}_X}(\mathcal{W}_x, \mathcal{E})) = 0$ for i = 1 and 2. This implies the assertion, since the sheaf $\underline{\text{Ext}}_{\mathcal{O}_X}^1(\mathcal{W}_x, \mathcal{E})$ is a skyscraper sheaf with fibre $\text{Ext}_{\mathcal{O}_X}^1(\mathcal{W}_x, \mathcal{E}_x)$ concentrated at the point x.

Combining the isomorphisms of Proposition 2.3 and Lemma 2.6, we get the following description of the extensions of O_x -modules of W_x by \mathcal{E}_x :

Let

$$\widetilde{\mathcal{O}}_x := \mathcal{O}_p \cap \mathcal{O}_q$$

(intersection in the function field of X) denote the normalization of \mathcal{O}_x . It is a semilocal ring with two maximal ideals m_p and m_q and we have

$$m_x = m_p \cap m_q.$$

Moreover we denote by

$$E_x := E \otimes_{\mathcal{O}_{\widetilde{X}}} \widetilde{\mathcal{O}}_x \text{ and } E(D)_x := E(D) \otimes_{\mathcal{O}_{\widetilde{X}}} \widetilde{\mathcal{O}}_x$$

the $\widetilde{\mathcal{O}}_x$ -modules defined by E and E(D), where D denotes the divisor p + q on \widetilde{X} . As in the proof of Proposition 2.3, the exact sequences $0 \to W_x \otimes_k m_x \to W_x \otimes_k \mathcal{O}_x \to W_x \to 0$ and $0 \to E_x \to E(D)_x \to E(p) \oplus E(q) \to 0$ induce the following local version of diagram (2.11).

Now consider $(\alpha, \beta) \in \text{Hom}_k(W_x, E(p)) \oplus \text{Hom}_k(W_x, E(q))$. Let $(\widetilde{\alpha}, \widetilde{\beta})$ denote the corresponding element in $\text{Hom}_{\widetilde{\mathcal{O}}_x}(W_x \otimes \widetilde{\mathcal{O}}_x, E(p) \oplus E(q))$. Choose a preimage ψ of $(\widetilde{\alpha}, \widetilde{\beta})$ under the map θ and consider it as an element of $\text{Hom}_{\mathcal{O}_x}(W_x \otimes m_x, \mathcal{E}_x)$. Then the extension in $\text{Ext}^1_{\mathcal{O}_x}(W_x, \mathcal{E}_x)$ corresponding to (α, β) is the pushout of the canonical sequence defining W_x by ψ :

Recall that $\mathcal{E}_x \simeq m_x^r$. Hence, fixing isomorphisms $\mathcal{E}_x \simeq m_x^r$ and $W_x \otimes m_x \simeq m_x^a$, any homomorphism $\psi : W_x \otimes m_x \to \mathcal{E}_x$ is given by a matrix

$$A = (\alpha_{ij}) \in M(r \times a, \mathcal{O}_x).$$

We say that ψ has birank (b_1, b_2) , if rk $A \mod m_p = b_1$ and rk $A \mod m_q = b_2$. This definition does not depend on the choice of the isomorphisms. Certainly ψ has birank (b_1, b_2) if and only if rk $\alpha = b_1$ and rk $\beta = b_2$.

Proposition 2.7. Let $0 \to \mathcal{F}_x \to \mathcal{F}_x \to W_x \to 0$ be the extension corresponding to the pair $(\alpha, \beta) \in \text{Hom}_k(W_x, E(p)) \oplus \text{Hom}_k(W_x, E(q))$. The following statements are equivalent:

- (1) \mathcal{F}_x is torsion-free,
- (2) $\mathcal{F}_x \simeq \mathcal{O}_x^a \oplus m_x^{r-a}$,
- (3) α and β are injective.

Proof. The equivalence of (1) and (2) is clear, we have already used it. We have to show that (2) is equivalent to (3). Now α and β are injective if and only if they are both of rank a. As we saw just before the proposition, this is the case if an only if ψ is of birank (a, a). Since W_x is of dimension a, this is the case if and only if ψ is injective. From diagram (2.13) we deduce that this is the case if and only if the push-out $W_x \otimes \mathcal{O}_x \to \mathcal{F}_x$ is injective. But this is injective if and only if \mathcal{F}_x is torsion-free.

As an immediate consequence we get,

Corollary 2.8. Let $(e): 0 \to \mathcal{F} \to \mathcal{F} \to \bigoplus_{i=1}^{n} \mathcal{W}_{x_i} \to 0$ be an extension as in subsection 2.2 and let $\Phi((e)) = ((\alpha_1, \beta_1), \dots, (\alpha_n, \beta_n)) \in \bigoplus_{i=1}^{n} (\operatorname{Hom}_k(\mathcal{W}_{x_i}, E(p_i))) \oplus \operatorname{Hom}_k(\mathcal{W}_{x_i}, E(q_i)))$ (see Proposition 2.3). Then the following conditions are equivalent:

- (1) \mathcal{F} is torsion free;
- (2) α_i and β_i are injective for i = 1, ..., n.

2.4 Triples on \widetilde{X}

In this subsection we outline the relation between torsion free sheaves on X and vector bundles on \widetilde{X} with an additional structure.

Given a torsion free sheaf \mathcal{F} on X, let $\mathcal{E} = \pi_*(E)$ be its subsheaf such that $0 \to \mathcal{E} \to \mathcal{F} \to \bigoplus_{i=1}^n \mathcal{W}_{x_i} \to 0$ is exact, where $\bigoplus_{i=1}^n \mathcal{W}_{x_i}$ is the torsion sheaf as above. Let

$$((\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)) \in \bigoplus_{i=1}^n (\operatorname{Hom}_k(W_{x_i}, E(p_i)) \oplus \operatorname{Hom}_k(W_{x_i}, E(q_i)))$$

denote the corresponding element according to Proposition 2.3. Then by Corollary 2.8 the homomorphisms α_i and β_i are all injective and we can consider the following vector spaces:

$$\Delta_1^i := \operatorname{Im} \alpha_i \subset E(p_i), \quad \Delta_2^i := \operatorname{Im} \beta_i \subset E(q_i), \Delta_1 := \bigoplus_{i=1}^n \Delta_1^i, \qquad \Delta_2 := \bigoplus_{i=1}^n \Delta_2^i.$$

Combining the inverse of the isomorphism α_i onto its image with β_i we obtain an isomorphism

$$\sigma_i = \beta_i \circ \alpha_i^{-1} \colon \Delta_1^i \to \Delta_2^i.$$

Finally we denote the direct sum by

$$\sigma := \bigoplus_{i=1}^n \sigma_i \colon \Delta_1 \to \Delta_2.$$

Summing up, we associated to the sheaf \mathcal{F} on X the object $(E, (\Delta_1, \Delta_2), \sigma)$ in a canonical way. We call these objects *triples on* \widetilde{X} in the sequel.

Conversely, given a triple $(E, (\Delta_1, \Delta_2), \sigma)$ on \widetilde{X} , we denote for $i = 1, \dots, n$

$$W_{x_i} := \Delta_1^i$$

and if $\alpha_i \colon W_{x_i} \hookrightarrow E(p_i)$ is the natural inclusion, we define $\beta_i \colon \Delta_2^i \to E(q_i)$ to be the composition

$$W_{x_i} = \Delta_1^i \xrightarrow{\sigma_i} \Delta_2^i \hookrightarrow E(q_i).$$

According to Proposition 2.3 there is a unique extension $0 \to \pi_* E \to \mathcal{F} \to \bigoplus_{i=1}^n \mathcal{W}_{x_i} \to 0$ associated to the *n* pairs $((\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n))$, where \mathcal{F} is torsion free of rank *r* according to Corollary 2.8.

Summing up, we associated to the triple $(E, (\Delta_1, \Delta_2), \sigma)$ the torsion free sheaf \mathcal{F} in a unique way. The following theorem is due to Seshadri (see [10, p. 178, Theorem 17]).

Theorem 2.9. Given intergers a_1, \ldots, a_n and r such that $0 \le a_i \le r$, there is a canonical bijection between the sets:

(1) of isomorphism classes of torsion free sheaves \mathcal{F} of rank r and degree d on X such that for $i = 1, \dots, n$,

$$\mathcal{F}_{x_i} \cong \bigoplus_{i=1}^{a_i} \mathcal{O}_{x_i} \oplus \bigoplus_{i=1}^{(r-a_i)} m_{x_i} \tag{2.14}$$

and

(2) of isomorphism classes of triples $(E, (\Delta_1, \Delta_2), \sigma)$, where

- *E* is a vector bundle of degree $d nr \sum_{i=1}^{n} a_i$ and rank *r* on \widetilde{X} ,
- for j = 1 and 2, $\Delta_j = \bigoplus_{i=1}^n \Delta_j^i$ with Δ_1^i and Δ_2^i vector subspaces of dimension a_i of $E(p_i)$ and $E(q_i)$ respectively,

•
$$\sigma = \bigoplus_{i=1}^{n} \sigma_i$$
 with isomorphisms $\sigma_i \colon \Delta_1^i \to \Delta_2^i$.

Proof. It is easy to see that the maps of one set to the other set given above are inverse to each other. The statement relating the degrees of *E* and \mathcal{F} is a consequence of equations (2.3) and (2.5).

As a direct consequence we get the following corollary.

Corollary 2.10. Let \mathcal{F} correspond to the triple $(E, (\Delta_1, \Delta_2), \sigma)$ as in Theorem 2.9. Then \mathcal{F} is a vector bundle if and only if $a_1 = \cdots = a_n = r$.

3 The functor Ψ

Let $(E, (\Delta_1, \Delta_2), \sigma)$ and $(E', (\Delta'_1, \Delta'_2), \sigma')$ be triples on \widetilde{X} . A homomorphism $\widetilde{g}: (E, (\Delta_1, \Delta_2), \sigma) \to (E', (\Delta'_1, \Delta'_2), \sigma')$

of triples on \widetilde{X} is by definition a homomorphism $g: E \to E'$ of the underlying vector bundles satisfying $g(p_i)(\Delta_1^i) \subset \Delta_1'^i$ and $g(q_i)(\Delta_2^i) \subset \Delta_2'^i$ for i = 1, ..., n such that the following diagram commutes

With this notion of morphisms the set of triples on \widetilde{X} forms a category which we denote by \mathcal{TR} .

Let $f: \mathcal{F} \to \mathcal{F}'$ denote a homomorphism of torsion free sheaves on X and denote by

$$\Psi(\mathcal{F}) := (E, (\Delta_1, \Delta_2), \sigma) \text{ and } \Psi(\mathcal{F}') := (E', (\Delta_1', \Delta_2'), \sigma')$$

the corresponding triples according to Theorem 2.9. Let $\mathcal{E} \subset \mathcal{F}$ and $\mathcal{E}' \subset \mathcal{F}'$ be the subsheaves defined in (2.2). It is easy to see that f maps \mathcal{E} into \mathcal{E}' . We then see from Corollary 2.2 that

$$\pi^*(f|\mathcal{E})/\text{torsion} \colon E = \pi^*\mathcal{E}/\mathcal{T} \to \pi^*\mathcal{E}'/\mathcal{T}' = E'$$

is a homomorphism of vector bundles. Moreover we have,

Lemma 3.1. The homomorphism f induces a homomorphism of triples

$$\Psi(f)\colon (E, (\Delta_1, \Delta_2), \sigma) \to (E', (\Delta'_1, \Delta'_2), \sigma')$$

on \widetilde{X} .

Proof. Consider the extension (2.2) defined by \mathcal{F} and let $0 \to \mathcal{E}' \to \mathcal{F}' \to \bigoplus_i \mathcal{W}'_{x_i} \to 0$ be the corresponding extension for \mathcal{F}' . Since f maps \mathcal{E} into \mathcal{E}' we get the following commutative diagram

$$0 \longrightarrow \mathcal{E} \longrightarrow \mathcal{F} \longrightarrow \bigoplus_{i} \mathcal{W}_{x_{i}} \longrightarrow 0$$

$$\downarrow f \mid \mathcal{E} \qquad \downarrow f \qquad \qquad \downarrow \phi_{i} f_{x_{i}} \qquad (3.2)$$

$$0 \longrightarrow \mathcal{E}' \longrightarrow \mathcal{F}' \longrightarrow \bigoplus_{i} \mathcal{W}'_{x_{i}} \longrightarrow 0.$$

Let $((\alpha_1, \beta_1), \dots, (\alpha_n, \beta_n)) \in \bigoplus_i (\text{Hom}(W_{x_i}, E(p_i)) \oplus \text{Hom}(W_{x_i}, E(q_i)))$ and similarly

$$((\alpha'_1,\beta'_1),\ldots,(\alpha'_n,\beta'_n)) \in \bigoplus_i (\operatorname{Hom}(W'_{x_i},E'(p_i)) \oplus \operatorname{Hom}(W'_{x_i},E'(q_i)))$$

denote the *n*-tuples of pairs of homomorphisms associated to the extensions of diagram (3.2) according to Proposition 2.3. By definition the following diagrams commute for i = 1, ..., n:

$$\begin{array}{cccc} W_{x_i} & \xrightarrow{\alpha_i} & E(p_i) & W_{x_i} & \xrightarrow{\beta_i} & E(q_i) \\ f_{x_i} & & & & & & & \\ f_{x_i} & & & & & & & \\ W'_{x_i} & \xrightarrow{\alpha'_i} & E'(p_i) & & & & & & \\ \end{array}$$

which implies $\Psi(f)(p_i)(\Delta_1^i) \subset \Delta_1^{'i}$ and $\Psi(f)(q_i)(\Delta_2^i) \subset \Delta_2^{'i}$ for i = 1, ..., n. It remains to show that the diagram (3.1) commutes, but this is straightforward using Proposition 2.7 and $\sigma = \bigoplus_i \sigma_i = \bigoplus_i (\beta_i \circ \alpha_i^{-1})$ and similarly for σ' .

If $\mathcal{T}S$ denotes the category of torsion free sheaves on X, then clearly Ψ is a functor from the category $\mathcal{T}S$ to the category $\mathcal{T}\mathcal{R}$ of triples on \widetilde{X} .

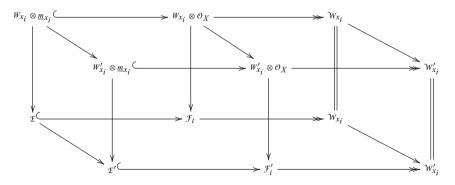
Theorem 3.2. The functor $\Psi \colon \mathcal{T}S \to \mathcal{T}\mathcal{R}$ is an equivalence of categories.

Proof. According to Theorem 2.9 the functor Ψ is a bijection on the objects. We have to show that it is a bijection on the sets of morphisms. So let $\tilde{g}: (E, (\Delta_1, \Delta_2), \sigma) \rightarrow (E', (\Delta'_1, \Delta'_2), \sigma')$ be a homomorphism of triples on \tilde{X} . Let \mathcal{F} and \mathcal{F}' denote the torsion free sheaves on X with $\Psi(\mathcal{F}) = (E, (\Delta_1, \Delta_2), \sigma)$ and $\Psi(\mathcal{F}') = (E', (\Delta'_1, \Delta'_2), \sigma')$.

Define $W_{x_i} := \Delta_1^i$, $W'_{x_i} := \Delta_1'^i$. So α_i and α'_i are its canonical inclusions into $E(p_i)$ and $E'(p_i)$ respectively. Similarly $\beta_i = \iota_i \circ \sigma_i$ and $\beta'_i = \iota'_i \circ \sigma'_i$, where ι_i and ι'_i are the canonical inclusions $\Delta_2^i \hookrightarrow E(q_i)$ and $\Delta_2'^i \hookrightarrow E'(q_i)$ respectively. Then diagram (3.1) implies that the following diagrams are commutative

for i = 1, ..., n.

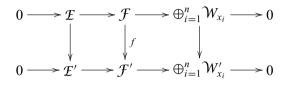
Now choose for i = 1, ..., n preimages ψ_i and ψ'_i of (α_i, β_i) and (α'_i, β'_i) under the map θ_i of diagram (2.11) respectively and consider them as homomorphisms $\psi_i : W_{x_i} \otimes \underline{m}_{x_i} \to \mathcal{E} = \pi_* \mathcal{E}$ and $\psi'_i : W'_{x_i} \otimes \underline{m}_{x_i} \to \mathcal{E}' = \pi_* \mathcal{E}'$. According to remark 2.5, \mathcal{F} is given by the sum in $\text{Ext}^1(\bigoplus_{i=1}^n W_{x_i}, \mathcal{E})$ of the push-outs $0 \to \mathcal{E} \to \mathcal{F}_i \to W_{x_i} \to 0$ by ψ_i of the canonical exact sequences $0 \to W_{x_i} \otimes \underline{m}_{x_i} \to W_{x_i} \otimes \mathcal{O}_X \to W_{x_i} \to 0$ defining the sheaf W_{x_i} . Similarly \mathcal{F}' is defined. For every i = 1, ..., n we obtain the following commutative diagram:



where the left hand vertical maps are ψ_i and ψ'_i and the commutativity of the left hand vertical square is a consequence of the commutativity of diagram (3.3). The universal property of the push-out gives us a homomorphism

$$f_i: \mathcal{F}_i \to \mathcal{F}'_i$$

such that the whole diagram commutes. Finally, taking the sum of the lower bottom diagrams we get a map $\text{Ext}^1(\bigoplus_{i=1}^n \mathcal{W}_{x_i}, \mathcal{E}) \to \text{Ext}^1(\bigoplus_{i=1}^n \mathcal{W}'_{x_i}, \mathcal{E}')$ given by a diagram



which defines $f: \mathcal{F} \to \mathcal{F}'$.

It is easy to see that $\tilde{g} = \Psi(f)$ which completes the proof of the theorem. \Box

Since any morphism in the category \mathcal{TS} admits a kernel and an image, so does any morphism in the category \mathcal{TR} . They are given in the following lemma the proof of which we omit.

Lemma 3.3. Let \tilde{g} : $(E, (\Delta_1, \Delta_2), \sigma) \rightarrow (E', (\Delta'_1, \Delta'_2), \sigma')$ be a morphism of triples on \tilde{X} with underlying map $g : E \rightarrow E'$. Then

(a)
$$\operatorname{Ker} \tilde{g} = (\operatorname{Ker}(g), (\Delta_{1,g}, \Delta_{2,g}), \sigma | \Delta_{1,g})$$

with $\Delta_{1,g} = \bigoplus_{i=1}^{n} \Delta_{1,g}^{i}$ and $\Delta_{1,g}^{i} = \Delta_{1}^{i} \cap \operatorname{Ker} g(p_{i}) \cap \sigma_{i}^{-1}(\operatorname{Ker} g(q_{i}))$ and $\Delta_{2,g} = \bigoplus_{i=1}^{n} \Delta_{2,g}^{i}$ with $\Delta_{2,g}^{i} = \sigma_{i}(\Delta_{1}^{i} \cap \operatorname{Ker} g(p_{i})) \cap \operatorname{Ker} g(q_{i}).$

(b) $\operatorname{Im} \tilde{g} = (\operatorname{Im}(g), (\Delta'_{1,g}, \Delta'_{2,g}), \sigma | \Delta'_{1,g})$

where $\Delta'_{1,g} = \bigoplus_{i=1}^{n} \Delta'^{i}_{1,g}$ with $\Delta'^{i}_{1,g} = \Delta'^{i}_{1} \cap g(p_i)(\Delta^{i}_{1}) \cap \sigma'^{i-1}_{i}(g(q_i)(\Delta^{i}_{2}))$ and $\Delta'_{2,g} = \bigoplus_{i=1}^{n} \Delta'^{i}_{2,g}$ with $\Delta'^{i}_{2,g} = \sigma'_{i}(\Delta'^{i}_{1} \cap g(p_i)(\Delta^{i}_{1})) \cap g(q_i)(\Delta^{i}_{2}).$

Proposition 3.4. Let $f: \mathcal{F} \to \mathcal{F}'$ be a homomorphism of torsion free sheaves and $\tilde{g} = \Psi(f)$ with underlying map of vector bundles $g: E \to E'$. Then

- (a) $f: \mathcal{F} \to \mathcal{F}'$ is injective if and only if $g: E \to E'$ is injective.
- (b) $f: \mathcal{F} \to \mathcal{F}'$ is surjective if and only if $g: E \to E'$ is surjective.

Proof.

(a) It is clear from Corollary 2.2 that if f is injective, then so is g. So assume g: E → E' is injective. Since, for every i, the map f_{xi}: W_{xi} → W'_{xi} can be identified with a restriction of the injective map g(p_i): E(p_i) → E'(p_i) and g: E → E' is injective if and only if f|E: E → E' is injective, the map f: F → F' is injective by diagram (3.2).

(b) Suppose f is surjective. We claim first that then also f | 𝔅 : 𝔅 → 𝔅' is surjective. It suffices to show this over each node x_i separately. We have the following diagram of O_{xi}-modules

Since f_{x_i} is surjective, so is $f(x_i)$. Hence the diagram implies that $m_{x_i}^{r-s} \subset \ker(f|\mathcal{E})_{x_i}$ with equality if and only if θ_i is surjective. The surjectivity of θ_i follows from its definition, i.e. from the definition of the of surjection in the top sequence in the diagram. This implies that θ_i is surjective, which in turn implies that $(f|\mathcal{E})_{x_i}$ and thus $f|\mathcal{E}$ is surjective. Now it follows from Corollary 2.2 and the right exactness of π^* that $g: E \to E'$ is surjective. The proof of the converse implication is similar to the corresponding proof in (a).

The cokernel of a morphism of torsion free sheaves on X is not necessarily torsion free. The following proposition works out what it means for the corresponding triples that this is the case.

Proposition 3.5. Let $f: \mathcal{F}' \to \mathcal{F}$ be a morphism of torsion free sheaves on X and $\tilde{g} = \Psi(f): (E', (\Delta'_1, \Delta'_2), \sigma') \to (E, (\Delta_1, \Delta_2), \sigma)$ be the corresponding map of triples on \tilde{X} . Then the following conditions are equivalent

- (1) $\mathcal{F}/f(\mathcal{F}')$ is torsion free;
- (2) E' is a vector subbundle of E, i.e. E/g(E') is a vector bundle on \widetilde{X} and for i = 1, ..., n we have $g(p_i)(\Delta_1^i) = \Delta_1^i \cap g(p_i)(E'(p_i))$ and $g(q_i)(\Delta_2^i) = \Delta_2^i \cap g(q_i)(E'(q_i)).$

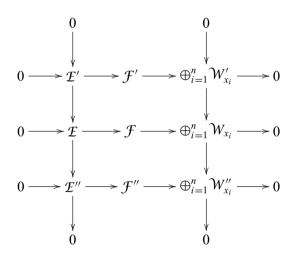
Proof. Suppose that $\mathcal{F}/f(\mathcal{F}')$ is torsion free with corresponding triple $(E'', (\Delta_1'', \Delta_2''), \sigma'')$ on \widetilde{X} . Pulling back the exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}/f(\mathcal{F}') \to 0$ by π^* and moding out the torsion parts, we get, applying Corollary 2.2, the exact sequence

$$0 \to E' \xrightarrow{g} E \to E'' \to 0. \tag{3.4}$$

which implies that $E/g(E') \simeq E''$ is a vector bundle on \widetilde{X} . As in the proof of Proposition 3.4 we see that the map $\Delta_j \to \Delta'_j$ is surjective for j = 1 and 2. This

implies that $g(p_i)(\Delta_1'^i) = \Delta_1^i \cap g(p_i)(E'(p_i))$ for i = 1, ..., n and similarly for the points q_i .

Conversely, suppose that E/g(E') is a vector bundle and that $g(p_i)(\Delta_1^{i_1}) = \Delta_1^i \cap g(p_i)(E'(p_i))$ and $g(q_i)(\Delta_2^{i_1}) = \Delta_2^i \cap g(q_i)(E'(q_i))$ for all *i*. Then we have the exact sequence (3.4) with E'' = E'/g(E'). Defining $\Delta_1'' := \bigoplus_i \Delta_1''^i$ with $\Delta_1''^i = \Delta_1^i/g(p_i)(\Delta_1'^i)$ and $\Delta_2'' := \bigoplus_i \Delta_2''^i$ with $\Delta_2''^i = \Delta_2^i/g(q_i)(\Delta_2'^i)$ for i = 1, ..., n, the assumptions imply that $\Delta_1''^i$ is a subspace of $E''(p_i)$ and $\Delta_2'''^i = \pi_i E'' \to \Delta_2''$ the isomorphism induced by σ . Then, if \mathcal{F}'' denotes the torsion free sheaf on X corresponding to the triple $(E'', (\Delta_1'', \Delta_2''), \sigma'')$, we have $\mathcal{F}'' = \pi_i E''$. So applying π_i to the exact sequence (3.4), we get the exact sequence $0 \to \mathcal{F}' \to \mathcal{F}'' \to 0$. Now consider the diagram with exact rows



By the assumption on the Δ'_{j}^{i} the right hand vertical sequence is exact. The obvious morphisms of triples give us maps $f: \mathcal{F}' \to \mathcal{F}$ and $\mathcal{F} \to \mathcal{F}''$. Now the exactness of the diagram gives us an exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$. In particular $\mathcal{F}/f(\mathcal{F}') \simeq \mathcal{F}''$ is torsion free.

4 Stability

4.1 Definitions

For any torsion free sheaf \mathcal{F} on X we define the slope $\mu(\mathcal{F})$ by

$$\mu(\mathcal{F}) := \frac{\deg \mathcal{F}}{\operatorname{rk} \mathcal{F}}.$$

Recall \mathcal{F} is called *semistable*, respectively *stable*, if

$$\mu(\mathcal{G}) \leq \mu(\mathcal{F}), \text{ respectively } \mu(\mathcal{G}) < \mu(\mathcal{F}),$$

for all proper subsheaves G of \mathcal{F} . Theorem 3.2 suggests to translate these notions to the category of triples on \widetilde{X} .

Let $(E, (\Delta_1, \Delta_2), \sigma)$ be a triple of rank r on \widetilde{X} with $\Delta_1 = \bigoplus_{i=1}^n \Delta_1^i$ and dim $\Delta_1^i = a_i$. If \mathcal{F} denotes the corresponding torsion free sheaf on X, then according to (2.3) and (2.5) the degrees of E and \mathcal{F} are related by

$$\deg E = \deg \mathcal{F} - nr - \sum_{i=1}^{n} a_i.$$
(4.1)

Hence it makes sense to define the *degree* of the triple $(E, (\Delta_1, \Delta_2), \sigma)$ of rank *r* by

$$\deg(E, (\Delta_1, \Delta_2), \sigma) := \deg E + \sum_{i=1}^n a_i + nr.$$
 (4.2)

If $(E, (\Delta_1, \Delta_2), \sigma)$ is a triple of rank *r* and $d := \deg E$, we call it a triple of *type* (r, d, a_1, \ldots, a_n) . Note that *d* is the degree of the vector bundle *E*, not the degree of the triple. We then define the *slope* of this triple by

$$\mu(E, (\Delta_1, \Delta_2), \sigma) := \frac{\deg(E, (\Delta_1, \Delta_2), \sigma)}{\operatorname{rk} E}.$$

A subtriple of $(E, (\Delta_1, \Delta_2), \sigma)$ is by definition a triple $(E', (\Delta'_1, \Delta'_2), \sigma')$ on \widetilde{X} such that $E' \subset E$ is a subbundle, $\Delta'_i \subset \Delta_i$ are vector subspaces respecting the direct sums for i = 1 and 2 such that $\sigma' = \sigma | \Delta'_1$. With these definitions the above notions translate as follows: A triple $(E, (\Delta_1, \Delta_2), \sigma)$ on \widetilde{X} is called *(semi-) stable* if

$$\mu(E', (\Delta'_1, \Delta'_2), \sigma') \stackrel{(\leq)}{<} \mu(E, (\Delta_1, \Delta_2), \sigma)$$

for all subtriples $(E', (\Delta'_1, \Delta'_2), \sigma')$ of $(E, (\Delta_1, \Delta_2), \sigma)$.

It is convenient to define for any integer k, $1 \le k \le r$, the invariant s_k of a triple $(E, (\Delta_1, \Delta_2), \sigma)$ of type (r, d, a_1, \ldots, a_n) by

$$s_k(E, (\Delta_1, \Delta_2), \sigma) := k \deg(E, (\Delta_1, \Delta_2), \sigma)$$

-r max deg(E', (\Delta'_1, \Delta'_2), \sigma') (4.3)

where the maximum is taken over all subtriples $(E', (\Delta'_1, \Delta'_2), \sigma')$ of rank *k* of the given triple. It is clear that this maximum exists and that $(E, (\Delta_1, \Delta_2), \sigma)$ is stable, respectively semistable, if and only if $s_k(E, (\Delta_1, \Delta_2), \sigma) > 0$, respectively ≥ 0 , for $1 \leq k \leq \text{rk } E - 1$.

4.2 Relation to stability of *E*

In this subsection we want to compare the invariants $s_k(E, (\Delta_1, \Delta_2), \sigma)$ with the corresponding invariants of the vector bundle *E*. Recall (see e.g. [7]) that for any integer *k*, $1 \le k \le r - 1$ the invariant s_k of the vector bundle *E* of rank *r* on \widetilde{X} is defined by

$$s_k(E) = k \deg E - r \max \deg E'$$
(4.4)

where the maximum is taken over all subbundles E' of rank k of E. Certainly this maximum exists and E is stable, respectively semistable, if and only if $s_k(E) > 0$, respectively ≥ 0 .

Proposition 4.1. Let $(E, (\Delta_1, \Delta_2), \sigma)$ be a triple of type (r, d, a_1, \ldots, a_n) on \widetilde{X} . Then we have for $1 \le k \le r$

$$s_k(E, (\Delta_1, \Delta_2), \sigma) + r \sum_i a_i'' \leq s_k(E) + k \sum_i a_i$$

$$\leq s_k(E, (\Delta_1, \Delta_2), \sigma) + r \sum_{i=1}^n a_i'$$

where for all $i = 1, \ldots, n$,

$$\max(k + a_i - r, 0) \le a'_i \le \min(a_i, k)$$
 and
 $\max(2k + a_i - 2r, 0) \le a''_i \le \min(a_i, k).$

Proof. Suppose the subtriple $(E', (\Delta'_1, \Delta'_2), \sigma')$ of type $(k, d', a'_1, \ldots, a'_n)$ takes the maximum in (4.3), i.e. $s_k(E, (\Delta_1, \Delta_2), \sigma) = k \deg(E, (\Delta_1, \Delta_2), \sigma) - r \deg(E', (\Delta'_1, \Delta'_2), \sigma')$. According to Proposition 3.5, E' is a subbundle of E. This implies, applying (4.2),

$$s_{k}(E) \leq kd - rd'$$

$$= k \left(\deg(E, (\Delta_{1}, \Delta_{2}), \sigma) - nr - \sum_{i} a_{i} \right)$$

$$-r \left(\deg(E', (\Delta'_{1}, \Delta'_{2}), \sigma') - nk - \sum_{i} a'_{i} \right)$$

$$= s_{k}(E, (\Delta_{1}, \Delta_{2}), \sigma) + r \sum_{i} a'_{i} - k \sum_{i} a_{i}$$

Since $(E', (\Delta'_1, \Delta'_2), \sigma')$ is a subtriple of maximal degree, we must have

$$\Delta_1^{'i} = \Delta_1^i \cap E'(p_i)$$

for all *i*. Considering Δ_1^{i} as an intersection in $E(p_i)$, the dimension formula implies the left hand inequalities for the a'_i . The right hand inequalities are trivial.

Now suppose the subbundle $E'' \subset E$ of rank k takes the maximum in (4.4). Then $(E'', (\Delta_1'', \Delta_2''), \sigma'')$ with $\Delta_1'' = \bigoplus_i \Delta_1''^i$ and $\Delta_2'' = \bigoplus_i \Delta_2''^i$ such that

$$\Delta_1^{''i} = E^{''}(p_i) \cap \Delta_1^i \cap \sigma^{-1}(E^{''}(q_i)) \text{ and } \Delta_2^{''i} = \sigma(\Delta_1^{''i})$$

and

$$\sigma'' = \sigma |\Delta_1''$$

is a subtriple of rank k, not necessarily of maximal degree. This implies, denoting $a_i'' = \dim \Delta_1''$ and applying (4.2) again,

$$s_k(E, (\Delta_1, \Delta_2), \sigma) \leq k \deg(E, (\Delta_1, \Delta_2), \sigma) - r \deg(E'', (\Delta_1'', \Delta_2''), \sigma'')$$

= $k \left(\deg E + nr + \sum_i a_i \right) - r \left(\deg E'' + nk + \sum_i a_i'' \right)$
= $s_k(E) + k \sum_i a_i - r \sum_i a_i''.$

The right hand inequalities for a_i'' is trivial. The left hand inequalities follow from the definition of $\Delta_1''^i$ considering it as an intersection in the *r*-dimensional vector space $E(p_i)$.

As a direct consequence we obtain the following corollary.

Corollary 4.2. Let $(E, (\Delta_1, \Delta_2), \sigma)$ be a triple of type $(r, d, 0, \ldots, 0)$ on \widetilde{X} . Then

 $s_k(E, (\Delta_1, \Delta_2), \sigma) = s_k(E)$

for all k. In particular $s_k(E, (\Delta_1, \Delta_2), \sigma)$ is (semi-) stable if and only if E is (semi-) stable.

Recall from Corollary 2.10 that \mathcal{F} is a vector bundle if and only if the corresponding triple $(E, (\Delta_1, \Delta_2), \sigma)$ is of type (r, d, r, \ldots, r) . In this case the inequality of Proposition 4.1 implies

$$s_k(E) \leq s_k(E, (\Delta_1, \Delta_2), \sigma).$$

This gives the following corollary.

Corollary 4.3. If *E* is (semi-) stable, so is any triple $(E, (\Delta_1, \Delta_2), \sigma)$ of type (r, d, r, \ldots, r) .

The following proposition shows that the converse statement is not valid in general.

Proposition 4.4. Let X be a rational curve with one node. So X is of arithmetic genus 1 with $\widetilde{X} \simeq \mathbb{P}^1$. If

$$E = \bigoplus_{i=1}^{r-1} \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1},$$

then a general triple $(E, (\Delta_1, \Delta_2), \sigma)$ of type (r, r - 1, r) is stable.

Proof. We have to show that for a general $(E, (\Delta_1, \Delta_2), \sigma)$ of type (r, r-1, r) on \widetilde{X} and all subtriples $(E', (\Delta'_1, \Delta'_2), \sigma')$ of type (k, d', a'), $1 \le k < r$ the number

$$s_k((E, (\Delta_1, \Delta_2), \sigma), (E', (\Delta'_1, \Delta'_2), \sigma')) := k \deg(E, (\Delta_1, \Delta_2), \sigma)$$
$$-r \deg(E', (\Delta'_1, \Delta'_2), \sigma')$$

is positive.

By (4.2) we have

$$s_k \left((E, (\Delta_1, \Delta_2), \sigma), (E', (\Delta'_1, \Delta'_2), \sigma') \right) \\= k(r - 1 + 2r) - r(\deg E' + a' + k) \\= r(k - \deg E') - k + r(k - a').$$

If deg E' < k, then we have, since $a' \le k$,

$$s_k((E, (\Delta_1, \Delta_2), \sigma), (E', (\Delta_1', \Delta_2'), \sigma')) > r - k > 0.$$

Hence we may assume that deg E' = k, i.e. $E' \simeq \bigoplus_{i=1}^{k} \mathcal{O}_{\mathbb{P}^1}(1)$. Then we have

$$s_k((E, (\Delta_1, \Delta_2), \sigma), (E', (\Delta'_1, \Delta'_2), \sigma')) > 0 \quad \Leftrightarrow \quad a' < k - \frac{k}{r}$$

Suppose this is not the case. Then $a' \ge k - \frac{k}{r} > k - 1$, which implies a' = k and thus

$$\Delta'_1 = E'(p_1) \subset \Delta_1, \ \Delta'_2 = E'(q_1) \subset \Delta_2 \ \text{and} \ \sigma(E'(p_1)) = E'(q_1).$$
 (4.5)

Hence it suffices to show that there exists $\sigma : E(p_1) \to E(q_1)$ such that for all subbundles E' of rank k of E,

$$\sigma(E'(p_1)) \neq E'(q_1).$$
 (4.6)

Now the dimension of the space of subbundles of E of rank and degree k is less or equal to

$$\dim \operatorname{Hom}\left(\bigoplus_{i=1}^{k} \mathcal{O}_{\mathbb{P}^{1}}(1), \bigoplus_{j=1}^{r-1} \mathcal{O}_{\mathbb{P}^{1}}(1)\right) - \dim \operatorname{Aut}\left(\bigoplus_{i=1}^{k} \mathcal{O}_{\mathbb{P}^{1}}(1)\right) = k(r-1) - k^{2}.$$

Moreover, given a subbundle of rank and degree k, the space of isomorphisms $\sigma: E(p_1) \to E(q_1)$ such that $\sigma(E'(p_1)) = E'(q_1)$ is of dimension $r(r-k) + k^2$. But

$$k(r-1) - k^{2} + r(r-k) + k^{2} = r^{2} - k < r^{2}.$$

Hence a general $\sigma: E(p_1) \to E(q_1)$ satisfies (4.6) which completes the proof.

Proposition 4.5. Let X be of geometric genus $g \ge 3$ with one node x_1 and E be a general stable vector bundle of rank r and degree d on \widetilde{X} . Then any triple $(E, (\Delta_1, \Delta_2), \sigma)$ on \widetilde{X} is stable.

Proof. Let (r, d, a_1) be the type of the triple $(E, (\Delta_1, \Delta_2), \sigma)$ and k an integer with $1 \le k \le r$. Since E is general, we have by [8]:

$$s_k(E) \ge k(r-k)(g-1).$$

Using this, we get from Proposition 4.1

$$s_k(E, (\Delta_1, \Delta_2), \sigma) \geq s_k(E) + ka_1 - r\min(a_1, k)$$

$$\geq k(r-k)(g-1) + ka_1 - r\min(a_1, k)$$

If $a_1 \leq k$, this gives

$$s_k(E, (\Delta_1, \Delta_2), \sigma) \ge (r-k)(k(g-1)-a_1) > 0.$$

If $a_1 > k$, it gives

$$s_k(E, (\Delta_1, \Delta_2), \sigma) \ge k(r-k)(g-2) > 0$$

which completes the proof of the proposition.

Bull Braz Math Soc, Vol. 41, N. 3, 2010

For X of geometric genus 2 with one node the same proof gives that for general stable E on \widetilde{X} any triple $(E, (\Delta_1, \Delta_2), \sigma)$ is semistable. This is best possible as the following example shows.

Example 4.6. Let X be of geometric genus g = 2 with one node and let E be a general stable vector bundle of rank 2 and degree 1 on \widetilde{X} . So $s_1(E) = 1$. If E' is a line subbundle of maximal degree of E, we deduce from $1 = s_1(E) = \deg E - 2 \deg E'$ that deg E' = 0. Choose $\Delta_1 = \Delta'_1 = E'(p_1)$ and $\Delta_2 = \Delta'_2 = E'(q_1)$ and let $\sigma = \sigma'$: $E(p_1) \rightarrow E'(q_1)$. Then we have

$$s_1(E, (\Delta_1, \Delta_2), \sigma) \leq \deg(E, (\Delta_1, \Delta_2), \sigma) - 2 \deg(E', (\Delta'_1, \Delta'_2), \sigma')$$

= $(\deg E + a_1 - 2) - 2(\deg E' + a'_1 - 1)$
= $(1 + 1 - 2) - 2(0 + 1 - 1) = 0.$

Remark 4.7. It is not difficult to work out analogous results of Propositions 4.4 and 4.5 in the case of *n* nodes.

5 Applications

5.1 Sheaves of type $(r, d, a_1, ..., a_n)$

Let the notations be as above. In particular X is an irreducible curve, singular only at exactly *n* nodes x_i with normalization \widetilde{X} of genus *g*. So X is of arithmetic genus $p_a(X) = g + n$. We call a torsion free sheaf \mathcal{F} on X of type (r, d, a_1, \ldots, a_n) if it is of rank *r*, degree *d* and

$$\mathcal{F}_{x_i} \simeq \mathcal{O}_{x_i}^{a_i} \oplus m_{x_i}^{r-a_i} \tag{5.1}$$

for i = 1, ..., n. Since the degree of the corresponding triple

$$(E, (\Delta_1, \Delta_2), \sigma) := \Psi(\mathcal{F})$$

equals by definition the degree of \mathcal{F} , we conclude from (4.2),

Lemma 5.1. A torsion free sheaf \mathcal{F} is of type (r, d, a_1, \ldots, a_n) if and only if the corresponding triple $(E, (\Delta_1, \Delta_2), \sigma)$ is of type

$$\left(r, d-\sum_{i}a_{i}-nr, a_{1}, \ldots, a_{n}\right).$$

According to [10, Ch. 8, Prop. 9] the stable torsion free sheaves of rank r and degree d form an irreducible moduli space $\mathcal{M}_X(r, d)$. For any a_i , $0 \le a_i \le r$ for $i = 1, \ldots, n$ consider the subset

$$\mathcal{M}_X(r, d, a_1, \ldots, a_n) := \big\{ \mathcal{F} \in \mathcal{M}(r, d) \mid \mathcal{F} \text{ of type } (r, d, a_1, \ldots, a_n) \big\}.$$

Lemma 5.2. $\mathcal{M}_X(r, d, a_1, \ldots, a_n)$ is a locally closed subset of $\mathcal{M}_X(r, d)$.

Proof. For the proof only note that the function $d_i \colon \mathcal{M}(r, d) \to \mathbb{Z}, \ \mathcal{F} \mapsto \dim \mathcal{F}(x_i)$ is upper semi-continuous.

Proposition 5.3.

(a) For any type (r, d, a_1, \ldots, a_n) we have

dim
$$\mathcal{M}_X(r, d, a_1, \dots, a_n) \le r^2(g-1) + 1 + 2r \sum_{i=1}^n a_i - \sum_{i=1}^n a_i^2$$
. (5.2)

(b) If for a general E ∈ M_{X̃}(r, d − ∑_i a_i − nr) all triples (E, (Δ₁, Δ₂), σ) of type (r, d − ∑_i a_i − nr, a₁, ..., a_n) are stable, then we have equality in (5.2).

Proof.

(a) Suppose $\mathcal{F} \in \mathcal{M}_X(r, d, a_1, \dots, a_n)$ with corresponding triple $(E, (\Delta_1, \Delta_2), \sigma)$. According to Lemma 5.1 we have

$$\tilde{d} := \deg E = d - \sum_{i} a_i - nr.$$

Recall that an algebraic family \mathcal{V} of vector bundles of rank r degree \tilde{d} on $\widetilde{X} \times S$ is called effective, if for any point $s \in S$ there are at most finitely many points $s' \in S$ such that $\mathcal{V}|X \times \{s\} \simeq \mathcal{V}|X \times \{s'\}$. It is well known (see [9, Prop. 2.6]) that any effective family of such vector bundles is of dimension $\leq \dim \mathcal{M}_{\widetilde{X}}(r, d')$.

Recall moreover that an isomorphism of triples $\tilde{g}: (E, (\Delta_1, \Delta_2), \sigma) \rightarrow (E', (\Delta'_1, \Delta'_2), \sigma')$ is by definition an isomorphism $g: E \rightarrow E'$ satisfying $g(p_i)(\Delta_1) = \Delta'_1$ and $g(q_i)(\Delta_2) = \Delta'_2$ for all *i* such that (3.1) commutes.

For a fixed *E*, the pairs (Δ_1, Δ_2) vary over $(\times_i Gr(a_i, r)) \times (\times_i Gr(a_i, r))$. For each fixed pair (Δ_1, Δ_2) , the isomorphism σ varies over $Iso(\Delta_1, \Delta_2)$. Moreover, $\mathbb{P}(\operatorname{Aut} E)$ acts on the set of triples with the underlying bundle *E* by

$$g(\Delta_1, \Delta_2, \sigma) := ((g(p_i)(\Delta_1^i))_i, (g(q_i)(\Delta_2^i))_i, g(\sigma_i)_i),$$

where $g(\sigma_i): g(p_i)(\Delta_1^i) \to g(q_i)(\Delta_2^i)$ is the isomorphism induced by σ_i . The quotient by this action is the variety of isomorphism classes of triples with the underlying bundle *E*. Hence the isomorphism classes of triples with the underlying bundle *E* are determined by

$$(\times_i Gr(a_i, r)) \times (\times_i Gr(a_i, r)) \times (\times_i k^{a_i^2}) / \mathbb{P}(\operatorname{Aut} E).$$

This quotient has maximum dimension for stable vector bundles E.

Using Theorem 3.2, this implies

$$\dim \mathcal{M}_X(r, d, a_1, \dots, a_n) \leq \dim \mathcal{M}_{\widetilde{X}}(r, \widetilde{d}) + 2\sum_{i=1}^n \dim Gr(a_i, r) + \sum_{i=1}^n a_i^2$$
$$= r^2(g-1) + 1 + 2\sum_{i=1}^n a_i(r-a_i) + \sum_{i=1}^n a_i^2$$
$$= r^2(g-1) + 1 + 2r\sum_{i=1}^n a_i - \sum_{i=1}^n a_i^2.$$

(b) Assume now that for a general E ∈ M_X(r, d̃) all triples (E, (Δ₁, Δ₂), σ) of type (r, d̃, a₁,..., a_n) are stable. Then there is a non-empty open set U of M_X(r, d̃) with this property.

The commutativity of (3.1) is automatically fullfilled for any σ if *E* is stable, since an automorphism of a stable bundle is a constant. This implies that

$$\dim \mathcal{M}_X(r, d, a_1, \dots, a_n) \ge \dim \mathcal{M}_{\widetilde{X}}(r, \widetilde{d}) + 2\sum_{i=1}^n \dim Gr(a_i, r) + \sum_{i=1}^n a_i^2,$$

which by the same computation as above completes the proof of the proposition. $\hfill \Box$

Remark 5.4. Note that $r^2(g-1) + 1 + 2\sum_i a_i - \sum_i a_i^2 = r^2(g_X - 1) + 1 - \sum_i (r - a_i)^2$, where g_X denotes the genus of X. Thus Proposition 5.3 agrees with the results of [2, Proposition 2.7].

The following corollary is well known (see e.g. [2]).

Corollary 5.5. *The dimension of the moduli space of stable torsion free sheaves of rank r and degree d on a curve X of genus* $g \ge 2$ *with n nodes is*

dim
$$\mathcal{M}_X(r, d) = r^2(g + n - 1) + 1.$$

Proof. Since the functions $d_i: \mathcal{M}(r, d) \to \mathbb{Z}$, $\mathcal{F} \mapsto \dim \mathcal{F}(x_i)$ are upper semi-continuous for all *i*, there is an open dense set U in $\mathcal{M}_X(n, d)$ parametrizing vector bundles. Since the corresponding triples on \widetilde{X} are of type (r, d, r, \ldots, r) , Corollary 4.3 and Proposition 5.2 (b) imply dim $\mathcal{M}_X(r, d) = r^2(g-1) + r^2n + 1$ which completes the proof.

5.2 Upper bounds for *s*_k

Proposition 4.1 allows a cheap proof of an upper bound for the invariant $s_k(E, (\Delta_1, \Delta_2), \sigma)$ which however is not best possible (see [2]).

Proposition 5.6. For any torsion free sheaf \mathcal{F} of rank r and degree d on X and any k, $1 \le k \le r - 1$ we have

$$s_k(\mathcal{F}) \le kr(g+n-1) - k^2(g-1) + r - 1.$$

Proof. Let $(E, (\Delta_1, \Delta_2), \sigma)$ be the triple corresponding to \mathcal{F} . According to the left hand inequality of Proposition 4.1 we have

$$s_k(\mathcal{F}) = s_k(E, (\Delta_1, \Delta_2), \sigma) \le s_k(E) + k \sum_i a_i$$

Now according to [6], $s_k(E) \le k(r-k)(g-1) + r - 1$. Moreover $a_i \le r$ for all *i*. This gives the assertion.

Acknowledgments. We would like to thank Usha Bhosle for pointing out an error in a first version of this paper.

References

- [1] U.N. Bhosle. *Generalized parabolic bundles and applications to torsionfree sheaves on nodal curves.* Ark. Mat., **30** (1992), 187–215.
- U.N. Bhosle. Maximal subsheaves of torsion-free sheaves on nodal curves. Journ. London Math. Soc., 74 (2006), 59–74.
- [3] I. Burban and Y. Drozd. *Coherent sheaves on rational curves with simple double points and transversal intersections*. Duke Math. J., **121** (2004), 189–229.
- [4] I. Burban, Y. Drozd and G.-M. Greuel. Vector bundles on singular projective curves. Kluwer Acad. Publ., NATO Sci. Ser. II, Math. Phys. Chem., 36 (2001), 1–15.

- [5] A. Grothendieck. Sur quelques points d'algèbre homologique. Tohoku Math. J., 9 (1957), 119–221.
- [6] A. Hirschowitz. *Problème de Brill-Noether en rang supérieur.* Preprint 91, Université de Nice (1986).
- [7] H. Lange. Zur Klassifikation von Regelmannigfaltigkeiten. Math. Ann., 262 (1083), 447–459
- [8] S. Mukai and F. Sakai. Maximal subbundles of vector bundles on a curve. Manuscr. Math., 52 (1985), 251–256.
- [9] M.S. Narasimhan and S. Ramanan. *Deformations of the moduli space of vector bundles over an algebraic curve*. Ann. of Math., **101** (1975), 391–417.
- [10] C.S. Seshadri. Fibrés vectoriels sur les courbes algébriques. Astérisque, 96 (1982).
- [11] S. Sundaram. *Special divisors and vector bundles*. Tohoku Math. J., **39** (1987), 175–213.

D. Avritzer

Departamento de Matemática Universidade Federal de Minas Gerais Av. Antonio Carlos 6627 30161-970 Belo Horizonte, MG BRAZIL

E-mail: dan@mat.ufmg.br

H. Lange

Mathematisches Institut Universität Erlangen-Nüremberg Bismarckstrasse 1 1/2 91054 Erlangen GERMANY

E-mail: lange@mi.uni-erlangen.de

F.A. Ribeiro

Departamento de Matemática Universidade Federal de Juiz de Fora ICE Campus Universitario, B. Martelos 36036-330 Juiz de Fora, MG BRAZIL

E-mail: flaviana.ribeiro@ufjf.edu.br